## PLA axioms

```
PLA001-0.ax Blocks world axioms
                                                                                          cnf(and_definition, axiom)
(\text{holds}(x, \text{state}) \text{ and } \text{holds}(y, \text{state})) \Rightarrow \text{holds}(\text{and}(x, y), \text{state})
(\text{holds}(\text{empty}, \text{state}) \text{ and } \text{holds}(\text{clear}(x), \text{state}) \text{ and } \text{differ}(x, \text{table})) \Rightarrow \text{holds}(\text{holding}(x), \text{do}(\text{pickup}(x), \text{state}))
                                                                                                                                                         cnf(pickup
(\text{holds}(\text{on}(x,y), \text{state}) \text{ and holds}(\text{clear}(x), \text{state}) \text{ and holds}(\text{empty}, \text{state})) \Rightarrow \text{holds}(\text{clear}(y), \text{do}(\text{pickup}(x), \text{state}))
                                                                                                                                                              cnf(pic
                                                                                                                cnf(pickup_3, axiom)
(\text{holds}(\text{on}(x,y),\text{state}) \text{ and differ}(x,z)) \Rightarrow \text{holds}(\text{on}(x,y),\text{do}(\text{pickup}(z),\text{state}))
(\text{holds}(\text{clear}(x), \text{state}) \text{ and } \text{differ}(x, z)) \Rightarrow \text{holds}(\text{clear}(x), \text{do}(\text{pickup}(z), \text{state}))
                                                                                                                cnf(pickup_4, axiom)
(\text{holds}(\text{holding}(x), \text{state}) \text{ and } \text{holds}(\text{clear}(y), \text{state})) \Rightarrow \text{holds}(\text{empty}, \text{do}(\text{putdown}(x, y), \text{state}))
                                                                                                                                    cnf(putdown_1, axiom)
(\text{holds}(\text{holding}(x), \text{state}) \text{ and } \text{holds}(\text{clear}(y), \text{state})) \Rightarrow \text{holds}(\text{on}(x, y), \text{do}(\text{putdown}(x, y), \text{state}))
                                                                                                                                      cnf(putdown_2, axiom)
(\text{holds}(\text{holding}(x), \text{state}) \text{ and } \text{holds}(\text{clear}(y), \text{state})) \Rightarrow \text{holds}(\text{clear}(x), \text{do}(\text{putdown}(x, y), \text{state}))
                                                                                                                                      cnf(putdown_3, axiom)
holds(on(x, y), state) \Rightarrow holds(on(x, y), do(putdown(z, w), state))
                                                                                              cnf(putdown_4, axiom)
(\text{holds}(\text{clear}(z), \text{state}) \text{ and differ}(z, y)) \Rightarrow \text{holds}(\text{clear}(z), \text{do}(\text{putdown}(x, y), \text{state}))
                                                                                                                     cnf(putdown_5, axiom)
PLA001-1.ax Blocks world difference axioms for 4 blocks
differ(y,x) \Rightarrow differ(x,y)
                                         cnf(symmetry_of_differ, axiom)
differ(a,b)
                   cnf(differ_a_b, axiom)
differ(a, c)
                   cnf(differ_a_c, axiom)
differ(a, d)
                    cnf(differ_a_d, axiom)
differ(a, table)
                         cnf(differ_a_table, axiom)
differ(b, c)
                   cnf(differ_b_c, axiom)
differ(b, d)
                   cnf(differ_b_d, axiom)
                         cnf(differ_b_table, axiom)
differ(b, table)
differ(c, d)
                    cnf(differ_c_d, axiom)
differ(c, table)
                         cnf(differ_c_table, axiom)
differ(d, table)
                         cnf(differ_d_table, axiom)
holds(on(a, table), s_0)
                                   cnf(initial\_state_1, axiom)
holds(on(b, table), s_0)
                                   cnf(initial\_state_2, axiom)
holds(on(c,d),s_0)
                             cnf(initial_state3, axiom)
holds(on(d, table), s_0)
                                   cnf(initial_state<sub>4</sub>, axiom)
holds(clear(a), s_0)
                              cnf(initial_state<sub>5</sub>, axiom)
holds(clear(b), s_0)
                              cnf(initial_state<sub>6</sub>, axiom)
holds(clear(c), s_0)
                              cnf(initial_state<sub>7</sub>, axiom)
holds(empty, s_0)
                            cnf(initial_state<sub>8</sub>, axiom)
holds(clear(table), state)
                                       cnf(clear_table, axiom)
PLA problems
PLA001-1.p Cheyenne to DesMoines, buying a loaf of bread on the way
The problem is to drive from Cheyenne, Wyoming to Des Moines, Iowa and end up there with a loaf of bread. A
portion of the road map is expressed in clause form. The allowable actions are to drive from a city to a neighboring
city, to buy a loaf of bread at a city, and to wait_at at a city for one unit of time. Buying a loaf of bread takes one
unit of time and driving to a neighboring city takes two units of time.
(at(fromCity, loaves, time, situation)) and next\_to(fromCity, toCity)) \Rightarrow at(toCity, loaves, s(s(time)), drive(toCity, situation))
(at(fromCity, loaves, time, situation)) and next\_to(toCity, fromCity)) \Rightarrow at(toCity, loaves, s(s(time)), drive(toCity, situation))
at(city, loaves, time, situation) \Rightarrow at(city, loaves, s(time), wait_at(situation))
                                                                                                             cnf(wait_in_city, axiom)
at(city, loaves, time, situation) \Rightarrow at(city, s(loaves), s(time), buy(situation))
                                                                                                            cnf(buy_in_city, axiom)
```

