FLD axioms

FLD001-0.ax Ordered field axioms (axiom formulation glxx) $(defined(x) and defined(y) and defined(z)) \Rightarrow x + (y+z) = (x+y) + z$ cnf(associativity_addition, axiom) defined(x) $\Rightarrow 0 + x = x$ cnf(existence_of_identity_addition, axiom) defined(x) \Rightarrow x + -x=0 cnf(existence_of_inverse_addition, axiom) $(defined(x) and defined(y)) \Rightarrow x + y = y + x$ cnf(commutativity_addition, axiom) $(defined(x) and defined(y) and defined(z)) \Rightarrow x \cdot (y \cdot z) = (x \cdot y) \cdot z$ cnf(associativity_multiplication, axiom) defined(x) $\Rightarrow 1 \cdot x = x$ cnf(existence_of_identity_multiplication, axiom) defined(x) $\Rightarrow (x \cdot x^{-1} = 1 \text{ or } x = 0)$ cnf(existence_of_inverse_multiplication) cnf(existence_of_inverse_multiplication, axiom) cnf(commutativity_multiplication, axiom) $(\operatorname{defined}(x) \text{ and } \operatorname{defined}(y)) \Rightarrow x \cdot y = y \cdot x$ $(defined(x) and defined(y) and defined(z)) \Rightarrow x \cdot z + y \cdot z = (x + y) \cdot z$ cnf(distributivity, axiom) $(\operatorname{defined}(x) \text{ and } \operatorname{defined}(y)) \Rightarrow \operatorname{defined}(x+y)$ cnf(well_definedness_of_addition, axiom) defined(0)cnf(well_definedness_of_additive_identity, axiom) defined(x) \Rightarrow defined(-x) cnf(well_definedness_of_additive_inverse, axiom) $(\text{defined}(x) \text{ and } \text{defined}(y)) \Rightarrow \text{defined}(x \cdot y) \qquad \text{cnf}(\text{well_definedness_of_multiplication, axiom})$ cnf(well_definedness_of_multiplicative_identity, axiom) defined(1)defined(x) \Rightarrow (defined(x⁻¹) or x=0) cnf(well_definedness_of_multiplicative_inverse, axiom) $(x \le y \text{ and } y \le x) \Rightarrow x = y$ cnf(antisymmetry_of_order_relation, axiom) cnf(transitivity_of_order_relation, axiom) $(x \le y \text{ and } y \le z) \implies x \le z$ $(\operatorname{defined}(x) \text{ and } \operatorname{defined}(y)) \Rightarrow (x \leq y \text{ or } y \leq x)$ cnf(totality_of_order_relation, axiom) $(\text{defined}(z) \text{ and } x \leq y) \implies x + z \leq y + z$ cnf(compatibility_of_order_relation_and_addition, axiom) $(0 \le y \text{ and } 0 \le z) \Rightarrow 0 \le y \cdot z$ cnf(compatibility_of_order_relation_and_multiplication, axiom) defined(x) $\Rightarrow x = x$ cnf(reflexivity_of_equality, axiom) $y=x \Rightarrow x=y$ cnf(symmetry_of_equality, axiom) $(x=y \text{ and } y=z) \Rightarrow x=z$ cnf(transitivity_of_equality, axiom) $(\text{defined}(z) \text{ and } x=y) \Rightarrow x+z=y+z$ cnf(compatibility_of_equality_and_addition, axiom) $(\text{defined}(z) \text{ and } x=y) \Rightarrow x \cdot z=y \cdot z$ $\text{cnf}(\text{compatibility_of_equality_and_multiplication, axiom})$ $(x \le z \text{ and } x=y) \Rightarrow y \le z$ cnf(compatibility_of_equality_and_order_relation, axiom) cnf(different_identities, axiom) $\neg 0 = 1$

FLD002-0.ax Ordered field axioms (axiom formulation re)

 $(x + y = u \text{ and } y + z = v \text{ and } u + z = w) \Rightarrow x + v = w \quad cnf(associativity_addition_1, axiom)$ cnf(associativity_addition_2, axiom) $(x+y=u \text{ and } y+z=v \text{ and } x+v=w) \Rightarrow u+z=w$ defined(x) $\Rightarrow 0 + x = x$ cnf(existence_of_identity_addition, axiom) defined(x) $\Rightarrow -x + x = 0$ cnf(existence_of_inverse_addition, axiom) cnf(commutativity_addition, axiom) $x + y = z \implies y + x = z$ $(x \cdot y = u \text{ and } y \cdot z = v \text{ and } u \cdot z = w) \Rightarrow x \cdot v = w \quad cnf(associativity_multiplication_1, axiom)$ $(x \cdot y = u \text{ and } y \cdot z = v \text{ and } x \cdot v = w) \Rightarrow u \cdot z = w \quad \text{cnf}(\text{associativity_multiplication}_2, \text{axiom})$ defined(x) $\Rightarrow 1 \cdot x = x$ cnf(existence_of_identity_multiplication, axiom) defined(x) \Rightarrow (x⁻¹ · x=1 or 0 + x=0) cnf(existence_of_inverse_multiplication, axiom) cnf(commutativity_multiplication, axiom) $x \cdot y = z \Rightarrow y \cdot x = z$ $(x + y = a \text{ and } a \cdot z = b \text{ and } x \cdot z = c \text{ and } y \cdot z = d) \Rightarrow c + d = b$ $cnf(distributivity_1, axiom)$ $(x + y = a \text{ and } x \cdot z = c \text{ and } y \cdot z = d \text{ and } c + d = b) \Rightarrow a \cdot z = b$ cnf(distributivity₂, axiom) $(\operatorname{defined}(x) \text{ and } \operatorname{defined}(y)) \Rightarrow \operatorname{defined}(x+y)$ cnf(well_definedness_of_addition, axiom) cnf(well_definedness_of_additive_identity, axiom) defined(0)defined(x) \Rightarrow defined(-x) cnf(well_definedness_of_additive_inverse, axiom) $(\operatorname{defined}(x) \text{ and } \operatorname{defined}(y)) \Rightarrow \operatorname{defined}(x \cdot y)$ cnf(well_definedness_of_multiplication, axiom) defined(1)cnf(well_definedness_of_multiplicative_identity, axiom) defined(x) \Rightarrow (defined(x^{-1}) or 0 + x=0) cnf(well_definedness_of_multiplicative_inverse, axiom) $(\operatorname{defined}(x) \text{ and } \operatorname{defined}(y)) \Rightarrow x + y = x + y$ cnf(totality_of_addition, axiom) $(\operatorname{defined}(x) \text{ and } \operatorname{defined}(y)) \Rightarrow x \cdot y = x \cdot y$ cnf(totality_of_multiplication, axiom) $(x \le y \text{ and } y \le x) \Rightarrow 0 + x = y$ cnf(antisymmetry_of_order_relation, axiom) $(x \le y \text{ and } y \le z) \implies x \le z$ cnf(transitivity_of_order_relation, axiom) $(\operatorname{defined}(x) \text{ and } \operatorname{defined}(y)) \Rightarrow (x \leq y \text{ or } y \leq x)$ cnf(totality_of_order_relation, axiom) cnf(compatibility_of_order_relation_and_addition, axiom) $(x \leq y \text{ and } x + z = u \text{ and } y + z = v) \Rightarrow u \leq v$ $(0 \le x \text{ and } 0 \le y \text{ and } x \cdot y = z) \Rightarrow 0 \le z$ cnf(compatibility_of_order_relation_and_multiplication, axiom) $\neg 0 + 0 = 1$ cnf(different_identities, axiom)

FLD problems

FLD001-3.p Transformation additive relation \rightarrow multiplicative relation include('Axioms/FLD002-0.ax') cnf(a_is_defined, hypothesis) defined(a)defined(b)cnf(b_is_defined, hypothesis) 0 + a = b $cnf(sum_3, hypothesis)$ $\neg 1 \cdot a = b$ $cnf(not_product_4, negated_conjecture)$ **FLD002-3.p** Transformation multiplicative relation \rightarrow additive relation include('Axioms/FLD002-0.ax') defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis)

 $1 \cdot a = b$ cnf(product₃, hypothesis)

 $\neg 0 + a = b$ cnf(not_sum_4, negated_conjecture)

 ${\bf FLD003-1.p}$ Elimination of an additive term/inverse term - pair

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\operatorname{defined}(b) \qquad \operatorname{cnf}(\texttt{b_is_defined}, \texttt{hypothesis})$

 $\neg a + (b + -b) = a$ cnf(add_not_equal_to_a_3, negated_conjecture)

FLD004-1.p Elimination of an multiplicative term/inverse term - pair include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_{is}_{defined}, hypothesis)$

 $\neg b=0$ cnf(b_not_equal_to_additive_identity_3, negated_conjecture)

 $\neg a \cdot (b \cdot b^{-1}) = a \qquad \text{cnf(multiply_not_equal_to_a_4, negated_conjecture)}$

 ${\bf FLD005-1.p}$ Every linear equation in the additive group has a solution include ('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$ defined(b) and fined hypothesis)

defined(b) $cnf(b_{is}defined, hypothesis)$

 $\neg a + x = b$ cnf(add_not_equal_to_b_3, negated_conjecture)

FLD005-3.p Every linear equation in the additive group has a solution include('Axioms/FLD002-0.ax')

defined(a) $cnf(a.is_defined, hypothesis)$ defined(b) $cnf(b.is_defined, hypothesis)$

 $\neg a + x = b$ cnf(not_sum_3, negated_conjecture)

 ${\bf FLD006-1.p}$ In the additive group it holds: <code>inverse(identity)=identity</code>

include('Axioms/FLD001-0.ax')

 $\neg -0=0 \qquad {\rm cnf}({\rm additive_inverse_not_equal_to_additive_identity_1, negated_conjecture})$

 ${\bf FLD006\text{-}3.p}$ In the additive group it holds: inverse (identity)=identity

include('Axioms/FLD002-0.ax')

 $\neg 0 + -0=0$ cnf(not_sum_1, negated_conjecture)

 ${\bf FLD007\text{-}1.p}$ The additive inverse fulfills the involution property

include('Axioms/FLD001-0.ax')

 $defined(a) \qquad cnf(a_is_defined, hypothesis)$

 $\neg - (-a) = a \qquad \operatorname{cnf}(\operatorname{additive_inverse_not_equal_to_a_2}, \operatorname{negated_conjecture})$

 ${\bf FLD007\text{-}3.p}$ The additive inverse fulfills the involution property

include('Axioms/FLD002-0.ax')

 $defined(a) \qquad cnf(a_is_defined, hypothesis)$

 $\neg 0 + -(-a) = a$ cnf(not_sum_2, negated_conjecture)

 ${\bf FLD008\text{-}1.p}$ Compatibility of operation and inverse in the additive group

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $\operatorname{defined}(b) \qquad \operatorname{cnf}(\texttt{b_is_defined}, \texttt{hypothesis})$

 $\neg - (a+b) = -a + -b \qquad \operatorname{cnf}(\operatorname{additive_inverse_not_equal_to_add_3}, \operatorname{negated_conjecture})$

 ${\bf FLD008\text{-}2.p}$ Compatibility of operation and inverse in the additive group

 $\begin{array}{ll} \operatorname{include}(\operatorname{'Axioms/FLD001-0.ax'}) \\ \operatorname{defined}(a) & \operatorname{cnf}(a_\operatorname{is_defined}, \operatorname{hypothesis}) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_\operatorname{is_defined}, \operatorname{hypothesis}) \\ \operatorname{defined}(c) & \operatorname{cnf}(c_\operatorname{is_defined}, \operatorname{hypothesis}) \\ \operatorname{defined}(d) & \operatorname{cnf}(d_\operatorname{is_defined}, \operatorname{hypothesis}) \\ a+b=c & \operatorname{cnf}(add_\operatorname{equals_c_5}, \operatorname{negated_conjecture}) \\ -a+-b=d & \operatorname{cnf}(add_\operatorname{equals_d_6}, \operatorname{negated_conjecture}) \\ \neg -c=d & \operatorname{cnf}(add\operatorname{itive_inverse_not_equal_to_d_7}, \operatorname{negated_conjecture}) \\ \end{array}$

FLD008-3.p Compatibility of operation and inverse in the additive group include('Axioms/FLD002-0.ax')

 $\begin{array}{ll} \text{defined}(a) & \text{cnf}(a_\text{is_defined}, \text{hypothesis}) \\ \text{defined}(b) & \text{cnf}(b_\text{is_defined}, \text{hypothesis}) \\ \neg 0 + -(a+b) = -a+-b & \text{cnf}(\text{not_sum}_3, \text{negated_conjecture}) \end{array}$

 ${\bf FLD008-4.p}$ Compatibility of operation and inverse in the additive group include ('Axioms/FLD002-0.ax')

 $\begin{array}{lll} \operatorname{defined}(a) & \operatorname{cnf}(a_\operatorname{is_defined},\operatorname{hypothesis}) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_\operatorname{is_defined},\operatorname{hypothesis}) \\ \operatorname{defined}(c) & \operatorname{cnf}(c_\operatorname{is_defined},\operatorname{hypothesis}) \\ \operatorname{defined}(d) & \operatorname{cnf}(d_\operatorname{is_defined},\operatorname{hypothesis}) \\ a+b=c & \operatorname{cnf}(\operatorname{sum}_5,\operatorname{negated_conjecture}) \\ -a+-b=d & \operatorname{cnf}(\operatorname{sum}_6,\operatorname{negated_conjecture}) \\ \neg 0+-c=d & \operatorname{cnf}(\operatorname{not_sum}_7,\operatorname{negated_conjecture}) \end{array}$

FLD009-1.p Linear equations in the multiplicative group have a solution include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_is_defined, hypothesis)$

 $\neg a{=}0 \qquad \mathrm{cnf}(\texttt{a_not_equal_to_additive_identity_3}, \texttt{negated_conjecture})$

 $\neg a \cdot x = b$ cnf(multiply_not_equal_to_b_4, negated_conjecture)

 ${\bf FLD009-3.p}$ Linear equations in the multiplicative group have a solution include ('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

defined(b) $cnf(b_is_defined, hypothesis)$

 $\neg 0 + a = 0$ cnf(not_sum_3, negated_conjecture)

 $\neg a \cdot x = b$ cnf(not_product_4, negated_conjecture)

FLD010-1.p In the multiplicative group inverse(identity)=identity

include('Axioms/FLD001-0.ax')

 $\neg 1^{-1} = 1$ cnf(multiplicative_inv_not_equal_to_multiplicative_id_2, negated_conjecture)

FLD010-3.p In the multiplicative group inverse(identity)=identity

include('Axioms/FLD002-0.ax')

 $\neg 0 + 1 = 0$ cnf(not_sum_1, negated_conjecture)

 $\neg 1 \cdot 1^{-1} = 1$ cnf(not_product_2, negated_conjecture)

 ${\bf FLD010\text{-}5.p}$ In the multiplicative group inverse (identity)=identity

include('Axioms/FLD002-0.ax')

 $\neg 0 + 1 = 0$ cnf(not_sum_1, negated_conjecture)

 $\neg 0 + 1^{-1} = 1$ cnf(not_sum_2, negated_conjecture)

FLD011-1.p The multiplicative inverse fulfills the involution property

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_2, negated_conjecture)

 $\neg (a^{-1})^{-1} = a$ cnf(multiplicative_inverse_not_equal_to_a_3, negated_conjecture)

FLD011-3.p The multiplicative inverse fulfills the involution property

include('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg 0 + a = 0$ cnf(not_sum_2, negated_conjecture)

 $\neg 1 \cdot (a^{-1})^{-1} = a$ cnf(not_product_3, negated_conjecture)

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

defined(b) cnf(b_is_defined, hypothesis)

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_3, negated_conjecture)

 $\neg b=0$ cnf(b_not_equal_to_additive_identity_4, negated_conjecture)

 $\neg (a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$ cnf(multiplicative_inverse_not_equal_to_multiply_5, negated_conjecture)

 ${\bf FLD012-2.p}\ {\rm Compatibility}\ of\ operation\ and\ inverse\ in\ multiplicative\ group$

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_is_defined, hypothesis)$

defined(u) $cnf(u_is_defined, hypothesis)$

defined(v) cnf $(v_is_defined, hypothesis)$

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_5, negated_conjecture)

 $\neg b{=}0 \qquad \mathrm{cnf}(\texttt{b_not_equal_to_additive_identity}_6, \texttt{negated_conjecture})$

 $a \cdot b = u$ cnf(multiply_equals_u₇, negated_conjecture)

 $a^{-1} \cdot b^{-1} = v$ cnf(multiply_equals_v_8, negated_conjecture)

 $\neg u^{-1} = v$ cnf(multiplicative_inverse_not_equal_to_v_9, negated_conjecture)

FLD012-3.p Compatibility of operation and inverse in multiplicative group

include('Axioms/FLD002-0.ax')

 $\begin{array}{lll} \mbox{defined}(a) & \mbox{cnf}(a.\mbox{is_defined}, \mbox{hypothesis}) \\ \mbox{defined}(b) & \mbox{cnf}(b.\mbox{is_defined}, \mbox{hypothesis}) \\ \mbox{-} 0 + a = 0 & \mbox{cnf}(\mbox{not_sum}_3, \mbox{negated_conjecture}) \\ \mbox{-} 0 + b = 0 & \mbox{cnf}(\mbox{not_sum}_4, \mbox{negated_conjecture}) \end{array}$

 $\neg 1 \cdot (a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$ cnf(not_product₅, negated_conjecture)

FLD012-4.p Compatibility of operation and inverse in multiplicative group include('Axioms/FLD002-0.ax')

defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) $\operatorname{defined}(u)$ cnf(u_is_defined, hypothesis) defined(v)cnf(v_is_defined, hypothesis) $\neg 0 + a = 0$ $cnf(not_sum_5, negated_conjecture)$ $\neg 0 + b = 0$ $cnf(not_sum_6, negated_conjecture)$ $a \cdot b = u$ $cnf(product_7, negated_conjecture)$ $a^{-1} \cdot b^{-1} {=} v$ $cnf(product_8, negated_conjecture)$ $\neg 1 \cdot u^{-1} = v$ cnf(not_product₉, negated_conjecture)

FLD013-1.p The resulting equation of the summation of two equations

include('Axioms/FLD001-0.ax')

- $defined(a) \qquad cnf(a_is_defined, hypothesis)$
- defined(b) $cnf(b_is_defined, hypothesis)$
- $\operatorname{defined}(c) \qquad \operatorname{cnf}(\operatorname{c_is_defined}, \operatorname{hypothesis})$
- defined(d) cnf(d_is_defined, hypothesis)

a=b cnf(a_equals_b_5, negated_conjecture)

c=d cnf(c_equals_d_6, negated_conjecture)

 $\neg a + c = d + b$ cnf(add_not_equal_to_add_7, negated_conjecture)

FLD013-2.p The resulting equation of the summation of two equations

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis) defined(b) cnf(b_is_defined, hypothesis)

defined(c) cnf(c_is_defined, hypothesis) defined(c) cnf(c_is_defined, hypothesis)

defined(d) $cnf(d_is_defined, hypothesis)$

defined(u) cnf(u-is_defined, hypothesis)

a=b cnf(a_equals_b_6, negated_conjecture)

c=d cnf(c_equals_d₇, negated_conjecture)

a + c = u cnf(add_equals_u_8, negated_conjecture)

 $\neg d + b = u$ cnf(add_not_equal_to_u_9, negated_conjecture)

 ${\bf FLD013-3.p}$ The resulting equation of the summation of two equations

 $\begin{array}{ll} \mbox{include('Axioms/FLD002-0.ax')} \\ \mbox{defined}(a) & \mbox{cnf}(a.\mbox{is.defined}, \mbox{hypothesis}) \\ \mbox{defined}(b) & \mbox{cnf}(b.\mbox{is.defined}, \mbox{hypothesis}) \\ \mbox{defined}(c) & \mbox{cnf}(c.\mbox{is.defined}, \mbox{hypothesis}) \\ \mbox{defined}(d) & \mbox{cnf}(d.\mbox{is.defined}, \mbox{hypothesis}) \\ \mbox{defined}(d) & \mbox{cnf}(sum_5, \mbox{negated_conjecture}) \\ \mbox{defined}(d) & \mbox{cnf}(sum_6, \mbox{negated_conjecture}) \\ \mbox{defined}(d) & \mbox{cnf}(sum_7, \mbox{negated_conjecture}) \\ \mbox{defined}(d) & \mbox{defined}(d) \\ \mbox{defined}(d) \\ \mbox{defined}(d) \\ \mbox{defined}(d) & \mbox{defined}(d) \\ \mbox{defined}(d)$

FLD013-4.p The resulting equation of the summation of two equations

include('Axioms/FLD002-0.ax') defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) $\operatorname{defined}(c)$ cnf(c_is_defined, hypothesis) $\operatorname{defined}(d)$ cnf(d_is_defined, hypothesis) $\operatorname{defined}(u)$ cnf(u_is_defined, hypothesis) 0 + a = b $cnf(sum_6, negated_conjecture)$ 0 + c = dcnf(sum₇, negated_conjecture) a + c = ucnf(sum₈, negated_conjecture) $\neg d + b = u$ cnf(not_sum₉, negated_conjecture)

FLD013-5.p The resulting equation of the summation of two equations include('Axioms/FLD002-0.ax')

(/ /
$\operatorname{defined}(a)$	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
$\operatorname{defined}(d)$	$cnf(d_{is}_{defined}, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_{is}_{defined}, hypothesis)$
$\operatorname{defined}(v)$	$cnf(v_{is}_{defined}, hypothesis)$
0 + a = b	$cnf(sum_7, negated_conjecture)$
0 + c = d	$cnf(sum_8, negated_conjecture)$
a + c = u	$cnf(sum_9, negated_conjecture)$
d+b=v	$cnf(sum_{10}, negated_conjecture)$
$\neg 0 + u = v$	$cnf(not_sum_{11}, negated_conjecture)$

FLD014-1.p Compatibility of additive inverses with the equality, part 1

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

defined(b) cnf(b_is_defined, hypothesis)

a=b cnf(a_equals_b_3, negated_conjecture)

 $\neg -a = -b$ cnf(additive_inverse_not_equal_to_additive_inverse_4, negated_conjecture)

FLD014-3.p Compatibility of additive inverses with the equality, part 1

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_is_defined, hypothesis)$

0 + a = b cnf(sum₃, negated_conjecture)

