PLA axioms

PLAO001-0.ax Blocks world axioms

(holds(z, state) and holds(y, state)) = holds(and(z, y), state) cnf(and_definition, axiom)

(holds(empty, state) and holds(clear(x), state) and differ(x, table)) = holds(holding(z), do(pickup(z), state)) cnf(pickup
(holds(on(z, y), state) and holds(clear(z), state) and holds(empty, state)) = holds(clear(y), do(pickup(z), state)) enf(pic
(holds(on(z, y), state) and differ(x, z)) = holds(on(z, y), do(pickup(z), state)) cnf(pickup,, axiom)

(holds(clear(), state) and differ(z, z)) = holds(clear(z), do(pickup(z), state)) cnf(pickup,, axiom)

(holds(holding(z), state) and holds(clear(y), state)) = holds(empty, do(putdown(z, y), state)) cnf(putdown,, axiom)
(holds(holding(z), state) and holds(clear(y), state)) = holds(on(z,y), do(putdown(z, y), state)) cnf(putdown,, axiom)
(holds(holding(z), state) and holds(clear(y), state)) = holds(clear(x), do(putdown(z,y), state)) enf(putdowng, axiom)
holds(on(z, y), state) = holds(on(z, y), do(putdown(z, w), state)) enf(putdown,, axiom)

(holds(clear(z), state) and differ(z,y)) = holds(clear(z), do(putdown(z, y), state)) cnf(putdowns, axiom)

PLAO001-1.ax Blocks world difference axioms for 4 blocks
differ(y,x) = differ(x,y) cnf(symmetry_of_differ, axiom)
differ(a, b) cnf(differ_a_b, axiom)

differ(a, ¢) cnf(differ_a_c, axiom)

differ(a, d)

differ
differ
differ

(a

(

(cnf(differ_a_d, axiom)
(a, table) cnf(differ_a_table, axiom)
(b,c) cnf(differ_b_c, axiom)

(b,d) enf(differ_b_d, axiom)
differ(b, table) cnf(differ_b_table, axiom)
differ(c, d) cnf(differ_c_d, axiom)
differ(c, table) cnf(differ_c_table, axiom)
differ(d, table) cnf(differ_d_table, axiom)
holds(on(a, table), sq) cnf(initial_state; , axiom)
holds(on(b, table), sg) cnf(initial_states, axiom)
holds(on(e, d), so) cnf(initial states, axiom)
holds(on(d table), sg) cnf(initial _statey, axiom)
holds(clear(a), so) cnf(initial _states, axiom)
holds(clear(b), s¢) cenf(
holds(clear(c), s¢) cnf(initial_stater, axiom)
holds(empty, so) cnf(initial states, axiom)
holds(clear(table), state) cnf(clear_table, axiom)

PLA problems

PLAO001-1.p Cheyenne to DesMoines, buying a loaf of bread on the way

The problem is to drive from Cheyenne, Wyoming to Des Moines, Iowa and end up there with a loaf of bread. A

portion of the road map is expressed in clause form. The allowable actions are to drive from a city to a neighboring

city, to buy a loaf of bread at a city, and to wait_at at a city for one unit of time. Buying a loaf of bread takes one

unit of time and driving to a neighboring city takes two units of time.

(at(fromCity, loaves, time, situation) and next_to(fromCity, toCity)) = at(toCity, loaves, s(s(time)), drive(toCity, situation))
(at(fromCity, loaves, time, situation) and next_to(toCity, fromCity)) = at(toCity, loaves, s(s(time)), drive(toCity, situation))

initial_stateg, axiom)

at(city, loaves, time, situation) = at(city, loaves, s(time), wait_at(situation)) cnf(wait_in_city, axiom)
at(city, loaves, time, situation) = at(city, s(loaves), s(time), buy(situation)) cnf(buy_in_city, axiom)
next_to(winnemucca, elko) cnf(map;, hypothesis)

next_to(elko, saltLakeCity) cnf(map,, hypothesis)
next_to(saltLakeCity, rockSprings) enf(map,, hypothesis)
next_to(rockSprings, laramie) enf(map,, hypothesis)
next_to(laramie, cheyenne) cnf(maps, hypothesis)
next_to(cheyenne, northPlatte) cnf(mapg, hypothesis)
next_to(northPlatte, grandIsland) cnf(map,, hypothesis)
next_to(grandIsland, lincoln) cnf(mapg, hypothesis)
next_to(lincoln, omaha) cnf(mapg, hypothesis)
next_to(omaha, desMoines) cnf(map, o, hypothesis)
at(cheyenne, none, start, initial situation) cuf(initial, hypothesis)
— at(desMoines, s(none), time, situation) cnf(prove_you_gat_get_there_with_bread, negated_conjecture)
1