 $\neg 0 + -a = -b$ cnf(not_sum₄, negated_conjecture)

FLD015-1.p Compatibility of additive inverses with the equality, part 2 include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_{is}_{defined}, hypothesis)$

defined(b) $cnf(b_is_defined, hypothesis)$

-a = -b cnf(additive_inverse_equals_additive_inverse_3, negated_conjecture)

 $\neg a = b$ cnf(a_not_equal_to_b_4, negated_conjecture)

FLD015-3.p Compatibility of additive inverses with the equality, part 2

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_{is_{defined}}, hypothesis)$

0 + -a = -b cnf(sum₃, negated_conjecture)

 $\neg 0 + a = b$ cnf(not_sum_4, negated_conjecture)

FLD016-1.p Solutions of linear equations in the additive group are unique include('Axioms/FLD001-0.ax')

defined (a)	$cnf(a_is_defined, hypothesis)$
defined (b)	$cnf(b_{is}defined, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_is_defined, hypothesis)$
$\operatorname{defined}(v)$	$cnf(v_is_defined, hypothesis)$
a + u = b	$cnf(add_equals_b_5, negated_conjecture)$
a + v = b	$cnf(add_equals_b_6, negated_conjecture)$
$\neg u = v$	$cnf(u_not_equal_to_v_7, negated_conjecture)$

 ${\bf FLD016\text{-}3.p}$ Solutions of linear equations in the additive group are unique

include('Axioms/FLD002-0.ax')

$\operatorname{defined}(a)$	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_is_defined, hypothesis)$
$\operatorname{defined}(v)$	$cnf(v_{is}_{defined}, hypothesis)$
a + u = b	$cnf(sum_5, negated_conjecture)$
a + v = b	$cnf(sum_6, negated_conjecture)$
$\neg 0 + u = v$	cnf(not_sum ₇ , negated_conjecture)

FLD016-5.p Solutions of linear equations in the additive group are unique include('Axioms/FLD002-0.ax')

$\operatorname{defined}(a)$	$cnf(a_{is}_{defined}, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_is_defined, hypothesis)$
$\operatorname{defined}(v)$	$cnf(v_{is}_{defined}, hypothesis)$
$\operatorname{defined}(q)$	$cnf(q_{is}_{defined}, hypothesis)$
$\operatorname{defined}(r)$	$cnf(r_{is}_{defined}, hypothesis)$
a + u = q	$cnf(sum_6, negated_conjecture)$
a + v = r	$cnf(sum_7, negated_conjecture)$
0+q=r	$cnf(sum_8, negated_conjecture)$
$\neg 0 + u = v$	$cnf(not_sum_9, negated_conjecture)$

 ${\bf FLD017\text{-}1.p}$ Substitution of an element in additive equations

include('Axioms/FLD001-0.ax')

$\operatorname{defined}(a)$	cnf(a_is_defined, hypothesis)
$\operatorname{defined}(b)$	cnf(b_is_defined, hypothesis)
$\operatorname{defined}(c)$	cnf(c_is_defined, hypothesis)
$\operatorname{defined}(x)$	$cnf(x_is_defined, hypothesis)$

a=x cnf(a_equals_x₅, negated_conjecture)

a + b = c cnf(add_equals_c_6, negated_conjecture)

 $\neg x + b = c$ cnf(add_not_equal_to_c₇, negated_conjecture)

FLD017-3.p Substitution of an element in additive equations

include('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

defined(b) $cnf(b_is_defined, hypothesis)$

 $defined(c) \qquad cnf(c_is_defined, hypothesis)$

- $defined(x) = cnf(x_{is_{defined}}, hypothesis)$
- 0 + a = x cnf(sum₅, negated_conjecture)
- a + b = c cnf(sum₆, negated_conjecture)

 $\neg x + b = c$ cnf(not_sum_7, negated_conjecture)

FLD018-1.p If a is zero, the additive inverse of a is also zero

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

a=0 cnf(a_equals_additive_identity_2, negated_conjecture)

 $\neg -a=0$ cnf(additive_inverse_not_equal_to_additive_identity_3, negated_conjecture)

 ${\bf FLD018\text{-}3.p}$ If a is zero, the additive inverse of a is also zero

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

0 + a = 0 cnf(sum₂, negated_conjecture)

 $\neg 0 + -a = 0$ cnf(not_sum_3, negated_conjecture)

${\bf FLD019\text{-}1.p}$ If the additive inverse of a is zero, a itself is zero

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $-a{=}0 \qquad {\rm cnf}({\rm additive_inverse_equals_additive_identity_2}, {\rm negated_conjecture})$

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_3, negated_conjecture)

 ${\bf FLD019\text{-}3.p}$ If the additive inverse of a is zero, a itself is zero

include('Axioms/FLD002-0.ax')

FLD020-1.p The additive identity is unique

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

defined(m) cnf(m_is_defined, hypothesis)

m + a = a cnf(add_equals_a_3, negated_conjecture)

 $\neg m=0$ cnf(m_not_equal_to_additive_identity_4, negated_conjecture)

FLD020-3.p The additive identity is unique

include('Axioms/FLD002-0.ax')

$\operatorname{defined}(a)$	$cnf(a_{is}_{defined}, hypothesis)$
$\operatorname{defined}(m)$	$cnf(m_is_defined, hypothesis)$
m + a = a	$cnf(sum_3, negated_conjecture)$
$\neg 0 + m = 0$	$cnf(not_sum_4, negated_conjecture)$

FLD021-1.p Every element equal to zero is an additive identity

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $defined(m) \qquad cnf(m_is_defined, hypothesis)$

 $m{=}0 \qquad {\rm cnf}({\rm m_equals_additive_identity_3}, {\rm negated_conjecture})$

 $\neg m + a = a$ cnf(add_not_equal_to_a_4, negated_conjecture)

 ${\bf FLD021}\mbox{-}3.{\bf p}$ Every element equal to zero is an additive identity

include('Axioms/FLD002-0.ax')

$\operatorname{defined}(a)$	$cnf(a_{is}_{defined}, hypothesis)$
$\operatorname{defined}(m)$	$cnf(m_is_defined, hypothesis)$
0 + m = 0	$cnf(sum_3, negated_conjecture)$
$\neg m + a = a$	$cnf(not_sum_4, negated_conjecture)$

 ${\bf FLD022-1.p}$ Elimination of a summation in an equation

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $defined(b) \qquad cnf(b_{is_{defined}}, hypothesis)$

 $defined(c) \qquad cnf(c_is_defined, hypothesis)$

 $a + c = b + c \qquad \operatorname{cnf}(\operatorname{add_equals_add}_4, \operatorname{negated_conjecture})$

 $\neg a = b$ cnf(a_not_equal_to_b_5, negated_conjecture)

 ${\bf FLD022-3.p}$ Elimination of a summation in an equation

include('Axioms/FLD002-0.ax')

$\operatorname{defined}(a)$	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_{is}_{defined}, hypothesis)$
a + c = u	$cnf(sum_5, negated_conjecture)$
b + c = u	$cnf(sum_6, negated_conjecture)$
$\neg 0 + a = b$	$cnf(not_sum_7, negated_conjecture)$

FLD023-1.p Side Change of a term in an equation, part 1

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_is_defined, hypothesis)$

a=b cnf(a_equals_b_3, negated_conjecture)

 $\neg 0 = b + -a$ cnf(additive_identity_not_equal_to_add_4, negated_conjecture)

 $\begin{array}{ll} \mbox{include('Axioms/FLD002-0.ax')} \\ \mbox{defined}(a) & \mbox{cnf(a.is_defined, hypothesis)} \\ \mbox{defined}(b) & \mbox{cnf(b.is_defined, hypothesis)} \\ \mbox{0 + } a = b & \mbox{cnf(sum_3, negated_conjecture)} \\ \mbox{-} b + -a = 0 & \mbox{cnf(not_sum_4, negated_conjecture)} \\ \end{array}$

 ${\bf FLD024-1.p}$ Side Change of a term in an equation, part 2

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $defined(b) = cnf(b_{is_{defined}}, hypothesis)$

0=b+-a cnf(additive_identity_equals_add_3, negated_conjecture)

 $\neg a = b$ cnf(a_not_equal_to_b_4, negated_conjecture)

FLD024-3.p Side Change of a term in an equation, part 2

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $\operatorname{defined}(b) \qquad \operatorname{cnf}(\texttt{b_is_defined}, \texttt{hypothesis})$

b + -a = 0 cnf(sum₃, negated_conjecture)

 $\neg 0 + a = b$ cnf(not_sum_4, negated_conjecture)

FLD025-1.p The resulting equation of a multiplication of two equations include('Axioms/FLD001-0.ax')

include(Axioms/FLD001-0.ax)

defined(a) cnf(a.is_defined, hypothesis) defined(b) cnf(b_is_defined, hypothesis)

defined(c) $cnf(c_{is_{-}}defined, hypothesis)$

defined(C) $Cin(C_{1S}defined, invpotnesis)$

defined(d) $cnf(d_is_defined, hypothesis)$ a=b $cnf(a_equals_b_5, negated_conjecture)$

 $\begin{array}{ll} a=b & \operatorname{cnf}(a_equals_b_5, \operatorname{negated_conjecture}) \\ c=d & \operatorname{cnf}(c_equals_d_6, \operatorname{negated_conjecture}) \end{array}$

 $\neg a \cdot c = d \cdot b$ cnf(multiply_not_equal_to_multiply_, negated_conjecture)

FLD025-2.p The resulting equation of a multiplication of two equations include('Axioms/FLD001-0 ax')

include('Axioms/FLD001-0.ax')

 $defined(u) \qquad cnf(u_is_defined, hypothesis)$ $defined(u) \qquad cnf(u_is_defined, hypothesis)$

defined(v) $cnf(v_{is}defined, hypothesis)$

a=b cnf(a_equals_b₇, negated_conjecture)

c=d cnf(c_equals_d_8, negated_conjecture)

 $a \cdot c = u$ cnf(multiply_equals_u₉, negated_conjecture)

 $d \cdot b = v$ cnf(multiply_equals_v_{10}, negated_conjecture)

 $\neg v = u$ cnf(v_not_equal_to_u_1, negated_conjecture)

FLD025-3.p The resulting equation of a multiplication of two equations in all de (2 Asimum (ELD002.0 and))

include('Axioms/FLD002-0.ax')

$\operatorname{defined}(a)$	$cnf(a_is_defined, hypothesis)$
-----------------------------	---------------------------------

 $defined(b) \qquad cnf(b_is_defined, hypothesis)$

 $defined(c) = cnf(c_{is_{defined}}, hypothesis)$

 $defined(d) \qquad cnf(d_{is_defined, hypothesis})$

 $1 \cdot a = b$ cnf(product₅, negated_conjecture)

 $1 \cdot c = d$ cnf(product₆, negated_conjecture)

 $\neg d \cdot b = a \cdot c$ cnf(not_product₇, negated_conjecture)

FLD025-4.p The resulting equation of a multiplication of two equations

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) cnf(b_is_defined, hypothesis)

 $defined(c) = cnf(c_{is_{defined}}, hypothesis)$

 $defined(d) = cnf(d_{is}defined, hypothesis)$

defined(u) cnf(u_is_defined, hypothesis)

 $1 \cdot a = b$ cnf(product₆, negated_conjecture)

 $\begin{array}{ll} 1 \cdot c = d & \operatorname{cnf}(\operatorname{product}_7, \operatorname{negated_conjecture}) \\ a \cdot c = u & \operatorname{cnf}(\operatorname{product}_8, \operatorname{negated_conjecture}) \\ \neg d \cdot b = u & \operatorname{cnf}(\operatorname{not_product}_9, \operatorname{negated_conjecture}) \end{array}$

FLD025-5.p The resulting equation of a multiplication of two equations

include('Axioms/FLD002-0.ax') defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) $\operatorname{defined}(c)$ cnf(c_is_defined, hypothesis) defined(d)cnf(d_is_defined, hypothesis) defined(u)cnf(u_is_defined, hypothesis) defined(v)cnf(v_is_defined, hypothesis) $1 \cdot a = b$ $cnf(product_7, negated_conjecture)$ $1 \cdot c = d$ $cnf(product_8, negated_conjecture)$ $a \cdot c = u$ cnf(product₉, negated_conjecture) $d \cdot b = v$ $cnf(product_{10}, negated_conjecture)$ $\neg 1 \cdot u = v$ $cnf(not_product_{11}, negated_conjecture)$

FLD026-1.p Compatibility of multiplicative inverses with equality include('Axioms/FLD001-0.ax')

 $\begin{array}{lll} \operatorname{defined}(a) & \operatorname{cnf}(a_is_defined, hypothesis) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_is_defined, hypothesis) \\ \neg a=0 & \operatorname{cnf}(a_not_equal_to_additive_identity_3, negated_conjecture) \\ a=b & \operatorname{cnf}(a_equals_b_4, negated_conjecture) \\ \neg a^{-1}=b^{-1} & \operatorname{cnf}(\operatorname{multiplicative_inverses_not_equal, negated_conjecture) \end{array}$

FLD026-3.p Compatibility of multiplicative inverses with equality

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$ defined(b) $cnf(b_is_defined, hypothesis)$ $\neg 0 + a=0$ $cnf(not_sum_3, negated_conjecture)$ $1 \cdot a=b$ $cnf(product_4, negated_conjecture)$ 1 = a=1 b=1 $cnf(a=t_mm_1 dm_2 dm_2 dm_3 m_2)$

 $\neg 1 \cdot a^{-1} = b^{-1}$ cnf(not_product_5, negated_conjecture)

FLD027-1.p Elimination of multiplicative inverses in an equation include('Axioms/FLD001-0.ax')

 $\begin{array}{lll} \operatorname{defined}(a) & \operatorname{cnf}(a_\operatorname{is_defined},\operatorname{hypothesis}) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_\operatorname{is_defined},\operatorname{hypothesis}) \\ \neg a=0 & \operatorname{cnf}(a_\operatorname{not_equal_to_additive_identity_3},\operatorname{negated_conjecture}) \\ \neg b=0 & \operatorname{cnf}(b_\operatorname{not_equal_to_additive_identity_4},\operatorname{negated_conjecture}) \\ a^{-1}=b^{-1} & \operatorname{cnf}(\operatorname{multiplicative_inverses_equal},\operatorname{negated_conjecture}) \\ \neg a=b & \operatorname{cnf}(a_\operatorname{not_equal_to_b_6},\operatorname{negated_conjecture}) \end{array}$

FLD027-3.p Elimination of multiplicative inverses in an equation include('Axioms/FLD002-0.ax')

 $\begin{array}{lll} \operatorname{defined}(a) & \operatorname{cnf}(a_is_defined, \operatorname{hypothesis}) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_is_defined, \operatorname{hypothesis}) \\ \neg \, 0 + a = 0 & \operatorname{cnf}(\operatorname{not_sum}_3, \operatorname{negated_conjecture}) \\ \neg \, 0 + b = 0 & \operatorname{cnf}(\operatorname{not_sum}_4, \operatorname{negated_conjecture}) \\ 1 \cdot a^{-1} = b^{-1} & \operatorname{cnf}(\operatorname{product}_5, \operatorname{negated_conjecture}) \\ \neg \, 1 \cdot a = b & \operatorname{cnf}(\operatorname{not_product}_6, \operatorname{negated_conjecture}) \end{array}$

 ${\bf FLD028-1.p}$ The solution of a multiplicative linear equation is unique include ('Axioms/FLD001-0.ax')

- defined(a) $cnf(a_is_defined, hypothesis)$ defined(b) $cnf(b_is_defined, hypothesis)$ defined(u) $cnf(u_is_defined, hypothesis)$ defined(u) $cnf(u_is_defined, hypothesis)$
- defined(v) cnf $(v_{is}_{defined}, hypothesis)$

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_5, negated_conjecture)

 $a \cdot u = b$ cnf(multiply_equals_b₆, negated_conjecture)

 $a \cdot v = b$ cnf(multiply_equals_b₇, negated_conjecture)

 $\neg u = v$ cnf(u_not_equal_to_v_8, negated_conjecture)

 ${\bf FLD028\text{-}3.p}$ The solution of a multiplicative linear equation is unique

include('Axioms/FLD002-0.ax')

	, , , , , , , , , , , , , , , , , , , ,
defined (a)	$cnf(a_{is}_{defined}, hypothesis)$
defined (b)	$cnf(b_{is}_{defined}, hypothesis)$
defined (u)	$cnf(u_{is}_{defined}, hypothesis)$
defined (v)	$cnf(v_{is_{defined}}, hypothesis)$
$\neg 0 + a = 0$	$cnf(not_sum_5, negated_conjecture)$
$a \cdot u = b$	$cnf(product_6, negated_conjecture)$
$a \cdot v = b$	cnf(product ₇ , negated_conjecture)
$\neg 1 \cdot u = v$	$cnf(not_product_8, negated_conjecture)$

FLD029-1.p The solution of a multiplicative linear equation is unique

include('Axioms/FLD001-0.ax')

moraao(1	
defined(a)	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_is_defined, hypothesis)$
$\operatorname{defined}(v)$	$cnf(v_{is}_{defined}, hypothesis)$
$\neg b=0$	$cnf(b_not_equal_to_additive_identity_5, negated_conjecture)$
$a \cdot u = b$	$cnf(multiply_equals_b_6, negated_conjecture)$
$a \cdot v = b$	$cnf(multiply_equals_b_7, negated_conjecture)$
$\neg u = v$	$cnf(u_not_equal_to_v_8, negated_conjecture)$

FLD029-3.p The solution of a multiplicative linear equation is unique include ('Ariang (ELD002.0 ari))

include(Axioms/FLD002-0.ax')

defined (a)	$cnf(a_is_defined, hypothesis)$
defined (b)	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_{is}_{defined}, hypothesis)$
$\operatorname{defined}(v)$	$cnf(v_{is}_{defined}, hypothesis)$
$\neg 0 + b = 0$	$cnf(not_sum_5, negated_conjecture)$
$a \cdot u {=} b$	$cnf(product_6, negated_conjecture)$
$a \cdot v = b$	$cnf(product_7, negated_conjecture)$
$\neg 1 \cdot u = v$	$cnf(not_product_8, negated_conjecture)$

 ${\bf FLD030-1.p}$ Compatibility of multiplication and equality relation

include('Axioms/FLD001-0.ax')

 $defined(a) \qquad cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_{is}_{defined}, hypothesis)$

defined(d) cnf(d_is_defined, hypothesis)

a=d cnf(a_equals_d_4, negated_conjecture)

 $\neg \, d \cdot b {=} a \cdot b \qquad \text{cnf}(\text{multiply_not_equal_to_multiply}_5, \text{negated_conjecture})$

FLD030-2.p Compatibility of multiplication and equality relation

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

defined(b) $cnf(b_is_defined, hypothesis)$

defined(c) $cnf(c_is_defined, hypothesis)$

 $defined(d) \qquad cnf(d_{is}defined, hypothesis)$

 $a \cdot b = c$ cnf(multiply_equals_c₅, negated_conjecture)

a=d cnf(a_equals_d_6, negated_conjecture)

 $\neg d \cdot b = c \qquad \text{cnf}(\text{multiply_not_equal_to_c_7}, \text{negated_conjecture})$

 ${\bf FLD030\text{--}3.p}$ Compatibility of multiplication and equality relation

include(Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $defined(b) \qquad cnf(b_{is_{defined}}, hypothesis)$

defined(d) cnf(d_is_defined, hypothesis)

 $1 \cdot a = d$ cnf(product₄, negated_conjecture)

 $\neg d \cdot b = a \cdot b$ cnf(not_product₅, negated_conjecture)

 ${\bf FLD030\text{-}4.p}$ Compatibility of multiplication and equality relation

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $\operatorname{defined}(b) \qquad \operatorname{cnf}(\texttt{b_is_defined}, \texttt{hypothesis})$

 $\begin{array}{lll} \operatorname{defined}(c) & \operatorname{cnf}(\texttt{c_is_defined}, \texttt{hypothesis}) \\ \operatorname{defined}(d) & \operatorname{cnf}(\texttt{d_is_defined}, \texttt{hypothesis}) \\ a \cdot b = c & \operatorname{cnf}(\texttt{product}_5, \texttt{negated_conjecture}) \\ 1 \cdot a = d & \operatorname{cnf}(\texttt{product}_6, \texttt{negated_conjecture}) \\ \neg d \cdot b = c & \operatorname{cnf}(\texttt{not_product}_7, \texttt{negated_conjecture}) \end{array}$

 ${\bf FLD031-1.p}$ If a is one, then the multiplicative inverse of a is also one include ('Axioms/FLD001-0.ax')

 $defined(a) \qquad cnf(a_is_defined, hypothesis)$

a=1 cnf(a_equals_multiplicative_identity_2, negated_conjecture)

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_3, negated_conjecture)

 $\neg a^{-1} = 1$ cnf(multiplicative_inverses_not_equal, negated_conjecture)

FLD031-3.p If a is one, then the multiplicative inverse of a is also one include('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $1 \cdot a = 1$ cnf(product₂, negated_conjecture)

 $\neg 0 + a = 0$ cnf(not_sum_3, negated_conjecture)

 $\neg 1 \cdot a^{-1} = 1$ cnf(not_product_4, negated_conjecture)

 ${\bf FLD031-5.p}$ If a is one, then the multiplicative inverse of a is also one include ('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $1 \cdot a = 1$ cnf(product₂, negated_conjecture) $\neg 0 + a = 0$ cnf(not_sum₃, negated_conjecture)

 $\neg 1 \cdot 1 = a^{-1}$ cnf(not_product₄, negated_conjecture)

FLD032-1.p If the multiplicative inverse of a is one, then a is one itself include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_2, negated_conjecture)

 $a^{-1}=1$ cnf(multiplicative_inverses_equal, negated_conjecture)

 $\neg a=1$ cnf(a_not_equal_to_multiplicative_identity_4, negated_conjecture)

FLD032-3.p If the multiplicative inverse of a is one, then a is one itself include('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg 0 + a = 0$ cnf(not_sum_2, negated_conjecture)

 $1 \cdot a^{-1} = 1$ cnf(product₃, negated_conjecture)

 $\neg 1 \cdot a = 1$ cnf(not_product_4, negated_conjecture)

FLD033-1.p The multiplicative identity is unique

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

defined(m) cnf(m_is_defined, hypothesis)

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_3, negated_conjecture)

 $m \cdot a = a$ cnf(multiply_equals_a_4, negated_conjecture)

 $\neg \, m{=}1 \qquad \mathrm{cnf}(\texttt{m_not_equal_to_multiplicative_identity}_5, \texttt{negated_conjecture})$

FLD033-3.p The multiplicative identity is unique

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(m) cnf(m_is_defined, hypothesis)

 $\neg 0 + a = 0$ cnf(not_sum_3, negated_conjecture)

 $m \cdot a = a$ cnf(product₄, negated_conjecture)

 $\neg 1 \cdot m = 1$ cnf(not_product₅, negated_conjecture)

FLD034-1.p Every element equal one is a multiplicative identity

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $defined(m) = cnf(m_{is}defined, hypothesis)$

m=1 cnf(m_equals_multiplicative_identity_3, negated_conjecture)

 $\neg m \cdot a = a \qquad \text{cnf(multiply_not_equal_to_a_4, negated_conjecture)}$

FLD034-3.p Every element equal one is a multiplicative identity

 $\begin{array}{ll} \mbox{include('Axioms/FLD002-0.ax')} \\ \mbox{defined}(a) & \mbox{cnf}(a_is_defined, hypothesis) \\ \mbox{defined}(m) & \mbox{cnf}(m_is_defined, hypothesis) \\ \mbox{1} \cdot m = 1 & \mbox{cnf}(product_3, negated_conjecture) \\ \mbox{} \neg m \cdot a = a & \mbox{cnf}(not_product_4, negated_conjecture) \end{array}$

FLD035-1.p Elimination of a multiplication in an equation

include('Axioms/FLD001-0.ax')

defined(a)	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}defined, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
$a \cdot c {=} b \cdot c$	${\rm cnf}({\rm multiply_equals_multiply_4}, {\rm negated_conjecture})$
$\neg c=0$	$cnf(c_not_equal_to_additive_identity_5, negated_conjecture)$
$\neg a = b$	$cnf(a_not_equal_to_b_6, negated_conjecture)$

 ${\bf FLD035\text{-}3.p}$ Elimination of a multiplication in an equation

include('Axioms/FLD002-0.ax')

defined (a)	$cnf(a_is_defined, hypothesis)$
defined (b)	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_{is}_{defined}, hypothesis)$
$a \cdot c = u$	$cnf(product_5, negated_conjecture)$
$b \cdot c = u$	$cnf(product_6, negated_conjecture)$
$\neg 0 + c = 0$	$cnf(not_sum_7, negated_conjecture)$
$\neg 1 \cdot a = b$	$cnf(not_product_8, negated_conjecture)$

FLD036-1.p Only a multiplication by zero can make elements equal include('Axioms/FLD001-0.ax')

defined(a)	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}defined, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
$a \cdot c = b \cdot c$	${\rm cnf}({\rm multiply_equals_multiply_4}, {\rm negated_conjecture})$
$\neg a = b$	$cnf(a_not_equal_to_b_5, negated_conjecture)$
$\neg c=0$	$cnf(c_not_equal_to_additive_identity_6, negated_conjecture)$

FLD036-3.p Only a multiplication by zero can make elements equal include('Axioms/FLD002-0.ax')

defined (a)	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_is_defined, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_{is}_{defined}, hypothesis)$
$a \cdot c = u$	$cnf(product_5, negated_conjecture)$
$b \cdot c = u$	$cnf(product_6, negated_conjecture)$
$\neg 1 \cdot a = b$	$cnf(not_product_7, negated_conjecture)$
$\neg 0 + c = 0$	$cnf(not_sum_8, negated_conjecture)$

FLD037-1.p Side change of a term in an equation by multiplication, part 1 include('Axioms/FLD001-0.ax')

defined (a)	$cnf(a_is_defined, hypothesis)$
defined (b)	$cnf(b_{is}defined, hypothesis)$
$\neg a=0$	$cnf(a_not_equal_to_additive_identity_3, negated_conjecture)$

a=b cnf(a_equals_b_4, negated_conjecture)

 $\neg 1 = b \cdot a^{-1}$ cnf(multiplicative_identity_not_equal_to_multiply_5, negated_conjecture)

 ${\bf FLD037\text{-}3.p}$ Side change of a term in an equation by multiplication, part 1

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_is_defined, hypothesis)$

 $\neg 0 + a = 0$ cnf(not_sum_3, negated_conjecture)

 $1 \cdot a = b$ cnf(product₄, negated_conjecture)

 $\neg b \cdot a^{-1} = 1$ cnf(not_product_5, negated_conjecture)

 ${\bf FLD038-1.p}$ Side change of a term in an equation by multiplication, part 2

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

defined(b) $cnf(b_is_defined, hypothesis)$

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_3, negated_conjecture)

 $\begin{array}{ll} 1=b\cdot a^{-1} & \operatorname{cnf}(\text{multiplicative_identity_equals_multiply}_4, \operatorname{negated_conjecture}) \\ \neg \, a=b & \operatorname{cnf}(a_\operatorname{not_equal_to_b_5}, \operatorname{negated_conjecture}) \end{array}$

FLD038-3.p Side change of a term in an equation by multiplication, part 2 include('Axioms/FLD002-0.ax')

 $\begin{array}{lll} \operatorname{defined}(a) & \operatorname{cnf}(a_is_defined, \operatorname{hypothesis}) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_is_defined, \operatorname{hypothesis}) \\ \neg \, 0 + a = 0 & \operatorname{cnf}(\operatorname{not_sum}_3, \operatorname{negated_conjecture}) \\ b \cdot a^{-1} = 1 & \operatorname{cnf}(\operatorname{product}_4, \operatorname{negated_conjecture}) \\ \neg \, 1 \cdot a = b & \operatorname{cnf}(\operatorname{not_product}_5, \operatorname{negated_conjecture}) \end{array}$

FLD039-1.p In a field with two or more elements, 1 and 0 must be different include ('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_1, negated_conjecture)

1=0 cnf(multiplicative_identity_equals_additive_identity_, negated_conjecture)

FLD039-3.p In a field with two or more elements, 1 and 0 must be different include('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg 0 + a = 0$ cnf(not_sum_1, negated_conjecture)

0 + 1 = 0 cnf(sum₃, negated_conjecture)

FLD040-1.p If a is not 0, then the multiplicative inverse of a is not 0

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_2, negated_conjecture)

 $a^{-1}=0$ cnf(multiplicative_inverse_equals_additive_identity_3, negated_conjecture)

 $\mathbf{FLD040\text{-}3.p}$ If a is not 0, then the multiplicative inverse of a is not 0

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $\neg 0 + a = 0$ cnf(not_sum_2, negated_conjecture)

 $0 + 0 = a^{-1}$ cnf(sum₃, negated_conjecture)

FLD040-5.p If a is not 0, then the multiplicative inverse of a is not 0

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$ $\neg 0 + a=0$ $cnf(not_sum_2, negated_conjecture)$

 $0 + a^{-1} = 0$ cnf(sum₃, negated_conjecture)

FLD041-1.p If a,b are not 0, the the product of a and b is not 0 include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_{is}_{defined}, hypothesis)$

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_3, negated_conjecture)

 $\neg b=0$ cnf(b_not_equal_to_additive_identity_4, negated_conjecture)

 $a \cdot b=0$ cnf(multiply_equals_additive_identity_5, negated_conjecture)

FLD041-2.p If a,b are not 0, the the product of a and b is not 0 include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_is_defined, hypothesis)$

defined(c) cnf(c_is_defined, hypothesis)

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_4, negated_conjecture)

 $\neg b=0$ cnf(b_not_equal_to_additive_identity_5, negated_conjecture)

 $a \cdot b = c$ cnf(multiply_equals_c_6, negated_conjecture)

c=0 cnf(c_equals_additive_identity₇, negated_conjecture)

FLD041-3.p If a,b are not 0, the the product of a and b is not 0 include('Axioms/FLD002-0.ax')

 $\begin{array}{lll} \operatorname{defined}(a) & \operatorname{cnf}(a_is_defined, hypothesis) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_is_defined, hypothesis) \\ \neg 0 + a = 0 & \operatorname{cnf}(\operatorname{not_sum}_3, \operatorname{negated_conjecture}) \\ \neg 0 + b = 0 & \operatorname{cnf}(\operatorname{not_sum}_4, \operatorname{negated_conjecture}) \\ a \cdot b = 0 & \operatorname{cnf}(\operatorname{product}_5, \operatorname{negated_conjecture}) \end{array}$

 ${\bf FLD041-4.p}$ If a,b are not 0, the the product of a and b is not 0

include('Axioms/FLD002-0.ax')

 $\begin{array}{lll} \operatorname{defined}(a) & \operatorname{cnf}(a_is_defined, hypothesis) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_is_defined, hypothesis) \\ \operatorname{defined}(c) & \operatorname{cnf}(c_is_defined, hypothesis) \\ \neg 0 + a = 0 & \operatorname{cnf}(\operatorname{not_sum}_4, \operatorname{negated_conjecture}) \\ \neg 0 + b = 0 & \operatorname{cnf}(\operatorname{not_sum}_5, \operatorname{negated_conjecture}) \\ a \cdot b = c & \operatorname{cnf}(\operatorname{product}_6, \operatorname{negated_conjecture}) \\ 0 + c = 0 & \operatorname{cnf}(\operatorname{sum}_7, \operatorname{negated_conjecture}) \end{array}$

FLD043-1.p The multiplication with 0 yields 0

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg 0 \cdot a = 0$ cnf(multiply_not_equal_to_additive_identity_2, negated_conjecture)

FLD043-3.p The multiplication with 0 yields 0

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $\begin{array}{ll} \text{defined}(b) & \text{cnf}(b_\text{is_defined}, \text{hypothesis}) \\ 0 \cdot a = b & \text{cnf}(\text{product}_3, \text{negated_conjecture}) \end{array}$

 $\neg 0 + b = 0$ cnf(not_sum_4, negated_conjecture)

FLD043-5.p The multiplication with 0 yields 0

include('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg 0 \cdot a = 0$ cnf(not_product_2, negated_conjecture)

FLD044-1.p Compatibility of multiplication and additive inverses

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_{is_{-}}defined, hypothesis)$

 $\neg (-a) \cdot b = -a \cdot b$ cnf(multiply_not_equal_to_additive_inverse_3, negated_conjecture)

FLD044-2.p Compatibility of multiplication and additive inverses

include('Axioms/FLD001-0.ax')

 $\begin{array}{lll} \mbox{defined}(a) & \mbox{cnf}(a_is_defined, hypothesis) \\ \mbox{defined}(b) & \mbox{cnf}(b_is_defined, hypothesis) \\ \mbox{defined}(c) & \mbox{cnf}(c_is_defined, hypothesis) \\ \mbox{defined}(d) & \mbox{cnf}(d_is_defined, hypothesis) \\ \mbox{(-a)} \cdot b = c & \mbox{cnf}(multiply_equals_c_5, negated_conjecture) \end{array}$

 $a \cdot b = d$ cnf(multiply_equals_d_6, negated_conjecture)

 $\neg c = -d$ cnf(c_not_equal_to_additive_inverse_7, negated_conjecture)

FLD044-3.p Compatibility of multiplication and additive inverses

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_is_defined, hypothesis)$

 $\neg (-a) \cdot b = -a \cdot b$ cnf(not_product_3, negated_conjecture)

FLD044-4.p Compatibility of multiplication and additive inverses

include('Axioms/FLD002-0.ax')

 $defined(a) \qquad cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_is_defined, hypothesis)$

defined(u) cnf $(u_is_defined, hypothesis)$

 $a \cdot b{=}u \qquad \operatorname{cnf}(\operatorname{product}_4,\operatorname{negated_conjecture})$

 $\neg (-a) \cdot b = -u$ cnf(not_product₅, negated_conjecture)

FLD045-1.p Compatibility of multiplication and additive inverses include('Axioms/FLD001-0.ax')

FLD045-2.p Compatibility of multiplication and additive inverses

include('Axioms/FLD001-0.ax')

 $\begin{array}{ll} \operatorname{defined}(a) & \operatorname{cnf}(a_is_defined, hypothesis) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_is_defined, hypothesis) \\ \end{array}$

 $defined(c) = cnf(c_{is}_{defined}, hypothesis)$

defined(d) cnf(d_is_defined, hypothesis)

 $(-a) \cdot (-b) = c$ cnf(multiply_equals_c₅, negated_conjecture)

 $a \cdot b = d$ cnf(multiply_equals_d₆, negated_conjecture)

 $\neg c = d$ cnf(c_not_equal_to_d_7, negated_conjecture)

FLD045-3.p Compatibility of multiplication and additive inverses include('Axioms/FLD002-0.ax')

defined (a) cnf(a.is_defined, hypothesis)

defined(b) $cnf(b_is_defined, hypothesis)$

 $\neg a \cdot b = (-a) \cdot (-b)$ cnf(not_product_3, negated_conjecture)

FLD045-4.p Compatibility of multiplication and additive inverses

include('Axioms/FLD002-0.ax')

 $\begin{array}{lll} \operatorname{defined}(a) & \operatorname{cnf}(a_\mathrm{is_defined}, \operatorname{hypothesis}) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_\mathrm{is_defined}, \operatorname{hypothesis}) \\ \operatorname{defined}(u) & \operatorname{cnf}(u_\mathrm{is_defined}, \operatorname{hypothesis}) \\ (-a) \cdot (-b) = u & \operatorname{cnf}(\operatorname{product}_4, \operatorname{negated_conjecture}) \\ \neg a \cdot b = u & \operatorname{cnf}(\operatorname{not_product}_5, \operatorname{negated_conjecture}) \end{array}$

 ${\bf FLD046-1.p}$ Compatibility of the additive and the multiplicative inverse

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_2, negated_conjecture)

 $\neg (-a)^{-1} = -a^{-1}$ cnf(mult_inverse_not_equal_to_additive_inverse_3, negated_conjecture)

FLD046-3.p Compatibility of the additive and the multiplicative inverse

include('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg 0 + a = 0$ cnf(not_sum_2, negated_conjecture)

 $\neg 0 + (-a)^{-1} = -a^{-1}$ cnf(not_sum_3, negated_conjecture)

FLD047-1.p Fraction calculation, part 1

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $defined(b) \qquad cnf(b_{is_defined, hypothesis})$

 $defined(c) = cnf(c_{is_{defined}}, hypothesis)$

 $\neg b=0$ cnf(b_not_equal_to_additive_identity_4, negated_conjecture)

 $\neg c=0$ cnf(c_not_equal_to_additive_identity_5, negated_conjecture)

 $\neg a \cdot b^{-1} = (a \cdot c) \cdot (b \cdot c)^{-1}$ cnf(multiply_not_equal_to_multiply_6, negated_conjecture)

FLD047-2.p Fraction calculation, part 1 include('A vious/FLD001-0 av')

include('Axioms/FLD001-0.ax')

defined(a)	cnf(a_is_defined, hypothesis)

defined(b) $cnf(b_is_defined, hypothesis)$

defined(c) $cnf(c_is_defined, hypothesis)$

defined(u) cnf $(u_is_defined, hypothesis)$

defined(s) $cnf(s_is_defined, hypothesis)$

defined(t) cnf(t_is_defined, hypothesis)

 $\neg b{=}0 \qquad \mathrm{cnf}(\texttt{b_not_equal_to_additive_identity_7}, \texttt{negated_conjecture})$

 $\neg c=0$ cnf(c_not_equal_to_additive_identity_8, negated_conjecture)

 $a \cdot b^{-1} = u$ cnf(multiply_equals_u_9, negated_conjecture)

 $a \cdot c{=}s \qquad \mathrm{cnf}(\mathrm{multiply_equals_s_{10}}, \mathrm{negated_conjecture})$

 $b \cdot c = t$ cnf(multiply_equals_t_{11}, negated_conjecture)

 $\neg s \cdot t^{-1} = u$ cnf(multiply_not_equal_to_u_1, negated_conjecture)

$$\begin{split} & \textbf{FLD047-3.p} \text{ Fraction calculation, part 1} \\ & \text{include}('Axioms/FLD002-0.ax') \\ & \text{defined}(a) & \text{cnf}(a_\text{is_defined, hypothesis}) \\ & \text{defined}(b) & \text{cnf}(b_\text{is_defined, hypothesis}) \\ & \text{defined}(c) & \text{cnf}(c_\text{is_defined, hypothesis}) \\ & \neg 0 + b=0 & \text{cnf}(\text{not_sum}_4, \text{negated_conjecture}) \\ & \neg 0 + c=0 & \text{cnf}(\text{not_sum}_5, \text{negated_conjecture}) \\ & \neg a \cdot b^{-1} = (a \cdot c) \cdot (b \cdot c)^{-1} & \text{cnf}(\text{not_product}_6, \text{negated_conjecture}) \end{split}$$

${\bf FLD047\text{-}4.p}$ Fraction calculation, part 1

include('Axioms/FLD002-0.ax')

, , , , , , , , , , , , , , , , , , , ,
$cnf(a_is_defined, hypothesis)$
cnf(b_is_defined, hypothesis)
cnf(c_is_defined, hypothesis)
$cnf(u_{is_{defined}}, hypothesis)$
$cnf(s_is_defined, hypothesis)$
$cnf(t_{is}_{defined}, hypothesis)$
$cnf(not_sum_7, negated_conjecture)$
$cnf(not_sum_8, negated_conjecture)$
$cnf(product_9, negated_conjecture)$
$cnf(product_{10}, negated_conjecture)$
$cnf(product_{11}, negated_conjecture)$
ι cnf(not_product ₁₂ , negated_conjecture)

FLD048-1.p Fraction calculation, part 2

include('Axioms/FLD001-0.ax')

$\operatorname{defined}(a)$	$cnf(a_is_defined, hypothesis)$
defined (b)	cnf(b_is_defined, hypothesis)
$\operatorname{defined}(c)$	cnf(c_is_defined, hypothesis)
defined (d)	cnf(d_is_defined, hypothesis)
$\neg b=0$	cnf(b_not_equal_to_additive_ident

 $\neg b=0$ cnf(b_not_equal_to_additive_identity_5, negated_conjecture) $\neg d=0$ cnf(d_not_equal_to_additive_identity_6, negated_conjecture)

 $\neg (a \cdot b^{-1}) \cdot (c \cdot d^{-1}) = (a \cdot c) \cdot (b \cdot d)^{-1}$ cnf(multiply_not_equal_to_multiply_, negated_conjecture)

${\bf FLD048\text{-}2.p}$ Fraction calculation, part 2

include('Axioms/FLD001-0.ax')

defined (a)	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
$\operatorname{defined}(d)$	$cnf(d_is_defined, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_is_defined, hypothesis)$
$\operatorname{defined}(k)$	$cnf(k_is_defined, hypothesis)$
defined (l)	cnf(l_is_defined, hypothesis)
$\operatorname{defined}(s)$	$cnf(s_is_defined, hypothesis)$
defined (t)	$cnf(t_is_defined, hypothesis)$
$\neg b=0$	$cnf(b_not_equal_to_additive_identity_{10}, negated_conjecture)$
$\neg d=0$	$cnf(d_not_equal_to_additive_identity_{11}, negated_conjecture)$
$s \cdot t = u$	$cnf(multiply_equals_u_{12}, negated_conjecture)$
$a \cdot b^{-1} = s$	$cnf(multiply_equals_s_{13}, negated_conjecture)$
$c \cdot d^{-1} = t$	$cnf(multiply_equals_t_{14}, negated_conjecture)$
$a \cdot c = k$	$cnf(multiply_equals_k_{15}, negated_conjecture)$
$b \cdot d = l$	$cnf(multiply_equals_l_{16}, negated_conjecture)$
$\neg k \cdot l^{-1} = $	$u = cnf(multiply_not_equal_to_u_{17}, negated_conjecture)$

FLD048-3.p Fraction calculation, part 2

include('Axioms/FLD002-0.ax')

$\operatorname{defined}(a)$	$cnf(a_{is}_{defined}, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}defined, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is}defined, hypothesis)$
$\operatorname{defined}(d)$	$cnf(d_{is}defined, hypothesis)$
$\neg 0 + b = 0$	$cnf(not_sum_5, negated_conjecture)$

 $\neg 0 + d = 0$ $cnf(not_sum_6, negated_conjecture)$ $\neg (a \cdot b^{-1}) \cdot (c \cdot d^{-1}) = (a \cdot c) \cdot (b \cdot d)^{-1}$ cnf(not_product₇, negated_conjecture) FLD048-4.p Fraction calculation, part 2 include('Axioms/FLD002-0.ax') cnf(a_is_defined, hypothesis) defined(a) $\operatorname{defined}(b)$ cnf(b_is_defined, hypothesis) $\operatorname{defined}(c)$ cnf(c_is_defined, hypothesis) defined(d)cnf(d_is_defined, hypothesis) defined(u)cnf(u_is_defined, hypothesis) cnf(k_is_defined, hypothesis) $\operatorname{defined}(k)$ defined(l)cnf(l_is_defined, hypothesis) defined(s)cnf(s_is_defined, hypothesis) defined(t)cnf(t_is_defined, hypothesis) $\neg 0 + b = 0$ $cnf(not_sum_{10}, negated_conjecture)$ $\neg 0 + d = 0$ $cnf(not_sum_{11}, negated_conjecture)$ $s \cdot t = u$ $cnf(product_{12}, negated_conjecture)$ $a \cdot b^{-1} = s$ $cnf(product_{13}, negated_conjecture)$ $c \cdot d^{-1} = t$ $cnf(product_{14}, negated_conjecture)$ $a \cdot c = k$ $cnf(product_{15}, negated_conjecture)$ $b \cdot d = l$ $cnf(product_{16}, negated_conjecture)$ $\neg k \cdot l^{-1} = u$ $cnf(not_product_{17}, negated_conjecture)$ FLD049-1.p Fraction calculation, part 3 include('Axioms/FLD001-0.ax') defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) $\operatorname{defined}(c)$ cnf(c_is_defined, hypothesis) defined(d)cnf(d_is_defined, hypothesis) $\neg b=0$ cnf(b_not_equal_to_additive_identity₅, negated_conjecture) $\neg d=0$ $cnf(d_not_equal_to_additive_identity_6, negated_conjecture)$ $a \cdot b^{-1} {=} c \cdot d^{-1}$ cnf(multiply_equals_multiply₇, negated_conjecture)

 $\neg a \cdot d = b \cdot c \qquad \text{cnf(multiply_not_equal_to_multiply_8, negated_conjecture)}$