PLAO002-1.p Getting from here to there, in all weather

The problem is to travel from one place to another. Certain paths are passable at different times of the year, so a
conditional plan must be generated. Either all situations are cold or all situations are warm. There is a river which
may be crossed only in winter when it is covered with ice, and a mountain range may be crossed only in summer.
The problem is to get from city F to city A.

warm(situationy) or cold(situations) cnf(warm_or_cold, hypothesis)

at(a,situation) = at(b, walk(b, situation)) cnf(walk_a_to_b, hypothesis)

at(a,situation) = at(b, drive(d, situation)) cnf(drive_a_to_b, hypothesis)

at(b, situation) = at(a, walk(a, situation)) cnf(walk_b_to_a, hypothesis)

at(b, situation) = at(a,drive(a, situation)) enf(drive_b_to_a, hypothesis)

(cold(situation) and at(b, situation)) = at(c, skate(c, situation)) cenf(cross_river_b_to_c, hypothesis)
(cold(situation) and at(c, situation)) = at(b, skate(b, situation)) cnf(cross_river_c_to_b, hypothesis)
(warm(situation) and at(b, situation)) = at(d, climb(d, situation)) cnf(climb_mountain_b_to_d, hypothesis)
(warm(situation) and at(d, situation)) = at(b, climb(b, situation)) cnf(climb_mountain_d_to_b, hypothesis)

at(d, go(d, situation)) enf(go_c_to_d, hypothesis)
at(c, go(c, situation)) cnf(go_d_to_c, hypothesis)
at(e, go(e, situation)) cnf(go_c_to_e, hypothesis)
(¢, go())
(

at(c, situation)

at(d, situation)
t(c, situation)

at(e, situation) at(c, go(c, situation cnf(go_e_to_c, hypothesis

at(d, situation) t(f, go(f, situation)) cnf(go-d-to_f, hypothesis)
t(f, situation) at(d, go(d, situation)) cnf(go_f_to_d, hypothesis)

at(f, so) cnf(initial, hypothesis)

—at(a, s) cnf(prove_you_can_get_to_a, negated_conjecture)

R R R R

PLAO002-2.p Getting from here to there, in all weather

(situation(situation;) and situation(situations)) = (warm(situation;) or cold(situations)) cnf(warm_or_cold, hypothesis
(at(a,situation) and situation(situation)) = at(b, walk(b, situation)) cnf(walk_a_to_b, hypothesis)

(at(a,situation) and situation(situation)) = at(b, drive(b, situation)) cnf(drive_a_to_b, hypothesis)

(at(b, situation) and situation(situation)) = at(a, walk(a, situation)) enf(walk_b_to_a, hypothesis)

(at(b, situation) and situation(situation)) = at(a, drive(a, situation)) cnf(drive_b_to_a, hypothesis)

(cold(situation) and at(b, situation) and situation(situation)) = at(c, skate(c, situation)) cnf(cross_river_b_to_c, hypothes
(cold(situation) and at(c, situation) and situation(situation)) = at(b, skate(b, situation)) cnf(cross_river_c_to_b, hypothes
(warm(situation) and at(b, situation) and situation(situation)) = at(d, climb(d, situation)) cnf(climb_mountain_b_to_d, I
(warm(situation) and at(d, situation) and situation(situation)) = at(b, climb(b, situation)) enf(climb_mountain_d_to_b, h
(at(e, situation) and situation(situation)) = at(d, go(d, situation)) enf(go_c_to_d, hypothesis)
(at(d, situation) and situation(situation))

(at(c, situation) and situation(situation))
(at(e, situation) and situation(situation))
(at(d, situation) and situation(situation))
()

= at(c, go(c, situation)) cnf(go_d_to_c, hypothesis)

= at(e, go(e, situation)) cnf(go_c_to_e, hypothesis)

= at(c, go(c, situation)) cnf(go_e_to_c, hypothesis)