FLD049-2.p Fraction calculation, part 3

include('Axioms/FLD001-0.ax')

defined (a)	$cnf(a_is_defined, hypothesis)$
defined (b)	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
defined(d)	$cnf(d_{is}_{defined}, hypothesis)$
$\operatorname{defined}(k)$	$cnf(k_{is}defined, hypothesis)$
$\operatorname{defined}(s)$	$cnf(s_is_defined, hypothesis)$
$\neg b=0$	$cnf(b_not_equal_to_additive_identity_7, negated_conjecture)$
$\neg d=0$	$cnf(d_not_equal_to_additive_identity_8, negated_conjecture)$
$a \cdot b^{-1} = s$	$cnf(multiply_equals_s_9, negated_conjecture)$
$c \cdot d^{-1} = s$	$cnf(multiply_equals_s_{10}, negated_conjecture)$
$a \cdot d = k$	$cnf(multiply_equals_k_{11}, negated_conjecture)$
$\neg b \cdot c = k$	$cnf(multiply_not_equal_to_k_{12}, negated_conjecture)$

FLD049-3.p Fraction calculation, part 3

include('Axioms/FLD002-0.ax')

`	/
defined (a)	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is_{defined}}, hypothesis)$
$\operatorname{defined}(d)$	$cnf(d_is_defined, hypothesis)$
$\neg 0 + b = 0$	$cnf(not_sum_5, negated_conjecture)$
$\neg 0 + d = 0$	$cnf(not_sum_6, negated_conjecture)$
$a \cdot b^{-1} = c \cdot d^{-1}$	1 cnf(product ₇ , negated_conjecture)
$\neg a \cdot d = b \cdot c$	$cnf(not_product_8, negated_conjecture)$

FLD049-4.p Fraction calculation, part 3 include('Axioms/FLD002-0.ax')

defined (a)	cnf(a is defined hypothesis)
defined(b)	$cnf(b_{is}defined, hypothesis)$
$\operatorname{defined}(c)$	cnf(c_is_defined, hypothesis)
defined (d)	cnf(d_is_defined, hypothesis)
$\operatorname{defined}(k)$	$cnf(k_is_defined, hypothesis)$
$\operatorname{defined}(s)$	$cnf(s_is_defined, hypothesis)$
$\neg 0 + b = 0$	$cnf(not_sum_7, negated_conjecture)$
$\neg 0 + d = 0$	$cnf(not_sum_8, negated_conjecture)$
$a \cdot b^{-1} = s$	$cnf(product_9, negated_conjecture)$
$c \cdot d^{-1} = s$	$cnf(product_{10}, negated_conjecture)$
$a \cdot d {=} k$	$cnf(product_{11}, negated_conjecture)$
$\neg b \cdot c = k$	$cnf(not_product_{12}, negated_conjecture)$

${\bf FLD050\text{-}1.p}$ Fraction calculation, part 4

include('Axi	ioms/FLD001-0.ax')
$\operatorname{defined}(a)$	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is_{defined}, hypothesis})$
$\operatorname{defined}(d)$	$cnf(d_is_defined, hypothesis)$
$\neg b = 0$ cr	$nf(b_not_equal_to_additive_identity_5, negated_conjecture)$
$\neg d = 0$ c:	$nf(d_not_equal_to_additive_identity_6, negated_conjecture)$
$a \cdot d = b \cdot c$	$cnf(multiply_equals_multiply_7, negated_conjecture)$
$\neg a \cdot b^{-1} = c \cdot c$	d^{-1} cnf(multiply_not_equal_to_multiply_8, negated_conjecture)

 ${\bf FLD050\mathchar`-2.p}$ Fraction calculation, part 4

include('A	xioms/FLD001-0.ax')
$\operatorname{defined}(a)$	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_is_defined, hypothesis)$
$\operatorname{defined}(d)$	$cnf(d_{is}_{defined}, hypothesis)$
$\operatorname{defined}(k)$	$cnf(k_is_defined, hypothesis)$
$\operatorname{defined}(s)$	$cnf(s_is_defined, hypothesis)$
$\neg b=0$	$cnf(b_not_equal_to_additive_identity_7, negated_conjecture)$
$\neg d=0$	$cnf(d_not_equal_to_additive_identity_8, negated_conjecture)$
$a \cdot b^{-1} = s$	$cnf(multiply_equals_s_9, negated_conjecture)$
$a \cdot d = k$	$cnf(multiply_equals_k_{10}, negated_conjecture)$
$b \cdot c = k$	$cnf(multiply_equals_k_{11}, negated_conjecture)$
$\neg c \cdot d^{-1} =$	s cnf(multiply_not_equal_to_s_{12}, negated_conjecture)

 ${\bf FLD050\mathchar`-3.p}$ Fraction calculation, part 4

include('Axioms/FLD002-0.ax')

$\operatorname{defined}(a)$	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
$\operatorname{defined}(d)$	$cnf(d_{is}_{defined}, hypothesis)$
$\neg 0 + b = 0$	$cnf(not_sum_5, negated_conjecture)$
$\neg 0 + d = 0$	$cnf(not_sum_6, negated_conjecture)$
$a \cdot d = b \cdot c$	$cnf(product_7, negated_conjecture)$
$\neg a \cdot b^{-1} = c \cdot c$	l^{-1} cnf(not_product ₈ , negated_conjecture)

FLD050-4.p	Fraction calculation, part 4
include('Axio	ms/FLD002-0.ax')
$\operatorname{defined}(a)$	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}defined, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
$\operatorname{defined}(d)$	$cnf(d_is_defined, hypothesis)$
$\operatorname{defined}(k)$	$cnf(k_is_defined, hypothesis)$
$\operatorname{defined}(s)$	$cnf(s_{is}_{defined}, hypothesis)$
$\neg 0 + b = 0$	$cnf(not_sum_7, negated_conjecture)$
$\neg 0 + d = 0$	$cnf(not_sum_8, negated_conjecture)$
$a \cdot b^{-1} = s$	$cnf(product_9, negated_conjecture)$

 $\begin{array}{ll} a \cdot d{=}k & \operatorname{cnf}(\operatorname{product}_{10}, \operatorname{negated_conjecture}) \\ b \cdot c{=}k & \operatorname{cnf}(\operatorname{product}_{11}, \operatorname{negated_conjecture}) \\ \neg c \cdot d^{-1}{=}s & \operatorname{cnf}(\operatorname{not_product}_{12}, \operatorname{negated_conjecture}) \end{array}$

FLD051-1.p Fraction calculation, part 5 include('Axioms/FLD001-0.ax') defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) $\operatorname{defined}(c)$ cnf(c_is_defined, hypothesis) defined(d)cnf(d_is_defined, hypothesis) $\neg b=0$ cnf(b_not_equal_to_additive_identity₅, negated_conjecture) $\neg c=0$ cnf(c_not_equal_to_additive_identity₆, negated_conjecture) $\neg d=0$ cnf(d_not_equal_to_additive_identity₇, negated_conjecture) $\neg (a \cdot b^{-1}) \cdot (c \cdot d^{-1})^{-1} = (a \cdot d) \cdot (b \cdot c)^{-1}$ cnf(multiply_not_equal_to_multiply_8, negated_conjecture) FLD051-2.p Fraction calculation, part 5 include('Axioms/FLD001-0.ax') defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) $\operatorname{defined}(c)$ cnf(c_is_defined, hypothesis) defined(d)cnf(d_is_defined, hypothesis) defined(u)cnf(u_is_defined, hypothesis) cnf(k_is_defined, hypothesis) defined(k)defined(l)cnf(l_is_defined, hypothesis) defined(s)cnf(s_is_defined, hypothesis) cnf(t_is_defined, hypothesis) defined(t) $\neg b=0$ $cnf(b_not_equal_to_additive_identity_{10}, negated_conjecture)$ $\neg c=0$ $cnf(c_not_equal_to_additive_identity_{11}, negated_conjecture)$ $\neg d=0$ $cnf(d_not_equal_to_additive_identity_{12}, negated_conjecture)$ $s \cdot t^{-1} = u$ $cnf(multiply_equals_u_{13}, negated_conjecture)$ $a \cdot b^{-1} {=} s$ $cnf(multiply_equals_s_{14}, negated_conjecture)$ $c \cdot d^{-1} = t$ $cnf(multiply_equals_{15}, negated_conjecture)$ $a \cdot d = k$ cnf(multiply_equals_k₁₆, negated_conjecture) $b \cdot c = l$ cnf(multiply_equals_l₁₇, negated_conjecture) $\neg k \cdot l^{-1} = u$ cnf(multiply_not_equal_to_u₁₈, negated_conjecture)

 ${\bf FLD051-3.p}$ Fraction calculation, part 5

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$ defined(b) $cnf(b_is_defined, hypothesis)$ defined(c) $cnf(c_is_defined, hypothesis)$ defined(d) $cnf(d_is_defined, hypothesis)$ $\neg 0 + b=0$ $cnf(not_sum_5, negated_conjecture)$ $\neg 0 + c=0$ $cnf(not_sum_6, negated_conjecture)$ $\neg 0 + d=0$ $cnf(not_sum_7, negated_conjecture)$

 $\neg (a \cdot b^{-1}) \cdot (c \cdot d^{-1})^{-1} = (a \cdot d) \cdot (b \cdot c)^{-1} \qquad \operatorname{cnf}(\operatorname{not_product}_8, \operatorname{negated_conjecture})$

FLD051-4.p Fraction calculation, part 5 include('Axioms/FLD002-0.ax')

defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) $\operatorname{defined}(c)$ cnf(c_is_defined, hypothesis) defined(d)cnf(d_is_defined, hypothesis) defined(u)cnf(u_is_defined, hypothesis) $\operatorname{defined}(k)$ cnf(k_is_defined, hypothesis) defined(l)cnf(l_is_defined, hypothesis) defined(s)cnf(s_is_defined, hypothesis) defined(t)cnf(t_is_defined, hypothesis) $cnf(not_sum_{10}, negated_conjecture)$ $\neg 0 + b = 0$ $\neg 0 + c = 0$ $cnf(not_sum_{11}, negated_conjecture)$ $\neg 0 + d = 0$ $cnf(not_sum_{12}, negated_conjecture)$ $\begin{array}{lll} s \cdot t^{-1} = u & \operatorname{cnf}(\operatorname{product}_{13}, \operatorname{negated_conjecture}) \\ a \cdot b^{-1} = s & \operatorname{cnf}(\operatorname{product}_{14}, \operatorname{negated_conjecture}) \\ c \cdot d^{-1} = t & \operatorname{cnf}(\operatorname{product}_{15}, \operatorname{negated_conjecture}) \\ a \cdot d = k & \operatorname{cnf}(\operatorname{product}_{16}, \operatorname{negated_conjecture}) \\ b \cdot c = l & \operatorname{cnf}(\operatorname{product}_{17}, \operatorname{negated_conjecture}) \\ \neg k \cdot l^{-1} = u & \operatorname{cnf}(\operatorname{not_product}_{18}, \operatorname{negated_conjecture}) \end{array}$

FLD052-1.p Fraction calculation, part 6

include('Axioms/FLD001-0.ax')

 $\begin{array}{ll} \operatorname{defined}(a) & \operatorname{cnf}(a. \mathrm{is}. \mathrm{defined}, \mathrm{hypothesis}) \\ \operatorname{defined}(b) & \operatorname{cnf}(b. \mathrm{is}. \mathrm{defined}, \mathrm{hypothesis}) \\ \operatorname{defined}(c) & \operatorname{cnf}(c. \mathrm{is}. \mathrm{defined}, \mathrm{hypothesis}) \\ \operatorname{defined}(d) & \operatorname{cnf}(d. \mathrm{is}. \mathrm{defined}, \mathrm{hypothesis}) \\ \neg b = 0 & \operatorname{cnf}(b. \mathrm{not}. \mathrm{equal}. \mathrm{to}. \mathrm{additive}. \mathrm{identity}_5, \mathrm{negated}. \mathrm{conjecture}) \\ \neg d = 0 & \operatorname{cnf}(d. \mathrm{not}. \mathrm{equal}. \mathrm{to}. \mathrm{additive}. \mathrm{identity}_6, \mathrm{negated}. \mathrm{conjecture}) \\ \neg a \cdot b^{-1} + c \cdot d^{-1} = (a \cdot d + b \cdot c) \cdot (b \cdot d)^{-1} & \operatorname{cnf}(\mathrm{ad}. \mathrm{not}. \mathrm{equal}. \mathrm{to}. \mathrm{multiply}_7, \mathrm{negated}. \mathrm{conjecture}) \end{array}$

${\bf FLD052\text{-}2.p}$ Fraction calculation, part 6

include('A	xioms/FLD001-0.ax')
defined (a)	$cnf(a_is_defined, hypothesis)$
defined (b)	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
$\operatorname{defined}(d)$	$cnf(d_is_defined, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_is_defined, hypothesis)$
$\operatorname{defined}(v)$	$cnf(v_{is}_{defined}, hypothesis)$
$\operatorname{defined}(k)$	$cnf(k_is_defined, hypothesis)$
defined (l)	$cnf(l_is_defined, hypothesis)$
$\operatorname{defined}(p)$	$cnf(p_is_defined, hypothesis)$
$\operatorname{defined}(q)$	$cnf(q_is_defined, hypothesis)$
$\operatorname{defined}(s)$	$cnf(s_i_defined, hypothesis)$
defined (t)	$cnf(t_is_defined, hypothesis)$
$\neg b=0$	$cnf(b_not_equal_to_additive_identity_{13}, negated_conjecture)$
$\neg d=0$	$cnf(d_not_equal_to_additive_identity_{14}, negated_conjecture)$
$a \cdot b^{-1} = s$	$cnf(multiply_equals_s_{15}, negated_conjecture)$
$c \cdot d^{-1} = t$	$cnf(multiply_equals_t_{16}, negated_conjecture)$
s + t = u	$cnf(add_equals_u_{17}, negated_conjecture)$
$a \cdot d = p$	$cnf(multiply_equals_p_{18}, negated_conjecture)$
$b \cdot c = q$	$cnf(multiply_equals_q_{19}, negated_conjecture)$
p + q = k	$cnf(add_equals_k_{20}, negated_conjecture)$
$b \cdot d = l$	$\operatorname{cnf}(\operatorname{multiply_equals_l}_{21}, \operatorname{negated_conjecture})$
$\neg k \cdot l^{-1} = k$	$u = cnf(multiply_not_equal_to_u_{22}, negated_conjecture)$

FLD052-3.p Fraction calculation, part 6

include('Axioms/FLD002-0.ax')

defined (a)	cnf(a_is_defined, hypothesis)
defined (b)	cnf(b_is_defined, hypothesis)
$\operatorname{defined}(c)$	cnf(c_is_defined, hypothesis)
$\operatorname{defined}(d)$	cnf(d_is_defined, hypothesis)
$\neg 0 + b = 0$	$cnf(not_sum_5, negated_conjecture)$
$\neg 0 + d = 0$	$cnf(not_sum_6, negated_conjecture)$
$\neg a \cdot b^{-1} + c \cdot$	$d^{-1} = (a \cdot d + b \cdot c) \cdot (b \cdot d)^{-1}$ cnf(not_sum ₇ , negated_conjecture)

FLD052-4.p Fraction calculation, part 6 include('Axioms/FLD002-0.ax')

defined (l)	$cnf(l_is_defined, hypothesis)$
defined (p)	$cnf(p_{is}_{defined}, hypothesis)$
defined (q)	$cnf(q_{is}_{defined}, hypothesis)$
defined (s)	$cnf(s_is_defined, hypothesis)$
defined (t)	$cnf(t_{is_{defined}}, hypothesis)$
$\neg 0 + b = 0$	$cnf(not_sum_{13}, negated_conjecture)$
$\neg 0 + d{=}0$	$cnf(not_sum_{14}, negated_conjecture)$
$a \cdot b^{-1} = s$	$cnf(product_{15}, negated_conjecture)$
$c \cdot d^{-1} {=} t$	$cnf(product_{16}, negated_conjecture)$
s + t = u	$cnf(sum_{17}, negated_conjecture)$
$a \cdot d = p$	$cnf(product_{18}, negated_conjecture)$
$b \cdot c = q$	$cnf(product_{19}, negated_conjecture)$
p + q = k	$cnf(sum_{20}, negated_conjecture)$
$b \cdot d = l$	$cnf(product_{21}, negated_conjecture)$
$\neg k \cdot l^{-1} = l$	ι cnf(not_product ₂₂ , negated_conjecture)

FLD053-1.p Fraction calculation, part 7

include('Axioms/FLD001-0.ax')

 $\begin{array}{ll} \operatorname{defined}(a) & \operatorname{cnf}(a_\operatorname{is_defined},\operatorname{hypothesis}) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_\operatorname{is_defined},\operatorname{hypothesis}) \\ \operatorname{defined}(c) & \operatorname{cnf}(c_\operatorname{is_defined},\operatorname{hypothesis}) \\ \operatorname{defined}(d) & \operatorname{cnf}(d_\operatorname{is_defined},\operatorname{hypothesis}) \\ \neg b=0 & \operatorname{cnf}(b_\operatorname{not_equal_to_additive_identity_5},\operatorname{negated_conjecture}) \\ \neg d=0 & \operatorname{cnf}(d_\operatorname{not_equal_to_additive_identity_6},\operatorname{negated_conjecture}) \\ \neg a \cdot b^{-1} + -c \cdot d^{-1} = (a \cdot d + -b \cdot c) \cdot (b \cdot d)^{-1} & \operatorname{cnf}(ad_\operatorname{not_equal_to_multiply_7},\operatorname{negated_conjecture}) \\ \end{array}$

FLD053-2.p Fraction calculation, part 7

include('Axioms/FLD001-0.ax')

menuae(11	Alonis/TED001 0.ax)
$\operatorname{defined}(a)$	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
$\operatorname{defined}(d)$	$cnf(d_{is}_{defined}, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_is_defined, hypothesis)$
$\operatorname{defined}(k)$	$cnf(k_is_defined, hypothesis)$
defined (l)	$cnf(l_is_defined, hypothesis)$
defined (p)	$cnf(p_{is}_{defined}, hypothesis)$
$\operatorname{defined}(q)$	$cnf(q_is_defined, hypothesis)$
$\operatorname{defined}(s)$	$cnf(s_{is}_{defined}, hypothesis)$
defined (t)	$cnf(t_is_defined, hypothesis)$
$\neg b=0$	$cnf(b_not_equal_to_additive_identity_{12}, negated_conjecture)$
$\neg d=0$	$cnf(d_not_equal_to_additive_identity_{13}, negated_conjecture)$
$a \cdot b^{-1} = s$	$cnf(multiply_equals_s_{14}, negated_conjecture)$
$c \cdot d^{-1} = t$	$cnf(multiply_equals_t_{15}, negated_conjecture)$
$s+-t{=}u$	$cnf(add_equals_u_{16}, negated_conjecture)$
$a \cdot d = p$	$cnf(multiply_equals_p_{17}, negated_conjecture)$
$b \cdot c = q$	$cnf(multiply_equals_q_{18}, negated_conjecture)$
p + -q = k	$cnf(add_equals_k_{19}, negated_conjecture)$
$b \cdot d = l$	$cnf(multiply_equals_l_{20}, negated_conjecture)$
$\neg k \cdot l^{-1} = k$	$u = cnf(multiply_not_equal_to_u_{21}, negated_conjecture)$

FLD053-3.p Fraction calculation, part 7

include('Axioms/FLD002-0.ax')

 $\begin{array}{lll} \operatorname{defined}(a) & \operatorname{cnf}(a_is_defined, hypothesis) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_is_defined, hypothesis) \\ \operatorname{defined}(c) & \operatorname{cnf}(c_is_defined, hypothesis) \\ \operatorname{defined}(d) & \operatorname{cnf}(d_is_defined, hypothesis) \\ \neg 0 + b = 0 & \operatorname{cnf}(\operatorname{not_sum}_5, \operatorname{negated_conjecture}) \\ \neg 0 + d = 0 & \operatorname{cnf}(\operatorname{not_sum}_6, \operatorname{negated_conjecture}) \\ \neg a \cdot b^{-1} + -c \cdot d^{-1} = (a \cdot d + -b \cdot c) \cdot (b \cdot d)^{-1} & \operatorname{cnf}(\operatorname{not_sum}_7, \operatorname{negated_conjecture}) \\ \end{array}$

FLD053-4.p Fraction calculation, part 7

include('Axioms/FLD002-0.ax') cnf(a_is_defined, hypothesis) defined(a)defined(b)cnf(b_is_defined, hypothesis) $\operatorname{defined}(c)$ cnf(c_is_defined, hypothesis) defined(d)cnf(d_is_defined, hypothesis) $\operatorname{defined}(u)$ cnf(u_is_defined, hypothesis) $\operatorname{defined}(k)$ cnf(k_is_defined, hypothesis) defined(l)cnf(l_is_defined, hypothesis) defined(p)cnf(p_is_defined, hypothesis) defined(q)cnf(q_is_defined, hypothesis) defined(s)cnf(s_is_defined, hypothesis) cnf(t_is_defined, hypothesis) defined(t) $cnf(not_sum_{12}, negated_conjecture)$ $\neg 0 + b = 0$ $\neg 0 + d = 0$ $cnf(not_sum_{13}, negated_conjecture)$ $a \cdot b^{-1} {=} s$ $cnf(product_{14}, negated_conjecture)$ $c \cdot d^{-1} = t$ $cnf(product_{15}, negated_conjecture)$ s + -t = u $cnf(sum_{16}, negated_conjecture)$ $a \cdot d = p$ $cnf(product_{17}, negated_conjecture)$ $b \cdot c = q$ $cnf(product_{18}, negated_conjecture)$ $cnf(sum_{19}, negated_conjecture)$ p + -q = k $b \cdot d = l$ $cnf(product_{20}, negated_conjecture)$ $\neg k \cdot l^{-1} = u$ $cnf(not_product_{21}, negated_conjecture)$ FLD054-1.p Fraction calculation, part 8 include('Axioms/FLD001-0.ax') $\operatorname{defined}(a)$ cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis)

 $\begin{array}{ll} \mbox{defined}(b) & \mbox{cnf}(b_is_defined, hypothesis) \\ \neg a=0 & \mbox{cnf}(a_not_equal_to_additive_identity_3, negated_conjecture) \\ \neg b=0 & \mbox{cnf}(b_not_equal_to_additive_identity_4, negated_conjecture) \\ \neg a^{-1} + b^{-1} = (a+b) \cdot (a \cdot b)^{-1} & \mbox{cnf}(add_not_equal_to_multiply_5, negated_conjecture) \\ \end{array}$