= at(f, go(f,situation)) enf(go_d_to_f, hypothesis)
(d; go()

at(f, situation) and situation(situation)) = at(d, go(d, situation)) cnf(go_f_to_d, hypothesis)

situation(sg) cnf(initial_situation, hypothesis)

situation(situation) = situation(walk(somewhere, situation)) cnf(walk situation, hypothesis)

situation(situation) = situation(drive(somewhere, situation)) cnf(drive_situation, hypothesis)
situation(situation) = situation(climb(somewhere, situation)) cnf(climb_situation, hypothesis)
situation(situation) = situation(skate(somewhere, situation)) enf(skate_situation, hypothesis)
situation(situation) = situation(go(somewhere, situation)) cnf(go_situation, hypothesis)

at(f, so cnf(initial, hypothesis)

at(a,s) = -—situation(s) cnf(prove_you_can_get_to_a_in_a_situation, negated_conjecture)

PLAO003-1.p Monkey and Bananas Problem
can(monkey(locations, floor, nothing), ladder(location; , floor), bananas) = can(monkey(locationy, ceiling, nothing), ladder(lo
can(monkey(locationy, ceiling, nothing), ladder(locationy, floor), bananas) = can(monkey(locations, floor, nothing), ladder(lo
can(monkey(locationy, floor, the_ladder), ladder(location;, floor), bananas) = can(monkey(locations, floor, the_ladder), ladde
can(monkey (locationy, floor, the_bananas), ladder, bananas(locationy, floor)) = can(monkey(locations, floor, the_bananas), la
an(monkey (locationy, floor, nothing), ladder, bananas) = can(monkey(locationsg, floor, nothing), ladder, bananas) cuf(go.

((

((

((

((

Q0

an(monkey (location, height, the_ladder), ladder(location, any_height), bananas) = can(monkey(location, height, nothing), la
can(monkey(location, height, the_bananas), ladder, bananas(location, height)) = can(monkey(location, height, nothing), ladd
can(monkey(location, height, nothing), ladder, bananas(location, height)) = can(monkey(location, height, the_bananas), ladd
can(monkey (location, height, nothing), ladder(location, height), bananas) = can(monkey(location, height, the_ladder), ladder
can(monkey(lg, floor, nothing), ladder(l;, floor), bananas(ls, ceiling)) cnf(initial situation, hypothesis)

- can(monkey (somewhere, some_height, the_bananas), ladder, what) cnf(prove_the_monkey_can_get_the_bananas, negated

PLAO004-1.p Block C on B on A

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

—holds(and(on(c, b), on(b, a)), state) cnf(prove_CBA, negated _conjecture)

PLAO004-2.p Block C on B on A

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

—holds(and(on(b, a), on(c, b)), state) cnf(prove_CBA, negated_conjecture)

PLAO005-1.p Block C on A and D on B

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

—holds(and(on(c, a),on(d, b)), state) cnf(prove_CA _DB, negated_conjecture)

PLAO005-2.p Block C on A and D on B

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

—holds(and(on(d, b),on(c, a)), state) cnf(prove_DB_AC, negated_conjecture)

PLAO006-1.p Block C on Table
include(’Axioms/PLA001-0.ax’)
include(’Axioms/PLA001-1.ax’)
—holds(on(c, table), state) cnf(prove_CTable, negated_conjecture)

PLAO007-1.p Block A on D

include(’Axioms/PLA001-0.ax’)
include(’Axioms/PLA001-1.ax’)

—holds(on(a, d), state) cnf(prove_AD, negated_conjecture)

PLAO008-1.p Block Bon D and A on C

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

= holds(and(on(b, d), on(a, ¢)), state) cnf(prove_BD_AC, negated_conjecture)

PLAO009-1.p Block A on B and D clear

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

—holds(and(on(a, b), clear(d)), state) cnf(prove_AB_D, negated_conjecture)

PLAO009-2.p Block A on B and D clear

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

—holds(and(clear(d), on(a, b)), state) cnf(prove_D_AB, negated_conjecture)

PLAO010-1.p Block Aon D on B

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

= holds(and(on(a, d),on(d, b)), state) cnf(prove_ADB, negated_conjecture)

PLAO011-1.p Block D on C on B

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

—holds(and(on(d, ¢),on(c, b)), state) cnf(prove_DCB, negated_conjecture)

PLAO011-2.p Block D on C on B

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

—holds(and(on(c, b), on(d, ¢)), state) cnf(prove_DCB, negated_conjecture)

PLAO012-1.p Block D on B on C

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

— holds(and(on(d, b),on(b, c)), state) cnf(prove_DBC, negated_conjecture)

PLAO013-1.p Block A on C on B
include(’Axioms/PLA001-0.ax’)

4

include(’Axioms/PLA001-1.ax’)
—holds(and(on(a, ¢),on(c, b)), state) cnf(prove_ACB, negated_conjecture)

PLAO014-1.p Block A on Bon C

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

—holds(and(on(a, b),on(b, ¢)), state) cnf(prove_ABC, negated_conjecture)

PLAO014-2.p Block A on B on C

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

= holds(and(on(b, ¢), on(a, b)), state) cnf(prove_ABC, negated _conjecture)

PLAO015-1.p Block A on B on D

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

—holds(and(on(a, b), on(b, d)), state) cnf(prove_ABD, negated_conjecture)

PLAO016-1.p Block D on A

include(’Axioms/PLA001-0.ax’)
include(’Axioms/PLA001-1.ax’)

—holds(on(d, a), state) cnf(prove_DA, negated_conjecture)

PLAO017-1.p Block A on C

include(’Axioms/PLA001-0.ax’)
include(’Axioms/PLA001-1.ax’)

= holds(on(a, ¢), state) cnf(prove_AC, negated_conjecture)

PLAO018-1.p Block A on B and D on C

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

—holds(and(on(a, b),on(d, ¢)), state) cnf(prove_AB_DC, negated_conjecture)

PLAO019-1.p Block D on C

include(’Axioms/PLA001-0.ax’)
include(’Axioms/PLA001-1.ax’)

—holds(on(d, c), state) cnf(prove_DC, negated_conjecture)

PLAO020-1.p Block D clear
include(’Axioms/PLA001-0.ax’)
include(’Axioms/PLA001-1.ax’)

— holds(clear(d), state) cnf(prove_D, negated_conjecture)

PLAO021-1.p Block Bon D and C on A

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

—holds(and(on(b, d),on(c, a)), state) cnf(prove_BD_CA, negated_conjecture)

PLAO022-1.p Block A on C on D

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

—holds(and(on(c, d),on(a, c)), state) cnf(prove_ACD, negated_conjecture)

PLAO022-2.p Block A on C on D

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

—holds(and(on(a, c¢), on(c, d)), state) cnf(prove_ACD, negated_conjecture)

PLAO023-1.p Block D on A on C

include(’Axioms/PLA001-0.ax’)

include(’Axioms/PLA001-1.ax’)

—holds(and(on(d, a),on(a, c)), state) cnf(prove_DAC, negated_conjecture)

PLA024+1.p Blocks A/B, C => B/C/A
include(’Axioms/PLA002+0.ax’)

Yy, z: ((different(x, y) or different(y,z)) = neq(z,y)) fof(different _not_equal, hypothesis)
different(block; , blocks) fof(block_1_not_blocks, hypothesis)

different(blocky, blocks) fof(block_1_not_blocks, hypothesis)
different(blocks, blocks) fof(block_2_not_blocks, hypothesis)
different(blocky, table) fof(block_1_not_table, hypothesis)
different(blocks, table) fof(block_2_not_table, hypothesis)

different(blocks, table) fof(block_3_not_table, hypothesis)

a_block(block;) fof(blocky , hypothesis)

a_block(blocks) fof(blocks, hypothesis)

a_block(blocks) fof(blocks, hypothesis)

a_block(table) fof(table, hypothesis)

fixed(table) fof(fixed_table, hypothesis)

nonfixed(block;) fof(nonfixed_blocky, hypothesis)

nonfixed(blocks) fof(nonfixed_blocks, hypothesis)

nonfixed(blocks) fof(nonfixed_blocks, hypothesis)

time(timey) fof(timey, hypothesis)

time(s(timeg)) fof(timey , hypothesis)

time(s(s(timey))) fof(times, hypothesis)

time(s(s(s(timeg)))) fof(times, hypothesis)