FLD054-2.p Fraction calculation, part 8

include('Axioms/FLD001-0.ax')

defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) defined(u)cnf(u_is_defined, hypothesis) $\operatorname{defined}(k)$ cnf(k_is_defined, hypothesis) defined(l)cnf(l_is_defined, hypothesis) $\neg a=0$ cnf(a_not_equal_to_additive_identity₆, negated_conjecture) $\neg b=0$ cnf(b_not_equal_to_additive_identity₇, negated_conjecture) $a^{-1} + b^{-1} = u$ cnf(add_equals_u₈, negated_conjecture) a+b=kcnf(add_equals_k₉, negated_conjecture) $a \cdot b = l$ $cnf(multiply_equals_{10}, negated_conjecture)$ $\neg k \cdot l^{-1} = u$ cnf(multiply_not_equal_to_u₁₁, negated_conjecture)

FLD054-3.p Fraction calculation, part 8

include('Axioms/FLD002-0.ax')

defined (a)	cnf(a_is_defined, hy	pothesis)
$\operatorname{defined}(b)$	cnf(b_is_defined, hy	pothesis)
$\neg 0 + a = 0$	$cnf(not_sum_3, nega$	ted_conjecture)
$\neg 0 + b = 0$	$cnf(not_sum_4, negative)$	ted_conjecture)
$\neg a^{-1} + b^{-1} =$	$(a+b) \cdot (a \cdot b)^{-1}$	$cnf(not_sum_5, negated_conjecture)$

${\bf FLD054-4.p}$ Fraction calculation, part 8

include('Axioms/FLD002-0.ax')

- defined(u) cnf(u-is_defined, hypothesis)
- defined(k) $cnf(k_is_defined, hypothesis)$
- defined(l) cnf(l_is_defined, hypothesis)

```
\neg 0 + a = 0 cnf(not_sum_6, negated_conjecture)
```

 $\neg 0 + b = 0$ cnf(not_sum₇, negated_conjecture) $a^{-1} + b^{-1} = u$ $cnf(sum_8, negated_conjecture)$ $cnf(sum_9, negated_conjecture)$ a+b=k $a \cdot b = l$ $cnf(product_{10}, negated_conjecture)$ $\neg k \cdot l^{-1} = u$ $cnf(not_product_{11}, negated_conjecture)$

FLD055-1.p Compatibility of order and equality relation include('Axioms/FLD001-0.ax')

defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis)

 $\operatorname{defined}(c)$ cnf(c_is_defined, hypothesis)

 $a \leq b$ cnf(less_or_equal₄, negated_conjecture)

cnf(b_equals_c₅, negated_conjecture) b = c

cnf(not_less_or_equal₆, negated_conjecture) $\neg a \leq c$

FLD055-3.p Compatibility of order and equality relation

include('Axioms/FLD002-0.ax')

defined(a)cnf(a_is_defined, hypothesis)

defined(b) cnf(b_is_defined, hypothesis)

 $\operatorname{defined}(c)$ cnf(c_is_defined, hypothesis)

 $a \leq b$ $cnf(less_or_equal_4, negated_conjecture)$

0 + b = c $cnf(sum_5, negated_conjecture)$

 $cnf(not_less_or_equal_6, negated_conjecture)$ $\neg a \leq c$

FLD056-1.p Reflexivity of the order relation

include('Axioms/FLD001-0.ax')

defined(a)cnf(a_is_defined, hypothesis)

 $\neg a \leq a$ cnf(not_less_or_equal₂, negated_conjecture)

FLD056-3.p Reflexivity of the order relation

include('Axioms/FLD002-0.ax')

cnf(a_is_defined, hypothesis) defined(a)

 $\neg a \leq a$ cnf(not_less_or_equal_2, negated_conjecture)

FLD057-1.p 0 is less than 1

include('Axioms/FLD001-0.ax')

 $\neg 0 < 1$ cnf(not_less_or_equal_1, negated_conjecture)

FLD057-3.p 0 is less than 1

include('Axioms/FLD002-0.ax')

 $\neg 0 \leq 1$ cnf(not_less_or_equal_, negated_conjecture)

FLD058-1.p If a greater 0 and b greater or equal a the b greater 0 include('Axioms/FLD001-0.ax')

defined(a)

cnf(a_is_defined, hypothesis)

defined(b) cnf(b_is_defined, hypothesis)

 $0 \leq a$ cnf(less_or_equal₃, negated_conjecture)

 $a \leq b$ cnf(less_or_equal₄, negated_conjecture)

 $\neg a=0$ cnf(a_not_equal_to_additive_identity₅, negated_conjecture)

b=0cnf(b_equals_additive_identity₆, negated_conjecture)

FLD058-3.p If a greater 0 and b greater or equal a the b greater 0

include('Axioms/FLD002-0.ax')

defined(a)cnf(a_is_defined, hypothesis)

defined(b)cnf(b_is_defined, hypothesis)

 $0 \leq a$ cnf(less_or_equal₃, negated_conjecture)

 $a \leq b$ cnf(less_or_equal₄, negated_conjecture)

 $\neg 0 + a = 0$ cnf(not_sum₅, negated_conjecture)

0 + b = 0 $cnf(sum_6, negated_conjecture)$

FLD059-1.p If a greater or equal 0, then 2a greater or equal 0

include('Axioms/FLD001-0.ax')

defined(a)cnf(a_is_defined, hypothesis)

 $cnf(less_or_equal_2, negated_conjecture)$ $0 \leq a$

 $\neg 0 \le a + a$ cnf(not_less_or_equal_3, negated_conjecture) **FLD059-2.p** If a greater or equal 0, then 2a greater or equal 0 include('Axioms/FLD001-0.ax')

 $\begin{array}{lll} \operatorname{defined}(a) & \operatorname{cnf}(a_is_defined, hypothesis) \\ \operatorname{defined}(u) & \operatorname{cnf}(u_is_defined, hypothesis) \\ 0 \leq a & \operatorname{cnf}(\operatorname{less_or_equal}_3, \operatorname{negated_conjecture}) \\ a + a = u & \operatorname{cnf}(\operatorname{add_equals_u}_4, \operatorname{negated_conjecture}) \\ \neg \ 0 \leq u & \operatorname{cnf}(\operatorname{not_less_or_equal}_5, \operatorname{negated_conjecture}) \end{array}$

FLD059-3.p If a greater or equal 0, then 2a greater or equal 0 include('Axioms/FLD002-0.ax')

defined(a) cnf($a_is_defined$, hypothesis)

 $0 \le a$ cnf(less_or_equal_2, negated_conjecture)

 $\neg 0 \le a + a$ cnf(not_less_or_equal_3, negated_conjecture)

FLD059-4.p If a greater or equal 0, then 2a greater or equal 0 include('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

defined(u) cnf($u_is_defined, hypothesis$)

 $0 \le a$ cnf(less_or_equal_3, negated_conjecture)

a + a = u cnf(sum₄, negated_conjecture)

 $\neg 0 \le u$ cnf(not_less_or_equal_5, negated_conjecture)

FLD060-1.p If b greater or equal b, then 2b greater or equal 2a include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_{is}_{defined}, hypothesis)$

defined(b) cnf(b_is_defined, hypothesis)

 $a \le b$ cnf(less_or_equal₃, negated_conjecture)

 $\neg a + a \le b + b$ cnf(not_less_or_equal₄, negated_conjecture)

FLD060-2.p If b greater or equal b, then 2b greater or equal 2a include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) cnf(b_is_defined, hypothesis)

defined(u) cnf(u_is_defined, hypothesis)

 $defined(v) = cnf(v_{is_{defined}}, hypothesis)$

a + a = u cnf(add_equals_u₅, negated_conjecture)

b + b = v cnf(add_equals_v₆, negated_conjecture)

 $a \le b$ cnf(less_or_equal₇, negated_conjecture)

 $\neg u \leq v$ cnf(not_less_or_equal_8, negated_conjecture)

 ${\bf FLD060\text{-}3.p}$ If b greater or equal b, then 2b greater or equal 2a

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) cnf(b_is_defined, hypothesis)

 $a \leq b$ cnf(less_or_equal_3, negated_conjecture)

 $\neg a + a \le b + b$ cnf(not_less_or_equal₄, negated_conjecture)

FLD060-4.p If b greater or equal b, then 2b greater or equal 2a include('Axioms/FLD002-0.ax')

	sis)
$defined(b) = cnf(b_is_defined, hypothe$	sis)
defined (u) cnf $(u_{is_{-}}defined, hypothe$	sis)

defined(v) cnf(v_is_defined, hypothesis)

 $a \leq b$ cnf(less_or_equal₅, negated_conjecture)

a + a = u cnf(sum₆, negated_conjecture)

b + b = v cnf(sum₇, negated_conjecture)

 $\neg u \leq v$ cnf(not_less_or_equal_8, negated_conjecture)

FLD061-1.p The resulting inequality of a summation of two inequalities

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_is_defined, hypothesis)$

defined(c) cnf(c_is_defined, hypothesis)

 $\operatorname{defined}(d)$ cnf(d_is_defined, hypothesis)

 $a \leq b$ cnf(less_or_equal₅, negated_conjecture)

 $c \leq d$ cnf(less_or_equal₆, negated_conjecture)

 $\neg a + c \le d + b$ cnf(not_less_or_equal₇, negated_conjecture)

FLD061-2.p The resulting inequality of a summation of two inequalities

include('Axioms/FLD001-0.ax')

defined(a)cnf(a_is_defined, hypothesis)

defined(b)cnf(b_is_defined, hypothesis)

 $\operatorname{defined}(c)$ cnf(c_is_defined, hypothesis)

defined(d)cnf(d_is_defined, hypothesis)

 $\operatorname{defined}(u)$ cnf(u_is_defined, hypothesis)

 $cnf(v_{is}_{defined}, hypothesis)$ defined(v)

a + c = ucnf(add_equals_u₇, negated_conjecture)

d+b=vcnf(add_equals_v₈, negated_conjecture) $a \leq b$

 $cnf(less_or_equal_9, negated_conjecture)$ $c \leq d$ $cnf(less_or_equal_{10}, negated_conjecture)$

 $\neg u \leq v$ $cnf(not_less_or_equal_{11}, negated_conjecture)$

FLD061-3.p The resulting inequality of a summation of two inequalities

include('Axioms/FLD002-0.ax')

cnf(a_is_defined, hypothesis) defined(a)defined(b)cnf(b_is_defined, hypothesis) $\operatorname{defined}(c)$ cnf(c_is_defined, hypothesis)

defined(d)cnf(d_is_defined, hypothesis)

 $a \leq b$ cnf(less_or_equal₅, negated_conjecture)

 $c \leq d$ cnf(less_or_equal₆, negated_conjecture)

 $\neg a + c \leq d + b$ cnf(not_less_or_equal₇, negated_conjecture)

FLD061-4.p The resulting inequality of a summation of two inequalities

include('Axioms/FLD002-0.ax')

 $\operatorname{defined}(a)$ cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) $\operatorname{defined}(c)$ cnf(c_is_defined, hypothesis) defined(d)cnf(d_is_defined, hypothesis) defined(u)cnf(u_is_defined, hypothesis) $\operatorname{defined}(v)$ cnf(v_is_defined, hypothesis)

 $a \leq b$ cnf(less_or_equal₇, negated_conjecture)

 $c \leq d$ cnf(less_or_equal₈, negated_conjecture)

a + c = ucnf(sum₉, negated_conjecture)

d+b=v $cnf(sum_{10}, negated_conjecture)$

 $cnf(not_less_or_equal_{11}, negated_conjecture)$ $\neg u \leq v$

FLD062-1.p Compatibility of the order relation and additive inverses

include('Axioms/FLD001-0.ax')

```
defined(a)
   cnf(a_is_defined, hypothesis)
```

defined(b)cnf(b_is_defined, hypothesis)

 $a \leq b$ $cnf(less_or_equal_3, negated_conjecture)$

 $\neg -b \leq -a$ $cnf(not_less_or_equal_4, negated_conjecture)$

FLD062-3.p Compatibility of the order relation and additive inverses include('Axioms/FLD002-0.ax')

defined(a)cnf(a_is_defined, hypothesis)

defined(b)cnf(b_is_defined, hypothesis)

 $a \leq b$ cnf(less_or_equal₃, negated_conjecture)

 $\neg -b \leq -a$ cnf(not_less_or_equal₄, negated_conjecture)

FLD063-1.p Elimination of additive inverses in an order relation

include('Axioms/FLD001-0.ax')

defined(a)cnf(a_is_defined, hypothesis)

defined(b)cnf(b_is_defined, hypothesis)

 $-b \leq -a$ cnf(less_or_equal₃, negated_conjecture)

 $\neg a \leq b$ cnf(not_less_or_equal₄, negated_conjecture) $\begin{array}{ll} \operatorname{defined}(a) & \operatorname{cnf}(a_\mathrm{is_defined}, \operatorname{hypothesis}) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_\mathrm{is_defined}, \operatorname{hypothesis}) \\ -b \leq -a & \operatorname{cnf}(\operatorname{less_or_equal}_3, \operatorname{negated_conjecture}) \\ \neg a \leq b & \operatorname{cnf}(\operatorname{not_less_or_equal}_4, \operatorname{negated_conjecture}) \end{array}$

FLD064-1.p Side change of a term in an order relation, part 1

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $0 \le a$ cnf(less_or_equal_2, negated_conjecture)

 $\neg -a \leq 0$ cnf(not_less_or_equal_3, negated_conjecture)

FLD064-3.p Side change of a term in an order relation, part 1 include('Axioms/FLD002-0.ax')

 $\begin{array}{ll} \text{defined}(a) & \text{cnf}(a_\text{is_defined}, \text{hypothesis}) \\ 0 \leq a & \text{cnf}(\text{less_or_equal}_2, \text{negated_conjecture}) \\ \neg -a \leq 0 & \text{cnf}(\text{not_less_or_equal}_3, \text{negated_conjecture}) \end{array}$

FLD065-1.p Side change of a term in an order relation, part 2 include('Axioms/FLD001-0.ax')

 $\begin{array}{ll} \operatorname{defined}(a) & \operatorname{cnf}(a_is_defined, hypothesis) \\ -a \leq 0 & \operatorname{cnf}(\operatorname{less_or_equal}_2, \operatorname{negated_conjecture}) \\ \neg 0 \leq a & \operatorname{cnf}(\operatorname{not_less_or_equal}_3, \operatorname{negated_conjecture}) \end{array}$

FLD065-3.p Side change of a term in an order relation, part 2 include('Axioms/FLD002-0.ax')

 $\begin{array}{ll} \operatorname{defined}(a) & \operatorname{cnf}(a_is_defined, \text{hypothesis}) \\ -a \leq 0 & \operatorname{cnf}(\operatorname{less_or_equal}_2, \operatorname{negated_conjecture}) \end{array}$

 $\neg \, 0 \leq a \qquad \mathrm{cnf}(\mathrm{not_less_or_equal}_3, \mathrm{negated_conjecture})$

 ${\bf FLD066\text{-}1.p}$ Elimination of a summation in an order relation

include('Axioms/FLD001-0.ax')

 $\begin{array}{lll} \operatorname{defined}(a) & \operatorname{cnf}(a_is_defined, \operatorname{hypothesis}) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_is_defined, \operatorname{hypothesis}) \\ \operatorname{defined}(c) & \operatorname{cnf}(c_is_defined, \operatorname{hypothesis}) \\ a+c \leq b+c & \operatorname{cnf}(\operatorname{less_or_equal}_4, \operatorname{negated_conjecture}) \\ \end{array}$

 $\neg \, a \leq b \qquad \operatorname{cnf}(\operatorname{not_less_or_equal}_5, \operatorname{negated_conjecture})$

FLD066-3.p Elimination of a summation in an order relation

include('Axioms/FLD002-0.ax')

defined(a)	$cnf(a_{is}_{defined}, hypothesis)$
defined (b)	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_is_defined, hypothesis)$
$\operatorname{defined}(v)$	$cnf(v_{is}_{defined}, hypothesis)$
a + c = u	$cnf(sum_6, negated_conjecture)$
b + c = v	$cnf(sum_7, negated_conjecture)$
$u \leq v$	$cnf(less_or_equal_8, negated_conjecture)$
$\neg a \leq b$	$cnf(not_less_or_equal_9, negated_conjecture)$

FLD067-1.p Side change in an order relation, part 1

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) cnf(b_is_defined, hypothesis)

 $a \le b$ cnf(less_or_equal₃, negated_conjecture)

 $\neg 0 \leq b + -a$ cnf(not_less_or_equal₄, negated_conjecture)

FLD067-2.p Side change in an order relation, part 1

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_is_defined, hypothesis)$

defined(u) cnf $(u_is_defined, hypothesis)$

 $a \le b$ cnf(less_or_equal₄, negated_conjecture)

b + -a = ucnf(add_equals_u₅, negated_conjecture) $\neg 0 < u$ cnf(not_less_or_equal₆, negated_conjecture)

FLD067-3.p Side change in an order relation, part 1 include('Axioms/FLD002-0.ax')

defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) $a \leq b$ cnf(less_or_equal₃, negated_conjecture)

 $\neg 0 \leq b + -a$ $cnf(not_less_or_equal_4, negated_conjecture)$

FLD067-4.p Side change in an order relation, part 1

include('Axioms/FLD002-0.ax')

defined(a)cnf(a_is_defined, hypothesis) cnf(b_is_defined, hypothesis) defined(b)defined(u)cnf(u_is_defined, hypothesis) $a \leq b$ $cnf(less_or_equal_4, negated_conjecture)$ b + -a = u $cnf(sum_5, negated_conjecture)$ $\neg 0 \leq u$ cnf(not_less_or_equal₆, negated_conjecture)

FLD068-1.p Side change of a term in an order relation, part 2 include('Axioms/FLD001-0.ax')

defined(a)cnf(a_is_defined, hypothesis) cnf(b_is_defined, hypothesis) defined(b) $0 \le b + -a$ cnf(less_or_equal₃, negated_conjecture) $\neg a \leq b$ $cnf(not_less_or_equal_4, negated_conjecture)$

FLD068-2.p Side change of a term in an order relation, part 2

include('Axioms/FLD001-0.ax')

defined(a)cnf(a_is_defined, hypothesis) cnf(b_is_defined, hypothesis) defined(b)defined(u)cnf(u_is_defined, hypothesis) b + -a = ucnf(add_equals_u₄, negated_conjecture) cnf(less_or_equal₅, negated_conjecture) $0 \leq u$ $\neg a \leq b$ cnf(not_less_or_equal₆, negated_conjecture)

FLD068-3.p Side change of a term in an order relation, part 2 include('Axioms/FLD002-0.ax')

defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) 0 < b + -acnf(less_or_equal₃, negated_conjecture) $\neg\,a\leq b$ cnf(not_less_or_equal₄, negated_conjecture)

FLD068-4.p Side change of a term in an order relation, part 2

include('Axioms/FLD002-0.ax')

defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) defined(u)cnf(u_is_defined, hypothesis)

b + -a = u $cnf(sum_4, negated_conjecture)$

 $0 \leq u$

cnf(less_or_equal₅, negated_conjecture) cnf(not_less_or_equal₆, negated_conjecture) $\neg a \leq b$

FLD069-1.p If b > 0 and $a \ge 0$, then a + b not 0

include('Axioms/FLD001-0.ax')

defined(a)cnf(a_is_defined, hypothesis)

defined(b)cnf(b_is_defined, hypothesis)

 $0 \leq a$ cnf(less_or_equal₃, negated_conjecture)

 $0 \leq b$ $cnf(less_or_equal_4, negated_conjecture)$

cnf(b_not_equal_to_additive_identity₅, negated_conjecture) $\neg b=0$

a + b = 0cnf(add_equals_additive_identity₆, negated_conjecture)

FLD069-3.p If b > 0 and $a \ge 0$, then a + b not 0

include('Axioms/FLD002-0.ax')

defined(a)cnf(a_is_defined, hypothesis)

defined(b)cnf(b_is_defined, hypothesis) $\begin{array}{ll} 0 \leq a & \operatorname{cnf}(\operatorname{less_or_equal}_3,\operatorname{negated_conjecture}) \\ 0 \leq b & \operatorname{cnf}(\operatorname{less_or_equal}_4,\operatorname{negated_conjecture}) \\ \neg \, 0 + b = 0 & \operatorname{cnf}(\operatorname{not_sum}_5,\operatorname{negated_conjecture}) \\ a + b = 0 & \operatorname{cnf}(\operatorname{sum}_6,\operatorname{negated_conjecture}) \end{array}$

 ${\bf FLD070-1.p}$ One-sided addition of two order relations include ('Axioms/FLD001-0.ax')

 $\begin{array}{ll} \operatorname{defined}(a) & \operatorname{cnf}(a_is_defined, \operatorname{hypothesis}) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_is_defined, \operatorname{hypothesis}) \\ 0 \leq a & \operatorname{cnf}(\operatorname{less_or_equal}_3, \operatorname{negated_conjecture}) \\ 0 \leq b & \operatorname{cnf}(\operatorname{less_or_equal}_4, \operatorname{negated_conjecture}) \\ \neg 0 \leq a + b & \operatorname{cnf}(\operatorname{not_less_or_equal}_5, \operatorname{negated_conjecture}) \end{array}$

FLD070-2.p One-sided addition of two order relations

include('Axioms/FLD001-0.ax')

 $\begin{array}{lll} \operatorname{defined}(a) & \operatorname{cnf}(a_is_defined, hypothesis) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_is_defined, hypothesis) \\ \operatorname{defined}(c) & \operatorname{cnf}(c_is_defined, hypothesis) \\ a+b=c & \operatorname{cnf}(add_equals_c_4, negated_conjecture) \\ 0 \leq a & \operatorname{cnf}(less_or_equal_5, negated_conjecture) \\ 0 \leq b & \operatorname{cnf}(less_or_equal_6, negated_conjecture) \\ \neg 0 \leq c & \operatorname{cnf}(\operatorname{not_less_or_equal_7, negated_conjecture}) \end{array}$

FLD070-3.p One-sided addition of two order relations include('Axioms/FLD002-0.ax')

 $\begin{array}{ll} \operatorname{defined}(a) & \operatorname{cnf}(a_\operatorname{is_defined}, \operatorname{hypothesis}) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_\operatorname{is_defined}, \operatorname{hypothesis}) \\ 0 \leq a & \operatorname{cnf}(\operatorname{less_or_equal}_3, \operatorname{negated_conjecture}) \\ 0 \leq b & \operatorname{cnf}(\operatorname{less_or_equal}_4, \operatorname{negated_conjecture}) \\ \neg 0 \leq a + b & \operatorname{cnf}(\operatorname{not_less_or_equal}_5, \operatorname{negated_conjecture}) \end{array}$

 ${\bf FLD070\text{-}4.p}$ One-sided addition of two order relations

include('Axioms/FLD002-0.ax')

 $\begin{array}{ll} \operatorname{defined}(a) & \operatorname{cnf}(a_is_defined, hypothesis) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_is_defined, hypothesis) \\ \operatorname{defined}(c) & \operatorname{cnf}(c_is_defined, hypothesis) \\ \end{array}$

 $0 \le a$ cnf(less_or_equal₄, negated_conjecture)

 $0 \le b$ cnf(less_or_equal₅, negated_conjecture)

a+b=c cnf(sum₆, negated_conjecture)

 $\neg \, 0 \leq c \qquad \operatorname{cnf}(\operatorname{not_less_or_equal_7}, \operatorname{negated_conjecture})$

 ${\bf FLD071-1.p}$ One-sided multiplication of two order relations, part 1

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) cnf(b_is_defined, hypothesis)

 $0 \le a$ cnf(less_or_equal_3, negated_conjecture)

 $0 \le b$ cnf(less_or_equal₄, negated_conjecture)

 $\neg 0 \le a \cdot b$ cnf(not_less_or_equal_5, negated_conjecture)

 ${\bf FLD071\text{-}2.p}$ One-sided multiplication of two order relations, part 1

include('Axioms/FLD001-0.ax')

- defined(a) cnf(a_is_defined, hypothesis)
- $defined(b) \qquad cnf(b_{is_{defined}}, hypothesis)$
- defined(u) cnf $(u_{is_{defined}}, hypothesis)$

 $0 \leq a \qquad \mathrm{cnf}(\mathrm{less_or_equal}_4, \mathrm{negated_conjecture})$

 $0 \le b$ cnf(less_or_equal₅, negated_conjecture)

 $a \cdot b{=}u \qquad \mathrm{cnf}(\mathrm{multiply_equals_u_6}, \mathrm{negated_conjecture})$

 $\neg 0 \le u$ cnf(not_less_or_equal₇, negated_conjecture)

FLD071-3.p One-sided multiplication of two order relations, part 1

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_is_defined, hypothesis)$

 $0 \le a$ cnf(less_or_equal_3, negated_conjecture)

 $0 \le b$ cnf(less_or_equal₄, negated_conjecture)

 $\neg 0 \le a \cdot b$ cnf(not_less_or_equal₅, negated_conjecture)

 ${\bf FLD071-4.p}$ One-sided multiplication of two order relations, part 1

include('Axioms/FLD002-0.ax')

defined $(a$) $cnf(a_{is}_{defined}, hypothesis)$
defined(b	$) \qquad cnf(b_{is}_{defined}, hypothesis)$
defined $(u$) $cnf(u_{is}_{defined}, hypothesis)$
$0 \le a$	$cnf(less_or_equal_4, negated_conjecture)$
$0 \le b$	$cnf(less_or_equal_5, negated_conjecture)$
$a \cdot b = u$	$cnf(product_6, negated_conjecture)$

 $\neg 0 \le u$ cnf(not_less_or_equal₇, negated_conjecture)

FLD072-1.p One-sided multiplication of two order relations, part 2

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_is_defined, hypothesis)$

 $a \leq 0$ cnf(less_or_equal_3, negated_conjecture)

 $0 \leq b \qquad \mathrm{cnf}(\mathrm{less_or_equal}_4, \mathrm{negated_conjecture})$

 $\neg \, a \cdot b \leq 0 \qquad \mathrm{cnf}(\mathrm{not_less_or_equal}_5, \mathrm{negated_conjecture})$

FLD072-2.p One-sided multiplication of two order relations, part 2 include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_is_defined, hypothesis)$

defined(u) cnf(u-is-defined, hypothesis) defined(u) cnf(u-is-defined, hypothesis)

 $a \le 0$ cnf(less_or_equal_4, negated_conjecture)

 $0 \le b$ cnf(less_or_equal_5, negated_conjecture)

 $a \cdot b = u$ cnf(multiply_equals_u₆, negated_conjecture)

 $\neg u \leq 0$ cnf(not_less_or_equal_7, negated_conjecture)

FLD072-3.p One-sided multiplication of two order relations, part 2

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $defined(b) \qquad cnf(b_is_defined, hypothesis)$

 $a \le 0$ cnf(less_or_equal_3, negated_conjecture)

 $0 \leq b \qquad \mathrm{cnf}(\mathrm{less_or_equal}_4, \mathrm{negated_conjecture})$

 $\neg a \cdot b \leq 0$ cnf(not_less_or_equal₅, negated_conjecture)

 ${\bf FLD072-4.p}$ One-sided multiplication of two order relations, part 2

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $defined(b) = cnf(b_{is}defined, hypothesis)$

defined(u) cnf(u_is_defined, hypothesis)

 $a \leq 0$ cnf(less_or_equal₄, negated_conjecture)

 $0 \le b$ cnf(less_or_equal_5, negated_conjecture)

 $a \cdot b = u$ cnf(product₆, negated_conjecture)

 $\neg u \leq 0$ cnf(not_less_or_equal_7, negated_conjecture)

FLD073-1.p One-sided multiplication of two order relations, part 3

include('Axioms/FLD001-0.ax')

 $defined(a) \qquad cnf(a_is_defined, hypothesis)$

 $defined(b) = cnf(b_{is}defined, hypothesis)$

 $a \leq 0$ cnf(less_or_equal_3, negated_conjecture)

 $b \le 0$ cnf(less_or_equal₄, negated_conjecture)

 $\neg 0 \le a \cdot b$ cnf(not_less_or_equal₅, negated_conjecture)

FLD073-2.p One-sided multiplication of two order relations, part 3

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) cnf(b_is_defined, hypothesis)

defined(u) cnf $(u_{is_{defined}}, hypothesis)$

 $a \leq 0$ cnf(less_or_equal₄, negated_conjecture)

 $b \le 0$ cnf(less_or_equal_5, negated_conjecture)

 $a \cdot b = u$ cnf(multiply_equals_u_6, negated_conjecture)

 $\neg 0 \le u$ cnf(not_less_or_equal₇, negated_conjecture)

FLD073-3.p One-sided multiplication of two order relations, part 3

include('Axioms/FLD002-0.ax')

 $defined(a) \qquad cnf(a_is_defined, hypothesis)$

 $defined(b) \qquad cnf(b_{is_{defined}}, hypothesis)$

 $a \le 0$ cnf(less_or_equal_3, negated_conjecture)

 $b \leq 0$ cnf(less_or_equal_4, negated_conjecture)

 $\neg \, 0 \leq a \cdot b \qquad \mathrm{cnf}(\mathrm{not_less_or_equal}_5, \mathrm{negated_conjecture})$

 ${\bf FLD073-4.p}$ One-sided multiplication of two order relations, part 3

include('Axioms/FLD002-0.ax')

defined $(a$	$) \qquad cnf(a_{is}_{defined}, hypothesis)$
defined(b)	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(u$	$)$ cnf(u_is_defined, hypothesis)
$a \leq 0$	$cnf(less_or_equal_4, negated_conjecture)$
$b \leq 0$	$cnf(less_or_equal_5, negated_conjecture)$
$a \cdot b = u$	$cnf(product_6, negated_conjecture)$
$\neg 0 \leq u$	$cnf(not_less_or_equal_7, negated_conjecture)$

 ${\bf FLD074-1.p}$ Two-sided multiplication in an order relation, part 1

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

defined(b) $cnf(b_is_defined, hypothesis)$

 $defined(c) \qquad cnf(c_is_defined, hypothesis)$

 $a \le b$ cnf(less_or_equal₄, negated_conjecture)

 $0 \le c$ $cnf(less_or_equal_5, negated_conjecture)$

 $\neg a \cdot c \leq b \cdot c \qquad \text{cnf}(\texttt{not_less_or_equal}_6, \texttt{negated_conjecture})$

FLD074-2.p Two-sided multiplication in an order relation, part 1 include('Avianus (FLD001.0 av'))

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_{is}_{defined}, hypothesis)$

defined(c) $cnf(c_{is}_{defined}, hypothesis)$

defined(u) $cnf(u_is_defined, hypothesis)$

 $defined(v) \qquad cnf(v_{is_{defined}, hypothesis})$

 $a \cdot c = u$ cnf(multiply_equals_u_6, negated_conjecture)

 $b \cdot c = v$ cnf(multiply_equals_v₇, negated_conjecture)

 $a \le b$ cnf(less_or_equal_8, negated_conjecture)

 $0 \leq c \qquad \mathrm{cnf}(\mathrm{less_or_equal}_9, \mathrm{negated_conjecture})$

 $\neg \, u \leq v \qquad \operatorname{cnf}(\operatorname{not_less_or_equal}_{10}, \operatorname{negated_conjecture})$

 ${\bf FLD074-3.p}$ Two-sided multiplication in an order relation, part 1

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_{is}_{defined}, hypothesis)$

defined(c) cnf(c_is_defined, hypothesis)

 $a \le b$ cnf(less_or_equal₄, negated_conjecture)

 $0 \le c$ cnf(less_or_equal₅, negated_conjecture)

 $\neg a \cdot c \leq b \cdot c$ cnf(not_less_or_equal_6, negated_conjecture)

 ${\bf FLD074-4.p}$ Two-sided multiplication in an order relation, part 1

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $defined(b) \qquad cnf(b_{is_defined, hypothesis})$

defined(c) cnf $(c_is_defined, hypothesis)$

defined(u) cnf $(u_{is_{defined}}, hypothesis)$

 $defined(v) \qquad cnf(v_{is_{defined}, hypothesis})$

 $a \leq b \qquad \mathrm{cnf}(\mathrm{less_or_equal}_6, \mathrm{negated_conjecture})$

 $0 \le c$ $cnf(less_or_equal_7, negated_conjecture)$

 $a \cdot c = u$ cnf(product₈, negated_conjecture)

 $b \cdot c = v$ cnf(product₉, negated_conjecture)

 $\neg u \leq v$ cnf(not_less_or_equal_{10}, negated_conjecture)

FLD075-1.p Two-sided multiplication in an order relation, part 2

include('Axioms/FLD001-0.ax')

 $defined(a) \qquad cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_{is}_{defined}, hypothesis)$

 $defined(c) \qquad cnf(c_{is_{-}}defined, hypothesis)$

 $a \le b$ cnf(less_or_equal₄, negated_conjecture)

 $c \leq 0 \qquad \mathrm{cnf}(\mathrm{less_or_equal}_5, \mathrm{negated_conjecture})$

 $\neg \, b \cdot c \leq a \cdot c \qquad \operatorname{cnf}(\operatorname{not_less_or_equal}_6, \operatorname{negated_conjecture})$

FLD075-2.p Two-sided multiplication in an order relation, part 2

include('Axioms/FLD001-0.ax')

defined $(a$	$) \qquad cnf(a_is_defined, hypothesis)$
defined(b)	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
defined $(u$	$)$ cnf(u_is_defined, hypothesis)
$\operatorname{defined}(v$	$) \qquad cnf(v_{is_{defined}}, hypothesis)$
$a \cdot c = u$	$cnf(multiply_equals_u_6, negated_conjecture)$
$b \cdot c = v$	$cnf(multiply_equals_v_7, negated_conjecture)$
$a \leq b$	$cnf(less_or_equal_8, negated_conjecture)$
$c \leq 0$	$cnf(less_or_equal_9, negated_conjecture)$
$\neg v \leq u$	$cnf(not_less_or_equal_{10}, negated_conjecture)$

 ${\bf FLD075\text{-}3.p}$ Two-sided multiplication in an order relation, part 2

include('Axioms/FLD002-0.ax')

defined(a	n) $cnf(a_is_defined, hypothesis)$
defined(b	$cnf(b_{is}defined, hypothesis)$
defined(a)	$cnf(c_{is}_{defined}, hypothesis)$
$a \leq b$	$cnf(less_or_equal_4, negated_conjecture)$
$c \leq 0$	$cnf(less_or_equal_5, negated_conjecture)$
$\neg b \cdot c \leq c$	$a \cdot c$ $cnf(not_less_or_equal_6, negated_conjecture)$

FLD075-4.p Two-sided multiplication in an order relation, part 2 include('Axioms/FLD002-0 ax')

menuac(11A	101115/1 LD002 0.ax)
defined (a)	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_is_defined, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_{is_{defined}, hypothesis})$
$\operatorname{defined}(v)$	$cnf(v_{is}_{defined}, hypothesis)$
$a \le b$ ci	$nf(less_or_equal_6, negated_conjecture)$
$c \le 0$ ci	$nf(less_or_equal_7, negated_conjecture)$
$a \cdot c = u$	$cnf(product_8, negated_conjecture)$
$b \cdot c = v$	$cnf(product_9, negated_conjecture)$
$\neg v \leq u$	cnf(not_less_or_equal_10, negated_conjecture)

FLD076-1.p Two-sided multiplication in an order relation, part 3 include('Axioms/FLD001-0.ax')

defined $(a$	$) \qquad cnf(a_is_defined, hypothesis)$
defined (b)	$) cnf(b_is_defined, hypothesis)$
defined $(c$	$) cnf(c_{is_{defined}}, hypothesis)$
$\neg c=0$	$cnf(c_not_equal_to_additive_identity_4, negated_conjecture)$
$0 \le c$	$cnf(less_or_equal_5, negated_conjecture)$
$a \cdot c \leq b \cdot$	c cnf(less_or_equal ₆ , negated_conjecture)
$\neg a \leq b$	$cnf(not_less_or_equal_7, negated_conjecture)$
FLD076	-2.p Two-sided multiplication in an order relation, part 3

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

- defined(b) cnf(b_is_defined, hypothesis)
- defined(c) cnf(c_is_defined, hypothesis)

defined(u)	$cnf(u_{is}_{defined}, hypothesis)$
$\operatorname{defined}(v)$	$cnf(v_{is}_{defined}, hypothesis)$
$a \cdot c = u$	$cnf(multiply_equals_u_6, negated_conjecture)$
$b \cdot c = v$	$cnf(multiply_equals_v_7, negated_conjecture)$
$u \leq v$	$cnf(less_or_equal_8, negated_conjecture)$
$\neg c=0$	$cnf(c_not_equal_to_additive_identity_9, negated_conjecture)$
$0 \le c$	$cnf(less_or_equal_{10}, negated_conjecture)$
$\neg a \leq b$	$cnf(not_less_or_equal_{11}, negated_conjecture)$

FLD076-3.p Two-sided multiplication in an order relation, part 3 include('Axioms/FLD002-0 ax')

include(Axi	$\cos/FLD002-0.ax^{\circ}$
$\operatorname{defined}(a)$	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
$\neg 0 + c = 0$	$cnf(not_sum_4, negated_conjecture)$
$0 \le c$ cn	$f(less_or_equal_5, negated_conjecture)$
$a \cdot c \le b \cdot c$	$cnf(less_or_equal_6, negated_conjecture)$
$\neg a \leq b$	$cnf(not_less_or_equal_7, negated_conjecture)$

FLD076-4.p Two-sided multiplication in an order relation, part 3 include('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)	
defined(b) $cnf(b_{is}_{defined}, hypothesis)$	
defined(c) cnf(c_is_defined, hypothesis)	
defined (u) cnf(u_is_defined, hypothesis)	
defined (v) cnf $(v_{is}_{defined}, hypothesis)$	
$\neg 0 + c = 0$ cnf(not_sum_6, negated_conjecture)	
$0 \le c$ cnf(less_or_equal ₇ , negated_conjecture)	
$a \cdot c = u$ cnf(product ₈ , negated_conjecture)	
$b \cdot c = v$ cnf(product ₉ , negated_conjecture)	
$u \le v$ cnf(less_or_equal_{10}, negated_conjecture)	
$\neg a \leq b$ cnf(not_less_or_equal_{11}, negated_conjecture	e)

FLD077-1.p Elimination of a product in an order relation, part 1 include('Axioms/FLD001-0.ax')

 $\begin{array}{lll} \operatorname{defined}(a) & \operatorname{cnf}(a_\operatorname{is_defined},\operatorname{hypothesis}) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_\operatorname{is_defined},\operatorname{hypothesis}) \\ \operatorname{defined}(c) & \operatorname{cnf}(c_\operatorname{is_defined},\operatorname{hypothesis}) \\ \neg c=0 & \operatorname{cnf}(c_\operatorname{not_equal_to_additive_identity_4},\operatorname{negated_conjecture}) \\ c \leq 0 & \operatorname{cnf}(\operatorname{less_or_equal_5},\operatorname{negated_conjecture}) \\ a \cdot c \leq b \cdot c & \operatorname{cnf}(\operatorname{less_or_equal_6},\operatorname{negated_conjecture}) \\ \neg b \leq a & \operatorname{cnf}(\operatorname{not_less_or_equal_7},\operatorname{negated_conjecture}) \end{array}$

FLD077-2.p Elimination of a product in an order relation, part 1 include('Axioms/FLD001-0.ax')

- $defined(a) \qquad cnf(a_is_defined, hypothesis)$
- defined(b) $cnf(b_{is_{defined}}, hypothesis)$
- $defined(c) = cnf(c_{is}_{defined}, hypothesis)$
- defined(u) cnf(u_is_defined, hypothesis)
- defined(v) cnf $(v_is_defined, hypothesis)$
- $\neg \, c{=}0 \qquad \mathrm{cnf}(\texttt{c_not_equal_to_additive_identity}_6, \texttt{negated_conjecture})$
- $c \leq 0 \qquad \mathrm{cnf}(\mathrm{less_or_equal_7}, \mathrm{negated_conjecture})$
- $a \cdot c = u$ cnf(multiply_equals_u₈, negated_conjecture)
- $b \cdot c = v$ cnf(multiply_equals_v_9, negated_conjecture)
- $u \leq v$ cnf(less_or_equal_{10}, negated_conjecture)
- $\neg \, b \leq a \qquad \operatorname{cnf}(\operatorname{not_less_or_equal}_{11}, \operatorname{negated_conjecture})$

 ${\bf FLD077\text{-}3.p}$ Elimination of a product in an order relation, part 1

include('Axioms/FLD002-0.ax')

- $\operatorname{defined}(a) \qquad \operatorname{cnf}(\texttt{a_is_defined}, \texttt{hypothesis})$
- $defined(b) \qquad cnf(b_{is_defined, hypothesis})$
- $defined(c) \qquad cnf(c_is_defined, hypothesis)$

 $\begin{array}{ll} \neg 0 + c = 0 & \operatorname{cnf}(\operatorname{not_sum}_4, \operatorname{negated_conjecture}) \\ c \leq 0 & \operatorname{cnf}(\operatorname{less_or_equal}_5, \operatorname{negated_conjecture}) \\ a \cdot c \leq b \cdot c & \operatorname{cnf}(\operatorname{less_or_equal}_6, \operatorname{negated_conjecture}) \\ \neg b \leq a & \operatorname{cnf}(\operatorname{not_less_or_equal}_7, \operatorname{negated_conjecture}) \end{array}$

 ${\bf FLD077\text{-}4.p}$ Elimination of a product in an order relation, part 1

include('Axioms/FLD002-0.ax')

defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) $\operatorname{defined}(c)$ cnf(c_is_defined, hypothesis) defined(u)cnf(u_is_defined, hypothesis) $\operatorname{defined}(v)$ cnf(v_is_defined, hypothesis) $\neg 0 + c = 0$ $cnf(not_sum_6, negated_conjecture)$ $c \leq 0$ cnf(less_or_equal₇, negated_conjecture) $a \cdot c = u$ $cnf(product_8, negated_conjecture)$ $b \cdot c = v$ $cnf(product_9, negated_conjecture)$ $cnf(less_or_equal_{10}, negated_conjecture)$ $u \leq v$

 $\neg b \leq a$ cnf(not_less_or_equal_{11}, negated_conjecture)

FLD078-1.p Side change in an order relation, multiplicative part 1

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$ defined(b) $cnf(b_is_defined, hypothesis)$

 $\neg b=0$ cnf(b_not_equal_to_additive_identity_3, negated_conjecture)

 $0 \le b$ cnf(less_or_equal₄, negated_conjecture)

 $a \leq b$ cnf(less_or_equal₅, negated_conjecture)

 $\neg a \cdot b^{-1} \leq 1$ cnf(not_less_or_equal_6, negated_conjecture)

FLD078-2.p Side change in an order relation, multiplicative part 1 include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

defined(b) cnf(b_is_defined, hypothesis)

defined(u) cnf $(u_is_defined, hypothesis)$

 $\neg b=0$ cnf(b_not_equal_to_additive_identity_4, negated_conjecture)

 $0 \le b$ cnf(less_or_equal₅, negated_conjecture)

 $a \leq b$ cnf(less_or_equal_6, negated_conjecture)

 $a \cdot b^{-1}{=}u \qquad \mathrm{cnf}(\mathrm{multiply_equals_u_7}, \mathrm{negated_conjecture})$

 $\neg u \leq 1$ cnf(not_less_or_equal_8, negated_conjecture)

 ${\bf FLD078\text{-}3.p}$ Side change in an order relation, multiplicative part 1

include('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $defined(b) = cnf(b_{is}defined, hypothesis)$

 $\neg 0 + b = 0$ cnf(not_sum_3, negated_conjecture)

 $0 \leq b \qquad \mathrm{cnf}(\mathrm{less_or_equal}_4, \mathrm{negated_conjecture})$

 $a \le b$ cnf(less_or_equal₅, negated_conjecture)

 $\neg \, a \cdot b^{-1} \leq 1 \qquad \mathrm{cnf}(\mathrm{not_less_or_equal}_6, \mathrm{negated_conjecture})$

 ${\bf FLD078-4.p}$ Side change in an order relation, multiplicative part 1

include('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

defined(b) cnf(b_is_defined, hypothesis)

defined(u) cnf(u_is_defined, hypothesis)

 $\neg 0 + b = 0$ cnf(not_sum₄, negated_conjecture)

 $0 \le b$ cnf(less_or_equal_5, negated_conjecture)