Vi: (time(i) = (source(blocky,) or source(blocks,) or source(blocks,) or source(table,))) fof(some_source, hypothesis
Vi: (time(¢) = (destination(blocky,) or destination(blocks,) or destination(blocks,) or destination(table,))) fof(some
Vi: (time(i) = (object(blocky,?) or object(blocks,) or object(blocks,))) fof(some_object, hypothesis)

on(blocky, blocks, timey) fof(initial_1_ons, hypothesis)

clear(blocky, timeg) fof(initial_cleary, hypothesis)

on(blocks, table, timep) fof(initial 2_on_table, hypothesis)

on(blocks, table, timey) fof(initial_3_on_table, hypothesis)

clear(blocks, timeg) fof(initial_clears, hypothesis)

goal _time(s(s(s(timey)))) fof(goal_time,, hypothesis)

Vs: (goal_time(s) = (on(blocks,blocks, s) and clear(blocks, s) and on(blocks, blocky, s) and on(blocky, table, s))) fof(goa

PLA027+1.p Blocks A/B/C/D => D/C/B/A

include(’Axioms/PLA002+0.ax’)

Yy, z: ((different(x, y) or different(y,z)) = neq(z,y)) fof(different_not_equal, hypothesis)

different(blocky, blocks) fof(block_1_not_blocks, hypothesis)

different(block, , blocks) fof(block_1_not_blocks, hypothesis)

different(block; , blocky) fof(block_1_not_blocky, hypothesis)

different(blocks, blocks) fof(block_2_not_blocks, hypothesis)

different (blocks, blocky) fof(block_2_not_blocky, hypothesis)

different(blocks, blocky) fof(block_3_not_blocky, hypothesis)

different(blocky, table) fof(block_1_not_table, hypothesis)

different(blocks, table) fof(block-2_not_table, hypothesis)

different(blocks, table) fof(block_3_not_table, hypothesis)

different(blocky, table) fof(block_4_not_table, hypothesis)

a_block(block;) fof(blocky, hypothesis)

a_block(blocks) fof(blocks, hypothesis)

a_block(blocks) fof(blocks, hypothesis)

a_block(blocky) fof(blocky, hypothesis)

a_block(table) fof(table, hypothesis)

fixed(table) fof(fixed_table, hypothesis)

nonfixed(block;) fof(nonfixed_blocky, hypothesis)

nonfixed(blocks) fof(nonfixed_blocks, hypothesis)

nonfixed(blocks) fof(nonfixed_blocks, hypothesis)

nonfixed(blocky) fof(nonfixed_blocky, hypothesis)

time(time) fof(timeg, hypothesis)

time(s(timep)) fof(time; , hypothesis)

time(s(s(timeg))) fof(times, hypothesis)

time(s(s(s(timey)))) fof(times, hypothesis)

time((s(s(s(timey))))) fof(timey, hypothesis)
Vi: (time(i) = (source(blocky,i) or source(blocks,) or source(blocks,) or source(blocky,) or source(table,))) fof(som
Vi: (time(i) = (destination(blocky,) or destination(blocks,) or destination(blocks, i) or destination(blocky,?) or destinatic

Vz (time(i) = (object(blocky,) or object(blocks,) or object(blocks, i) or object(blocky,))) fof(some_object, hypothesi

on(blocky, blocks, timey) fof(initial_1_ong, hypothesis)

6

clear(blocky, timeg) fof(initial_cleary, hypothesis)

on(blocks, blocks, timey) fof(initial 2_ong, hypothesis)

on(blocks, blocky, timey) fof(initial_3_ong, hypothesis)

on(blocky, table, time) fof(initial 4_on_table, hypothesis)

goal_time(s(s(s(s(timey))))) fof(goal_time,, hypothesis)

Vs: (goal_time(s) = (on(blocky, blocks, s) and clear(blocky, s) and on(blocks, blocks, s) and on(blocks, blocky, s) and on(blo

PLAO028+1.p Blocks A, B=> A/B

include(’Axioms/PLA002+0.ax’)

Yy, z: ((different(z, y) or different(y,z)) = neq(z,y)) fof(different_not_equal, hypothesis)
different(blocky, blocks) fof(block_1_not_blocks, hypothesis)

different(blocky, table) fof(block_1_not_table, hypothesis)

different(blocks, table) fof(block-2_not_table, hypothesis)

a_block(block;) fof(blocky , hypothesis)

a_block(blocks) fof(blocks, hypothesis)

a_block(table) fof(table, hypothesis)

fixed(table) fof(fixed_table, hypothesis)

nonfixed(block,) fof(nonfixed_blocks , hypothesis)

nonfixed(blocks) fof(nonfixed_blocks, hypothesis)

time(time) fof(timeg, hypothesis)

time(s(timeg)) fof(timey, hypothesis)

Vi: (time(i) = (source(blocky,i) or source(blocks,) or source(table,?))) fof(some_source, hypothesis)
Vi: (time(i) = (destination(blocky,) or destination(blocks, %) or destination(table,))) fof(some_destination, hypothesis)
Vi: (time(i) = (object(blocky,) or object(blocks,i))) fof(some_object, hypothesis)

on(blocky, table, time) fof(initial_1_on_table, hypothesis)

clear(blocky, timey) fof(initial_cleary, hypothesis)

on(blocks, table, timeg) fof(initial 2_on_table, hypothesis)

clear(blocks, timeg) fof(initial_clears, hypothesis)

goal_time(s(timeg)) fof(goal_time,, hypothesis)

Vs: (goal-time(s) = (clear(blocky, s) and on(blocky, blocks, s) and on(blocks, table, s))) fof(goal_state, conjecture)

PLA029+42.p Blocks world axioms
include(’Axioms/PLA00240.ax’)

PLAO029-1.p Blocks world axioms
include(’Axioms/PLA001-0.ax’)

PLAO030-1.p Blocks world difference axioms for 4 blocks
include(’Axioms/PLA001-0.ax’)
include(’Axioms/PLA001-1.ax’)

PLAO032AT7.p Abductive planning: Bomb-in-the-toilet with detector

include(’Axioms/LCL015°0.ax")

include(’Axioms/LCL013"5.ax”)

include(’Axioms/LCL015"1.ax")

defused: mu — $i — $o thf(defused_type, type)

h: mu — $i — $o thf(h_type, type)

bomb: mu — $i — $o thf(bomb_type, type)

mvalid@(mbox_s;@(mexists_ind@\b: mu: (bomb@b))) thf(ax;, axiom)

mvalid@(mexists_ind@Aa: mu: (mbox_s;@(mforall_ind@Az: mu: (mimplies@(mand@(bomb@z)Q(hQa))@(mbox_s4Q(bomb@x
mvalid@(mbox_s;@(mforall_ind@Az: mu: (mexists_ind@Ad: mu: (mbox_s;@(mimplies@(mand@(bomb@zx)@(hQd))Q(defused
mvalid@(mbox_s,@(mforall ind@Az: mu: (mexists_ind@Ad: mu: (mimplies@(mand@(bomb@z)@Q(h@Qd))Q(defused@zx)))))

PLAO033AT7.p Abductive planning: Safe problem
include(’Axioms/LCL015°0.ax”)
include(’Axioms/LCL013"5.ax”)
include(’Axioms/LCL015"1.ax")

closed: mu — $i — $o thf(closed _type, type)

open: mu — $i — $o thf(open_type, type)

h: mu — $i — $o thf(h_type, type)

combo: mu — mu — $i — $o thf(combo_type, type)

0: mu thf(o_type, type)

Vo: $i: (exists_in-world@o@u) thf(existence_of_o_ax, axiom)

n: mu thf(n_type, type)

Vo: $i: (exists_in_world@n@Qu) thf(existence_of n_ax, axiom)
d: mu thf(d_type, type)
Vo: $i: (exists_in-world@d@v) thf(existence_of_d_ax, axiom)

mvalid@(mbox_s;@(mforall_ind@As: mu: (mforall_ind@Av: mu: (mexists_ind@Ao: mu: (mand@(mbox_s,@(mimplies@(mand@
mvalid@(mbox_s,@(closed@d)) thf(axy, axiom)

mvalid@(mbox_s,@(mor@(combo@d@n)@(mnot@(combo@d@n)))) thf(axs, axiom)

mvalid@(mbox_s;@(mforall_ind@As: mu: (mnot@(mand@(open@s)@(closed@s))))) thf(ax,, axiom)
mvalid@(mexists_ind@Av: mu: (mbox_s;@(combo@dQu))) thf(axs, axiom)

mvalid@(mbox_s;@(mexists_ind@Av: mu: (mexists_ind@Mo: mu: (mimplies@(mbox_s;@(mand@(combo@d@v)Q(h@Qo)))Q(mb