 $a \le b$ cnf(less_or_equal₆, negated_conjecture) $a \le b$ cnf(less_or_equal₆, negated_conjecture)

 $a \cdot b^{-1} = u$ cnf(product₇, negated_conjecture)

 $\neg u \leq 1$ cnf(not_less_or_equal_8, negated_conjecture)

 ${\bf FLD079-1.p}$ Side change in an order relation, multiplicative part 2

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $defined(b) = cnf(b_{is}defined, hypothesis)$

 $\neg b=0$ cnf(b_not_equal_to_additive_identity_3, negated_conjecture)

 $0 \le b$ cnf(less_or_equal₄, negated_conjecture)

 $a \cdot b^{-1} \leq 1$ cnf(less_or_equal₅, negated_conjecture)

 $\neg a \leq b$ cnf(not_less_or_equal_6, negated_conjecture)

FLD079-2.p Side change in an order relation, multiplicative part 2 in alude (24 since (FLD001.0 sec))

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_{is}_{defined}, hypothesis)$

 $defined(u) \qquad cnf(u_is_defined, hypothesis)$

 $\neg b{=}0 \qquad \mathrm{cnf}(\texttt{b_not_equal_to_additive_identity_4}, \texttt{negated_conjecture})$

 $0 \leq b \qquad \mathrm{cnf}(\mathrm{less_or_equal}_5, \mathrm{negated_conjecture})$

 $a \cdot b^{-1}{=}u \qquad \mathrm{cnf}(\mathrm{multiply_equals_u_6}, \mathrm{negated_conjecture})$

 $u \leq 1$ cnf(less_or_equal₇, negated_conjecture)

 $\neg \, a \leq b \qquad \operatorname{cnf}(\operatorname{not_less_or_equal}_8, \operatorname{negated_conjecture})$

FLD079-3.p Side change in an order relation, multiplicative part 2 include('Axioms/FLD002-0.ax')

 $a \cdot b^{-1} \le 1$ cnf(less_or_equal_5, negated_conjecture) $a \cdot b^{-1} \le 1$ cnf(less_or_equal_5, negated_conjecture)

 $\neg a \le b$ cnf(not_less_or_equal_6, negated_conjecture)

FLD079-4.p Side change in an order relation, multiplicative part 2 in aluda (? Ariana (ELD002.0 au?)

include('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

defined(b) cnf(b_is_defined, hypothesis)

 $defined(u) \qquad cnf(u_{is_{defined}}, hypothesis)$

 $\neg 0 + b = 0$ cnf(not_sum_4, negated_conjecture)

 $0 \le b$ cnf(less_or_equal₅, negated_conjecture)

 $a \cdot b^{-1} {=} u \qquad \operatorname{cnf}(\operatorname{product}_6, \operatorname{negated_conjecture})$

 $u \leq 1$ cnf(less_or_equal₇, negated_conjecture)

 $\neg \, a \leq b \qquad \operatorname{cnf}(\operatorname{not_less_or_equal}_8, \operatorname{negated_conjecture})$

FLD080-1.p The square of an element is always greater or equal 0

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg \, 0 \leq a \cdot a \qquad \mathrm{cnf}(\mathrm{not_less_or_equal}_2, \mathrm{negated_conjecture})$

 ${\bf FLD080\text{-}2.p}$ The square of an element is always greater or equal 0

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $defined(u) \qquad cnf(u_{is_{defined}}, hypothesis)$

 $a \cdot a = u$ cnf(multiply_equals_u_3, negated_conjecture)

 $\neg 0 \le u$ cnf(not_less_or_equal_4, negated_conjecture)

 ${\bf FLD080\text{--}3.p}$ The square of an element is always greater or equal 0

include('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $\neg 0 \le a \cdot a$ cnf(not_less_or_equal_2, negated_conjecture)

 ${\bf FLD080-4.p}$ The square of an element is always greater or equal 0

include('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

defined(u) cnf $(u_is_defined, hypothesis)$

 $a \cdot a = u$ cnf(product₃, negated_conjecture)

 $\neg 0 \leq u \qquad \operatorname{cnf}(\operatorname{not_less_or_equal}_4, \operatorname{negated_conjecture})$

FLD081-1.p Two-sided multiplication of two order relations

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

defined(b) cnf(b_is_defined, hypothesis)

$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
$\operatorname{defined}(d)$	$cnf(d_is_defined, hypothesis)$
$0 \le a$	$cnf(less_or_equal_5, negated_conjecture)$
$a \leq b$ of	$cnf(less_or_equal_6, negated_conjecture)$
$0 \le c$ of	$cnf(less_or_equal_7, negated_conjecture)$
$c \leq d$.	$cnf(less_or_equal_8, negated_conjecture)$
$\neg a \cdot c \leq d$	$\cdot \ b \qquad \mathrm{cnf}(\mathrm{not_less_or_equal}_9, \mathrm{negated_conjecture})$

 ${\bf FLD081-2.p}$ Two-sided multiplication of two order relations

include('Axio	ms/FLD001-0.ax')
$\operatorname{defined}(a)$	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	cnf(b_is_defined, hypothesis)
$\operatorname{defined}(c)$	$cnf(c_is_defined, hypothesis)$

$\operatorname{defined}(d)$	$) \qquad cnf(d_{is}_{defined}, hypothesis)$
$\operatorname{defined}(u)$	$)$ cnf(u_is_defined, hypothesis)
$\operatorname{defined}(v)$	$)$ cnf(v_is_defined, hypothesis)
$0 \le a$	$cnf(less_or_equal_7, negated_conjecture)$
$a \leq b$	$cnf(less_or_equal_8, negated_conjecture)$
$0 \le c$	$cnf(less_or_equal_9, negated_conjecture)$
$c \leq d$	$cnf(less_or_equal_{10}, negated_conjecture)$
$a \cdot c = u$	$cnf(multiply_equals_u_{11}, negated_conjecture)$
$d \cdot b = v$	$cnf(multiply_equals_v_{12}, negated_conjecture)$

 $\neg u \leq v$ cnf(not_less_or_equal_{13}, negated_conjecture)

 ${\bf FLD081-3.p}$ Two-sided multiplication of two order relations

include('Axioms/FLD002-0.ax')

defined $(a$	$) \qquad cnf(a_is_defined, hypothesis)$
defined(b)	$) \qquad cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c$	$) \qquad cnf(c_{is_{defined}}, hypothesis)$
$\operatorname{defined}(d$	$)$ cnf(d_is_defined, hypothesis)
$0 \le a$	$cnf(less_or_equal_5, negated_conjecture)$
$a \leq b$	$cnf(less_or_equal_6, negated_conjecture)$
$0 \le c$	$cnf(less_or_equal_7, negated_conjecture)$
$c \leq d$	$cnf(less_or_equal_8, negated_conjecture)$
$\neg a \cdot c \leq c$	$d \cdot b = cnf(not_less_or_equal_9, negated_conjecture)$

FLD081-4.p Two-sided multiplication of two order relations

include('Axioms/FLD002-0.ax')

defined $(a$) cnf(a_is_defined, hypothesis)
$\operatorname{defined}(b)$	$) \qquad cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c$	$)$ cnf(c_is_defined, hypothesis)
$\operatorname{defined}(d$) $cnf(d_{is}_{defined}, hypothesis)$
defined $(u$) $cnf(u_{is}_{defined}, hypothesis)$
defined $(v$	$) \qquad cnf(v_{is}_{defined}, hypothesis)$
$0 \le a$	$cnf(less_or_equal_7, negated_conjecture)$
$a \leq b$	$cnf(less_or_equal_8, negated_conjecture)$
$0 \le c$	$cnf(less_or_equal_9, negated_conjecture)$
$c \leq d$	$cnf(less_or_equal_{10}, negated_conjecture)$
$a \cdot c = u$	$cnf(product_{11}, negated_conjecture)$
$d \cdot b = v$	$cnf(product_{12}, negated_conjecture)$

 $\neg \, u \leq v \qquad \operatorname{cnf}(\operatorname{not_less_or_equal_{13}}, \operatorname{negated_conjecture})$

FLD082-1.p Compatibility of order and multiplicative inverses, part 1 include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(b) $cnf(b_is_defined, hypothesis)$

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_3, negated_conjecture)

 $0 \le a$ cnf(less_or_equal₄, negated_conjecture)

 $a \le b$ cnf(less_or_equal_5, negated_conjecture)

 $\neg b^{-1} \le a^{-1}$ cnf(not_less_or_equal₆, negated_conjecture)

FLD082-3.p Compatibility of order and multiplicative inverses, part 1

include('Axioms/FLD002-0.ax') cnf(a_is_defined, hypothesis) defined(a)defined(b) cnf(b_is_defined, hypothesis) $\neg 0 + a = 0$ $cnf(not_sum_3, negated_conjecture)$ $0 \leq a$ cnf(less_or_equal₄, negated_conjecture) $a \leq b$ cnf(less_or_equal₅, negated_conjecture) $\neg b^{-1} \le a^{-1}$ cnf(not_less_or_equal₆, negated_conjecture)

FLD083-1.p Compatibility of order and multiplicative inverses, part 2 include('Axioms/FLD001-0.ax')

defined(a)cnf(a_is_defined, hypothesis)

defined(b)cnf(b_is_defined, hypothesis) $\neg b=0$ cnf(b_not_equal_to_additive_identity_3, negated_conjecture) $b \leq 0$ $cnf(less_or_equal_4, negated_conjecture)$

 $cnf(less_or_equal_5, negated_conjecture)$ $a \leq b$

 $\neg b^{-1} \le a^{-1}$ $cnf(not_less_or_equal_6, negated_conjecture)$

FLD083-3.p Compatibility of order and multiplicative inverses, part 2 include('Axioms/FLD002-0.ax')

defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) $\neg 0 + b = 0$ $cnf(not_sum_3, negated_conjecture)$ $b \leq 0$ cnf(less_or_equal₄, negated_conjecture) cnf(less_or_equal₅, negated_conjecture) $a \leq b$ $\neg b^{-1} \le a^{-1}$ cnf(not_less_or_equal₆, negated_conjecture)

FLD084-1.p Elimination of multiplicative inverses in an order, part 1 include(Axioms/FLD001-0.ax')

defined(a)cnf(a_is_defined, hypothesis)

defined(b)cnf(b_is_defined, hypothesis)

 $\neg b=0$ $cnf(b_not_equal_to_additive_identity_3, negated_conjecture)$

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_4, negated_conjecture)

 $b^{-1} < a^{-1}$ cnf(less_or_equal₅, negated_conjecture)

 $0 \leq b^{-1}$ cnf(less_or_equal₆, negated_conjecture)

 $\neg a \leq b$ cnf(not_less_or_equal₇, negated_conjecture)

FLD084-3.p Elimination of multiplicative inverses in an order, part 1 include('Axioms/FLD002-0.ax')

defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) $\neg 0 + b = 0$ cnf(not_sum₃, negated_conjecture) $\neg 0 + a = 0$ $cnf(not_sum_4, negated_conjecture)$ $b^{-1} \le a^{-1}$ cnf(less_or_equal₅, negated_conjecture) $0 \leq b^{-1}$ cnf(less_or_equal₆, negated_conjecture) $\neg a \leq b$ cnf(not_less_or_equal₇, negated_conjecture)

FLD085-1.p Elimination of multiplicative inverses in an order, part 2 include('Axioms/FLD001-0.ax')

defined(a)cnf(a_is_defined, hypothesis) defined(b) cnf(b_is_defined, hypothesis) $\neg a=0$ cnf(a_not_equal_to_additive_identity_3, negated_conjecture) $\neg b=0$ cnf(b_not_equal_to_additive_identity₄, negated_conjecture) $b^{-1} \le a^{-1}$ cnf(less_or_equal₅, negated_conjecture) $a^{-1} \leq 0$ cnf(less_or_equal₆, negated_conjecture) $\neg a \leq b$ cnf(not_less_or_equal₇, negated_conjecture)

FLD085-3.p Elimination of multiplicative inverses in an order, part 2 include('Axioms/FLD002-0.ax')

defined(a)cnf(a_is_defined, hypothesis) defined(b) cnf(b_is_defined, hypothesis) $\neg 0 + a = 0$ $cnf(not_sum_3, negated_conjecture)$

 $\neg 0 + b = 0$ $cnf(not_sum_4, negated_conjecture)$

 $b^{-1} \leq a^{-1}$ cnf(less_or_equal₅, negated_conjecture) $a^{-1} \leq 0$ cnf(less_or_equal₆, negated_conjecture)

 $\neg a \leq b$ cnf(not_less_or_equal₇, negated_conjecture)

 ${\bf FLD086-1.p}$ Compatibility of order and multiplicative inverses, part 1 include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg \, a{=}0 \qquad \mathrm{cnf}(\texttt{a_not_equal_to_additive_identity}_2, \texttt{negated_conjecture})$

 $0 \le a$ cnf(less_or_equal_3, negated_conjecture)

 $\neg \, 0 \leq a^{-1} \qquad \mathrm{cnf}(\mathrm{not_less_or_equal}_4, \mathrm{negated_conjecture})$

 ${\bf FLD086-3.p}$ Compatibility of order and multiplicative inverses, part 1 include ('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg 0 + a = 0$ cnf(not_sum₂, negated_conjecture) $0 \le a$ cnf(less_or_equal₃, negated_conjecture)

 $\neg 0 \le a^{-1}$ cnf(not_less_or_equal₄, negated_conjecture)

 ${\bf FLD087-1.p}$ Elimination of a multiplicative inverse in an order, part 1 include ('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_2, negated_conjecture)

 $0 \le a^{-1}$ cnf(less_or_equal_3, negated_conjecture)

 $\neg \, 0 \leq a \qquad \operatorname{cnf}(\operatorname{not_less_or_equal}_4, \operatorname{negated_conjecture})$

FLD087-3.p Elimination of a multiplicative inverse in an order, part 1 include('Axioms/FLD002-0.ax')

 $\begin{array}{ll} \text{defined}(a) & \text{cnf}(a_\text{is_defined}, \text{hypothesis}) \\ \neg 0 + a = 0 & \text{cnf}(\text{not_sum}_2, \text{negated_conjecture}) \\ 0 \le a^{-1} & \text{cnf}(\text{less_or_equal}_3, \text{negated_conjecture}) \\ \neg 0 \le a & \text{cnf}(\text{not_less_or_equal}_4, \text{negated_conjecture}) \end{array}$

 ${\bf FLD088-1.p}$ Compatibility of order and multiplicative inverses, part 2 include ('Axioms/FLD001-0.ax')

 $defined(a) \qquad cnf(a_is_defined, hypothesis)$

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_2, negated_conjecture)

 $a \leq 0$ cnf(less_or_equal_3, negated_conjecture)

 $\neg a^{-1} \leq 0$ cnf(not_less_or_equal_4, negated_conjecture)

 ${\bf FLD088-3.p}$ Compatibility of order and multiplicative inverses, part 2 include ('Axioms/FLD002-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $\neg 0 + a = 0$ cnf(not_sum_2, negated_conjecture)

 $a \leq 0$ cnf(less_or_equal_3, negated_conjecture)

 $\neg a^{-1} \leq 0$ cnf(not_less_or_equal_4, negated_conjecture)

 ${\bf FLD089-1.p}$ Elimination of a multiplicative inverse in an order, part 2 include ('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_2, negated_conjecture)

 $a^{-1} \le 0$ cnf(less_or_equal₃, negated_conjecture)

 $\neg a \leq 0$ cnf(not_less_or_equal_4, negated_conjecture)

 ${\bf FLD089-3.p}$ Elimination of a multiplicative inverse in an order, part 2 include ('Axioms/FLD002-0.ax')

defined(a) cnf $(a_is_defined, hypothesis)$

 $\neg 0 + a = 0$ cnf(not_sum_2, negated_conjecture)

 $a^{-1} \leq 0$ cnf(less_or_equal_3, negated_conjecture)

 $\neg a \leq 0$ cnf(not_less_or_equal_4, negated_conjecture)

FLD090-1.p A characterization of 1 with help of the order relation

include('Axioms/FLD001-0.ax')

defined(m) cnf(m_is_defined, hypothesis)

 $m \cdot x \leq x$ cnf(less_or_equal_2, negated_conjecture)

 $\neg m = 1$ cnf(m_not_equal_to_multiplicative_identity_3, negated_conjecture)

 $\begin{array}{ll} \operatorname{defined}(m) & \operatorname{cnf}(\texttt{m_is_defined}, \texttt{hypothesis}) \\ m \cdot x = y \ \Rightarrow \ y \le x & \operatorname{cnf}(\texttt{less_or_equal_or_not_product}_2, \texttt{negated_conjecture}) \\ \neg \ 0 + m = 1 & \operatorname{cnf}(\texttt{not_sum}_3, \texttt{negated_conjecture}) \end{array}$

 ${\bf FLD091-1.p}$ One-sided Elimination of a multiplicative inverse, part 1 include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_2, negated_conjecture)

 $1 \le a$ $cnf(less_or_equal_3, negated_conjecture)$

 $\neg a^{-1} \leq 1$ cnf(not_less_or_equal_4, negated_conjecture)

FLD091-3.p One-sided Elimination of a multiplicative inverse, part 1 include('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg 0 + a = 0$ cnf(not_sum_2, negated_conjecture)

 $1 \le a$ cnf(less_or_equal₃, negated_conjecture)

 $\neg a^{-1} \leq 1$ cnf(not_less_or_equal_4, negated_conjecture)

FLD092-1.p One-sided Elimination of a multiplicative inverse, part 2 include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_{is}_{defined}, hypothesis)$

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_2, negated_conjecture)

 $a \leq -1$ cnf(less_or_equal_3, negated_conjecture)

 $\neg -1 \le a^{-1}$ cnf(not_less_or_equal₄, negated_conjecture)

 ${\bf FLD092-3.p}$ One-sided Elimination of a multiplicative inverse, part 2 include ('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg 0 + a = 0$ cnf(not_sum_2, negated_conjecture)

 $a \leq -1$ cnf(less_or_equal_3, negated_conjecture)

 $\neg -1 \le a^{-1}$ cnf(not_less_or_equal₄, negated_conjecture)

FLD093-1.p One-sided Elimination of a multiplicative inverse, part 3 include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_2, negated_conjecture)

 $1 \le a^{-1}$ cnf(less_or_equal₃, negated_conjecture)

 $\neg \, a \leq 1 \qquad \operatorname{cnf}(\operatorname{not_less_or_equal}_4, \operatorname{negated_conjecture})$

 ${\bf FLD093-3.p}$ One-sided Elimination of a multiplicative inverse, part 3 include ('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg 0 + a = 0$ cnf(not_sum_2, negated_conjecture)

 $1 \le a^{-1}$ cnf(less_or_equal₃, negated_conjecture)

 $\neg a \leq 1$ cnf(not_less_or_equal_4, negated_conjecture)

 ${\bf FLD094-1.p}$ One-sided Elimination of a multiplicative inverse, part 4 include ('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

 $\neg a=0$ cnf(a_not_equal_to_additive_identity_2, negated_conjecture)

 $a^{-1} \leq -1$ cnf(less_or_equal_3, negated_conjecture)

 $\neg -1 \leq a$ cnf(not_less_or_equal_4, negated_conjecture)

FLD094-3.p One-sided Elimination of a multiplicative inverse, part 4 include('Axioms/FLD002-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $\neg 0 + a = 0$ cnf(not_sum_2, negated_conjecture)

 $a^{-1} \leq -1$ cnf(less_or_equal_3, negated_conjecture)

 $\neg -1 \leq a$ cnf(not_less_or_equal_4, negated_conjecture)

FLD095-1.p Difficult inequality

include('Axioms/FLD001-0.ax')

 $defined(a) \qquad cnf(a_is_defined, hypothesis)$

defined(b) cnf(b_is_defined, hypothesis) defined(c) cnf(c_is_defined, hypothesis) defined(d) $cnf(d_is_defined, hypothesis)$ $\neg b=0$ cnf(b_not_equal_to_additive_identity₅, negated_conjecture) $\neg d=0$ $cnf(d_not_equal_to_additive_identity_6, negated_conjecture)$ $b \leq 0$ cnf(less_or_equal₇, negated_conjecture) $0 \leq d$ cnf(less_or_equal₈, negated_conjecture) $a \cdot b^{-1} \leq c \cdot d^{-1}$ cnf(less_or_equal₉, negated_conjecture) $\neg a \cdot b^{-1} \le (a+c) \cdot (b+d)^{-1}$ $cnf(not_less_or_equal_{10}, negated_conjecture)$ FLD095-2.p Difficult inequality include('Axioms/FLD001-0.ax')

defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) $\operatorname{defined}(c)$ cnf(c_is_defined, hypothesis) $\operatorname{defined}(d)$ cnf(d_is_defined, hypothesis) defined(s)cnf(s_is_defined, hypothesis) defined(t)cnf(t_is_defined, hypothesis) $\operatorname{defined}(u)$ cnf(u_is_defined, hypothesis) $\operatorname{defined}(v)$ cnf(v_is_defined, hypothesis) defined(w)cnf(w_is_defined, hypothesis) $\neg b=0$ $cnf(b_not_equal_to_additive_identity_{10}, negated_conjecture)$ $\neg d=0$ cnf(d_not_equal_to_additive_identity₁₁, negated_conjecture) $b \leq 0$ $cnf(less_or_equal_{12}, negated_conjecture)$ $0 \le d$ $cnf(less_or_equal_{13}, negated_conjecture)$ $a \cdot b^{-1} = u$ $cnf(multiply_equals_u_{14}, negated_conjecture)$ $c \cdot d^{-1} {=} v$ cnf(multiply_equals_v₁₅, negated_conjecture) a + c = scnf(add_equals_s₁₆, negated_conjecture) b + d = t $cnf(add_equals_t_{17}, negated_conjecture)$ $s \cdot t^{-1} = w$ $cnf(multiply_equals_w_{18}, negated_conjecture)$ $u \leq v$ cnf(less_or_equal_19, negated_conjecture) $\neg u \leq w$ cnf(not_less_or_equal_{20}, negated_conjecture)

FLD095-3.p Difficult inequality

include('Axioms/FLD002-0.ax') defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) $\operatorname{defined}(c)$ cnf(c_is_defined, hypothesis) defined(d)cnf(d_is_defined, hypothesis) $cnf(not_sum_5, negated_conjecture)$ $\neg 0 + b = 0$ $\neg 0 + d = 0$ $cnf(not_sum_6, negated_conjecture)$ $0 \leq b$ cnf(less_or_equal₇, negated_conjecture) ${\rm cnf}({\rm less_or_equal}_8, {\rm negated_conjecture})$ $0 \leq d$ $a \cdot b^{-1} \le c \cdot d^{-1}$ cnf(less_or_equal₉, negated_conjecture) $\neg a \cdot b^{-1} \leq (a+c) \cdot (b+d)^{-1}$ $cnf(not_less_or_equal_{10}, negated_conjecture)$

FLD095-4.p Difficult inequality

include ('Axioms/FLD002-0.ax')

defined $(a$	$) \qquad cnf(a_is_defined, hypothesis)$
defined(b)	$cnf(b_{is}defined, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
defined $(d$	$)$ cnf(d_is_defined, hypothesis)
defined(s)	$cnf(s_is_defined, hypothesis)$
defined(t)	$cnf(t_{is_{defined}, hypothesis})$
defined $(u$	$) \qquad cnf(u_{is}_{defined}, hypothesis)$
defined $(v$	$) \qquad cnf(v_{is_{defined}}, hypothesis)$
defined $(u$	$cnf(w_is_defined, hypothesis)$
$\neg 0 + b = 0$	$cnf(not_sum_{10}, negated_conjecture)$
$\neg 0 + d = 0$	$cnf(not_sum_{11}, negated_conjecture)$
$0 \leq b$	$cnf(less_or_equal_{12}, negated_conjecture)$
$0 \leq d$	$cnf(less_or_equal_{13}, negated_conjecture)$

$a \cdot b^{-1} = u$	$cnf(product_{14}, negated_conjecture)$
$c \cdot d^{-1} {=} v$	$cnf(product_{15}, negated_conjecture)$
a + c = s	$cnf(sum_{16}, negated_conjecture)$
b + d = t	$cnf(sum_{17}, negated_conjecture)$
$s \cdot t^{-1} {=} w$	$cnf(product_{18}, negated_conjecture)$
$u \leq v$	$cnf(less_or_equal_{19}, negated_conjecture)$
$\neg u \leq w$	$cnf(not_less_or_equal_{20}, negated_conjecture)$

FLD096-1.p Difficult inequality

include('Axioms/FLD001-0.ax') defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) defined(c)cnf(c_is_defined, hypothesis) defined(d)cnf(d_is_defined, hypothesis) $\neg b = 0$ $cnf(b_not_equal_to_additive_identity_5, negated_conjecture)$ $\neg d=0$ $cnf(d_not_equal_to_additive_identity_6, negated_conjecture)$ $0 \leq b$ $cnf(less_or_equal_7, negated_conjecture)$ $\begin{array}{ll} 0 \stackrel{-}{=} d & \operatorname{cnf}(\operatorname{less_or_equal}_8,\operatorname{negated_conjecture}) \\ a \cdot b^{-1} \stackrel{-}{\leq} c \cdot d^{-1} & \operatorname{cnf}(\operatorname{less_or_equal}_9,\operatorname{negated_conjecture}) \\ \neg (a + c) \cdot (b + d)^{-1} \stackrel{-}{\leq} c \cdot d^{-1} & \operatorname{cnf}(\operatorname{not_less_or_equal}_{10},\operatorname{negated_conjecture}) \end{array}$

${\bf FLD096\text{-}2.p}$ Difficult inequality

include('A	axioms/FLD001-0.ax')
defined(a)	$cnf(a_is_defined, hypothesis)$
defined (b)	$cnf(b_{is}_{defined}, hypothesis)$
$\operatorname{defined}(c)$	$cnf(c_is_defined, hypothesis)$
defined(d)	$cnf(d_is_defined, hypothesis)$
$\operatorname{defined}(s)$	$cnf(s_is_defined, hypothesis)$
$\operatorname{defined}(t)$	$cnf(t_is_defined, hypothesis)$
$\operatorname{defined}(u)$	$)$ cnf(u_is_defined, hypothesis)
$\operatorname{defined}(v)$	$cnf(v_{is}_{defined}, hypothesis)$
defined(w	$) \qquad cnf(w_{is_{defined}}, hypothesis)$
$\neg b=0$	$cnf(b_not_equal_to_additive_identity_{10}, negated_conjecture)$
$\neg d=0$	$cnf(d_not_equal_to_additive_identity_{11}, negated_conjecture)$
$0 \le b$	$cnf(less_or_equal_{12}, negated_conjecture)$
$0 \le d$	$cnf(less_or_equal_{13}, negated_conjecture)$
$a \cdot b^{-1} = u$	$cnf(multiply_equals_u_{14}, negated_conjecture)$
$c \cdot d^{-1} {=} v$	${\rm cnf}({\rm multiply_equals_v_{15}}, {\rm negated_conjecture})$
a + c = s	$cnf(add_equals_s_{16}, negated_conjecture)$
b + d = t	$cnf(add_equals_t_{17}, negated_conjecture)$
$s \cdot t^{-1} = w$	$cnf(multiply_equals_w_{18}, negated_conjecture)$
$u \leq v$	$cnf(less_or_equal_{19}, negated_conjecture)$
$\neg w \leq v$	$cnf(not_less_or_equal_{20}, negated_conjecture)$

${\bf FLD096\text{-}3.p}$ Difficult inequality

include('Axioms/FLD002-0.ax')

defined (a)	cnf(a_is_defined, hypothesis)
$\operatorname{defined}(b)$	cnf(b_is_defined, hypothesis)
$\operatorname{defined}(c)$	$cnf(c_{is}_{defined}, hypothesis)$
$\operatorname{defined}(d)$	$cnf(d_is_defined, hypothesis)$
$\neg 0 + b = 0$	$cnf(not_sum_5, negated_conjecture)$
$\neg 0 + d = 0$	$cnf(not_sum_6, negated_conjecture)$
$0 \le b \qquad \operatorname{cnf}($	$less_or_equal_7, negated_conjecture)$
$0 \le d \qquad \operatorname{cnf}($	$less_or_equal_8, negated_conjecture)$
$a \cdot b^{-1} \leq c \cdot d^{-1}$	$^{-1}$ cnf(less_or_equal ₉ , negated_conjecture)
$\neg (a+c) \cdot (b+c) = (a+c) \cdot (b+c) \cdot (b$	$(-d)^{-1} \le c \cdot d^{-1}$ $cnf(not_less_or_equal_{10}, negated_conjecture)$

FLD096-4.p Difficult inequality

include('Axioms/FLD002-0.ax')

$\operatorname{defined}(c)$	$cnf(c_{is_defined}, hypothesis)$
$\operatorname{defined}(d)$	$cnf(d_is_defined, hypothesis)$
$\operatorname{defined}(s)$	$cnf(s_is_defined, hypothesis)$
$\operatorname{defined}(t)$	$cnf(t_{is_{defined}}, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_{is}_{defined}, hypothesis)$
$\operatorname{defined}(v)$	$cnf(v_{is}_{defined}, hypothesis)$
$\operatorname{defined}(w)$	$cnf(w_{is}_{defined}, hypothesis)$
$\neg 0 + b = 0$	$cnf(not_sum_{10}, negated_conjecture)$
$\neg 0 + d = 0$	$cnf(not_sum_{11}, negated_conjecture)$
$0 \le b$ cr	$f(less_or_equal_{12}, negated_conjecture)$
$0 \le d$ ci	$nf(less_or_equal_{13}, negated_conjecture)$
$a \cdot b^{-1} = u$	$cnf(product_{14}, negated_conjecture)$
$c \cdot d^{-1} = v$	$cnf(product_{15}, negated_conjecture)$
a + c = s	$cnf(sum_{16}, negated_conjecture)$
b + d = t	$cnf(sum_{17}, negated_conjecture)$
$s \cdot t^{-1} = w$	$cnf(product_{18}, negated_conjecture)$
$u \le v$ ci	$nf(less_or_equal_{19}, negated_conjecture)$
$\neg w \leq v$	$cnf(not_less_or_equal_{20}, negated_conjecture)$

FLD097-1.p Difficult inequality

include('Axioms/FLD001-0.ax') defined(a)cnf(a_is_defined, hypothesis) cnf(b_is_defined, hypothesis) defined(b) $cnf(less_or_equal_3, negated_conjecture)$ $0 \leq a$ $0 \leq b$ cnf(less_or_equal₄, negated_conjecture) $\neg 1 + (a+b) \le (1+a) \cdot (1+b)$ cnf(not_less_or_equal₅, negated_conjecture)

FLD097-2.p Difficult inequality

include('Axioms/FLD001-0.ax')

cnf(a_is_defined, hypothesis) defined(a)defined(b)cnf(b_is_defined, hypothesis) $\operatorname{defined}(u)$ cnf(u_is_defined, hypothesis) defined(v)cnf(v_is_defined, hypothesis) defined(w)cnf(w_is_defined, hypothesis) cnf(s_is_defined, hypothesis) defined(s)defined(t)cnf(t_is_defined, hypothesis) $0 \leq a$ $cnf(less_or_equal_8, negated_conjecture)$ $0 \leq b$ cnf(less_or_equal₉, negated_conjecture) 1 + a = ucnf(add_equals_u₁₀, negated_conjecture) 1 + b = v $cnf(add_equals_v_{11}, negated_conjecture)$ $u \cdot v = w$ $cnf(multiply_equals_w_{12}, negated_conjecture)$ $cnf(add_equals_s_{13}, negated_conjecture)$ a+b=s1 + s = t $cnf(add_equals_{14}, negated_conjecture)$ $\neg t < w$ $cnf(not_less_or_equal_{15}, negated_conjecture)$

FLD097-3.p Difficult inequality

include('Axioms/FLD002-0.ax') cnf(a_is_defined, hypothesis) defined(a) defined(b)cnf(b_is_defined, hypothesis) $0 \leq a$ cnf(less_or_equal₃, negated_conjecture) $0 \leq b$ $cnf(less_or_equal_4, negated_conjecture)$ $\neg 1 + (a+b) \le (1+a) \cdot (1+b)$ cnf(not_less_or_equal₅, negated_conjecture)

FLD097-4.p Difficult inequality

include('Axioms/FLD002-0.ax') defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) defined(u)cnf(u_is_defined, hypothesis)

 $\operatorname{defined}(v)$ cnf(v_is_defined, hypothesis)

defined(w)cnf(w_is_defined, hypothesis)

 $\operatorname{defined}(s)$ cnf(s_is_defined, hypothesis) defined(t)cnf(t_is_defined, hypothesis) $0 \leq a$ cnf(less_or_equal₈, negated_conjecture) $0 \leq b$ cnf(less_or_equal₉, negated_conjecture) 1 + a = u $cnf(sum_{10}, negated_conjecture)$ $cnf(sum_{11}, negated_conjecture)$ 1 + b = v $cnf(product_{12}, negated_conjecture)$ $u \cdot v = w$ $cnf(sum_{13}, negated_conjecture)$ a+b=s1 + s = t $cnf(sum_{14}, negated_conjecture)$ $\neg t \leq w$ $cnf(not_less_or_equal_{15}, negated_conjecture)$

FLD098-1.p Difficult inequality

 $\begin{array}{ll} \operatorname{include}(\operatorname{'Axioms/FLD001-0.ax'}) \\ \operatorname{defined}(a) & \operatorname{cnf}(a.\mathrm{is_defined}, \operatorname{hypothesis}) \\ \operatorname{defined}(b) & \operatorname{cnf}(b.\mathrm{is_defined}, \operatorname{hypothesis}) \\ 0 \leq a & \operatorname{cnf}(\operatorname{less_or_equal}_3, \operatorname{negated_conjecture}) \\ 0 \leq b & \operatorname{cnf}(\operatorname{less_or_equal}_4, \operatorname{negated_conjecture}) \\ \neg 1 + -(a+b) \leq (1+-a) \cdot (1+-b) & \operatorname{cnf}(\operatorname{not_less_or_equal}_5, \operatorname{negated_conjecture}) \\ \end{array}$

FLD098-2.p Difficult inequality

include('Ax	tioms/FLD001-0.ax')
defined (a)	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_is_defined, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_is_defined, hypothesis)$
$\operatorname{defined}(v)$	$cnf(v_{is_defined}, hypothesis)$
$\operatorname{defined}(w)$	$cnf(w_{is}_{defined}, hypothesis)$
$\operatorname{defined}(s)$	$cnf(s_is_defined, hypothesis)$
$\operatorname{defined}(t)$	$cnf(t_{is_{defined}}, hypothesis)$
$0 \le a$ c	$nf(less_or_equal_8, negated_conjecture)$
$0 \le b$ cr	$nf(less_or_equal_9, negated_conjecture)$
1 + -a = u	$cnf(add_equals_u_{10}, negated_conjecture)$
1+-b=v	$cnf(add_equals_v_{11}, negated_conjecture)$
$u \cdot v = w$	$cnf(multiply_equals_w_{12}, negated_conjecture)$
$a+b{=}s$	$cnf(add_equals_s_{13}, negated_conjecture)$
1+-s=t	$cnf(add_equals_t_{14}, negated_conjecture)$
$\neg t \leq w$	$cnf(not_less_or_equal_{15}, negated_conjecture)$

$\mathbf{FLD098\text{-}3.p}$ Difficult inequality

 $\begin{array}{ll} \operatorname{include}(\operatorname{'Axioms/FLD002-0.ax'}) \\ \operatorname{defined}(a) & \operatorname{cnf}(a.is_\operatorname{defined}, \operatorname{hypothesis}) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_is_\operatorname{defined}, \operatorname{hypothesis}) \\ 0 \leq a & \operatorname{cnf}(\operatorname{less_or_equal}_3, \operatorname{negated_conjecture}) \\ 0 \leq b & \operatorname{cnf}(\operatorname{less_or_equal}_4, \operatorname{negated_conjecture}) \\ \neg 1 + -(a+b) \leq (1+-a) \cdot (1+-b) & \operatorname{cnf}(\operatorname{not_less_or_equal}_5, \operatorname{negated_conjecture}) \\ \end{array}$

FLD098-4.p Difficult inequality

include('Ax	ioms/FLD002-0.ax')
$\operatorname{defined}(a)$	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_is_defined, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_{is}_{defined}, hypothesis)$
$\operatorname{defined}(v)$	$cnf(v_{is_defined, hypothesis})$
$\operatorname{defined}(w)$	$cnf(w_{is}_{defined}, hypothesis)$
$\operatorname{defined}(s)$	$cnf(s_is_defined, hypothesis)$
$\operatorname{defined}(t)$	$cnf(t_{is}_{defined}, hypothesis)$
$0 \le a$ cr	$nf(less_or_equal_8, negated_conjecture)$
$0 \le b$ cr	$nf(less_or_equal_9, negated_conjecture)$
1 + -a = u	$cnf(sum_{10}, negated_conjecture)$
1+-b=v	$cnf(sum_{11}, negated_conjecture)$
$u \cdot v = w$	$cnf(product_{12}, negated_conjecture)$
a+b=s	$cnf(sum_{13}, negated_conjecture)$
1+-s=t	$cnf(sum_{14}, negated_conjecture)$
$\negt\leq w$	$cnf(not_less_or_equal_{15}, negated_conjecture)$

FLD099-1.p Difficult inequality

include('Axioms/FLD001-0.ax')

defined(a) cnf(a_is_defined, hypothesis)

 $0 \le a$ cnf(less_or_equal_2, negated_conjecture)

 $a \leq 1 \qquad \mathrm{cnf}(\mathrm{less_or_equal}_3, \mathrm{negated_conjecture})$

 $\neg a=1$ cnf(a_not_equal_to_multiplicative_identity_4, negated_conjecture)

 $\neg \, 1 + a \leq (1 + -a)^{-1} \qquad \mathrm{cnf}(\mathrm{not_less_or_equal}_5, \mathrm{negated_conjecture})$

 ${\bf FLD099-2.p}$ Difficult inequality

include('Axioms/FLD001-0.ax')

defined(a) $cnf(a_is_defined, hypothesis)$

defined(u) cnf $(u_is_defined, hypothesis)$

 $defined(v) = cnf(v_{is}_{defined}, hypothesis)$

 $0 \le a$ cnf(less_or_equal₄, negated_conjecture)

 $a \le 1$ cnf(less_or_equal₅, negated_conjecture)

 $\neg a = 1$ cnf(a_not_equal_to_multiplicative_identity_6, negated_conjecture)

1 + a = u cnf(add_equals_u₇, negated_conjecture)

1 + -a = v cnf(add_equals_v_8, negated_conjecture)

 $\neg \, u \leq v^{-1} \qquad \mathrm{cnf}(\mathrm{not_less_or_equal}_9, \mathrm{negated_conjecture})$

FLD099-3.p Difficult inequality

include('Axioms/FLD002-0.ax')

 $\begin{array}{ll} \operatorname{defined}(a) & \operatorname{cnf}(a_is_defined, \operatorname{hypothesis}) \\ 0 \leq a & \operatorname{cnf}(\operatorname{less_or_equal}_2, \operatorname{negated_conjecture}) \\ a \leq 1 & \operatorname{cnf}(\operatorname{less_or_equal}_3, \operatorname{negated_conjecture}) \\ \neg 0 + a = 1 & \operatorname{cnf}(\operatorname{not_sum}_4, \operatorname{negated_conjecture}) \\ \neg 1 + a \leq (1 + -a)^{-1} & \operatorname{cnf}(\operatorname{not_less_or_equal}_5, \operatorname{negated_conjecture}) \end{array}$

FLD099-4.p Difficult inequality

include('Axioms/FLD002-0.ax') defined(a) cnf(a_is_defined, hypothesis) cnf(u_is_defined, hypothesis) defined(u)defined(v)cnf(v_is_defined, hypothesis) $0 \leq a$ $cnf(less_or_equal_4, negated_conjecture)$ $a \leq 1$ $cnf(less_or_equal_5, negated_conjecture)$ $\neg 0 + a = 1$ $cnf(not_sum_6, negated_conjecture)$ 1 + a = ucnf(sum₇, negated_conjecture) 1 + -a = vcnf(sum₈, negated_conjecture) $\neg u \leq v^{-1}$ $cnf(not_less_or_equal_9, negated_conjecture)$ FLD100-1.p Difficult inequality include('Axioms/FLD001-0.ax') defined(a)cnf(a_is_defined, hypothesis)

defined(b) $cnf(b_{is_}defined, hypothesis)$

 $a \leq 0$ cnf(less_or_equal_3, negated_conjecture)

 $b \le 0$ cnf(less_or_equal_4, negated_conjecture)

 $\neg 1 + (a+b) \le (1+a) \cdot (1+b)$ cnf(not_less_or_equal_5, negated_conjecture)

FLD100-2.p Difficult inequality

include('Axioms/FLD001-0.ax')

defined(a)cnf(a_is_defined, hypothesis) defined(b)cnf(b_is_defined, hypothesis) $\operatorname{defined}(u)$ cnf(u_is_defined, hypothesis) defined(v)cnf(v_is_defined, hypothesis) defined(w)cnf(w_is_defined, hypothesis) $\operatorname{defined}(s)$ cnf(s_is_defined, hypothesis) defined(t)cnf(t_is_defined, hypothesis) $a \leq 0$ cnf(less_or_equal₈, negated_conjecture) $cnf(less_or_equal_9, negated_conjecture)$ $b \leq 0$ $cnf(add_equals_u_{10}, negated_conjecture)$ 1 + a = u1 + b = v $cnf(add_equals_v_{11}, negated_conjecture)$ $u \cdot v = w$ cnf(multiply_equals_w₁₂, negated_conjecture) $\begin{array}{ll} a+b{=}s & \operatorname{cnf}(\operatorname{add_equals_s_{13}}, \operatorname{negated_conjecture}) \\ 1+s{=}t & \operatorname{cnf}(\operatorname{add_equals_t_{14}}, \operatorname{negated_conjecture}) \\ \neg t \leq w & \operatorname{cnf}(\operatorname{not_less_or_equal_{15}}, \operatorname{negated_conjecture}) \end{array}$

 ${\bf FLD100\text{-}3.p}$ Difficult inequality

 $\begin{array}{ll} \operatorname{include}(\operatorname{'Axioms/FLD002-0.ax'}) \\ \operatorname{defined}(a) & \operatorname{cnf}(a_\operatorname{is_defined},\operatorname{hypothesis}) \\ \operatorname{defined}(b) & \operatorname{cnf}(b_\operatorname{is_defined},\operatorname{hypothesis}) \\ a \leq 0 & \operatorname{cnf}(b_\operatorname{is_defined},\operatorname{hypothesis}) \\ b \leq 0 & \operatorname{cnf}(b_\operatorname{is_or_equal}_3,\operatorname{negated_conjecture}) \\ \neg 1 + (a + b) \leq (1 + a) \cdot (1 + b) & \operatorname{cnf}(\operatorname{not_less_or_equal}_5,\operatorname{negated_conjecture}) \\ \mathbf{FLD100-4.p} & \operatorname{Difficult} \\ \operatorname{inequality} \end{array}$

include('Axioms/FLD002-0.ax')

$\operatorname{defined}(a)$	$cnf(a_is_defined, hypothesis)$
$\operatorname{defined}(b)$	$cnf(b_is_defined, hypothesis)$
$\operatorname{defined}(u)$	$cnf(u_is_defined, hypothesis)$
$\operatorname{defined}(v)$	$cnf(v_{is}_{defined}, hypothesis)$
$\operatorname{defined}(w)$	$cnf(w_{is}_{defined}, hypothesis)$
$\operatorname{defined}(s)$	$cnf(s_is_defined, hypothesis)$
$\operatorname{defined}(t)$	$cnf(t_is_defined, hypothesis)$
$a \leq 0$ cr	$nf(less_or_equal_8, negated_conjecture)$
$b \le 0$ cr	$nf(less_or_equal_9, negated_conjecture)$
1 + a = u	$cnf(sum_{10}, negated_conjecture)$
1+b=v	$cnf(sum_{11}, negated_conjecture)$
$u \cdot v = w$	$cnf(product_{12}, negated_conjecture)$
a+b=s	$cnf(sum_{13}, negated_conjecture)$
1+s=t	$cnf(sum_{14}, negated_conjecture)$
$\neg t \leq w$	$cnf(not_less_or_equal_{15}, negated_conjecture)$

 ${\bf FLD101-1.p}$ Ordered field axioms (axiom formulation glxx) include ('Axioms/FLD001-0.ax')

 ${\bf FLD102-1.p}$ Ordered field axioms (axiom formulation re) include ('Axioms/FLD002-0.ax')