next\_to(winnemucca, elko)  $cnf(map_1, hypothesis)$ next\_to(elko, saltLakeCity) cnf(map<sub>2</sub>, hypothesis) next\_to(saltLakeCity, rockSprings) cnf(map<sub>3</sub>, hypothesis) next\_to(rockSprings, laramie)  $cnf(map_4, hypothesis)$ next\_to(laramie, chevenne) cnf(map<sub>5</sub>, hypothesis) next\_to(cheyenne, northPlatte)  $cnf(map_6, hypothesis)$ next\_to(northPlatte, grandIsland) cnf(map<sub>7</sub>, hypothesis) next\_to(grandIsland, lincoln)  $cnf(map_8, hypothesis)$ next\_to(lincoln, omaha)  $cnf(map_9, hypothesis)$ next\_to(omaha, desMoines)  $cnf(map_{10}, hypothesis)$ at(cheyenne, none, start, initial\_situation) cnf(initial, hypothesis)  $\neg$  at(desMoines, s(none), time, situation) cnf(prove\_you\_gat\_get\_there\_with\_bread, negated\_conjecture)

## PLA002-1.p Getting from here to there, in all weather

The problem is to travel from one place to another. Certain paths are passable at different times of the year, so a conditional plan must be generated. Either all situations are cold or all situations are warm. There is a river which may be crossed only in winter when it is covered with ice, and a mountain range may be crossed only in summer. The problem is to get from city F to city A.

```
warm(situation_1) or cold(situation_2)
                                                    cnf(warm_or_cold, hypothesis)
at(a, situation) \Rightarrow at(b, walk(b, situation))
                                                            cnf(walk_a_to_b, hypothesis)
at(a, situation) \Rightarrow at(b, drive(b, situation))
                                                            cnf(drive_a_to_b, hypothesis)
at(b, situation) \Rightarrow at(a, walk(a, situation))
                                                            cnf(walk_b_to_a, hypothesis)
at(b, situation) \Rightarrow at(a, drive(a, situation))
                                                             cnf(drive_b_to_a, hypothesis)
(\text{cold}(\text{situation}) \text{ and } \text{at}(b, \text{situation})) \Rightarrow \text{at}(c, \text{skate}(c, \text{situation}))
                                                                                        cnf(cross_river_b_to_c, hypothesis)
(\text{cold}(\text{situation}) \text{ and } \text{at}(c, \text{situation})) \Rightarrow \text{at}(b, \text{skate}(b, \text{situation}))
                                                                                        cnf(cross_river_c_to_b, hypothesis)
(warm(situation) and at(b, situation)) \Rightarrow at(d, climb(d, situation))
                                                                                           cnf(climb_mountain_b_to_d, hypothesis)
(warm(situation) \text{ and } at(d, situation)) \Rightarrow
                                                     at(b, climb(b, situation))
                                                                                           cnf(climb_mountain_d_to_b, hypothesis)
at(c, situation) \Rightarrow at(d, go(d, situation))
                                                          cnf(go_c_to_d, hypothesis)
at(d, situation) \Rightarrow at(c, go(c, situation))
                                                         cnf(go_d_to_c, hypothesis)
                                                         cnf(go_c_to_e, hypothesis)
at(c, situation) \Rightarrow at(e, go(e, situation))
at(e, situation) \Rightarrow at(c, go(c, situation))
                                                         cnf(go_e_to_c, hypothesis)
at(d, situation) \Rightarrow at(f, go(f, situation))
                                                          cnf(go_d_to_f, hypothesis)
                                                          cnf(go_f_to_d, hypothesis)
at(f, situation) \Rightarrow at(d, go(d, situation))
                cnf(initial, hypothesis)
at(f, s_0)
\neg \operatorname{at}(a,s)
                 cnf(prove_you_can_get_to_a, negated_conjecture)
```

## PLA002-2.p Getting from here to there, in all weather

```
(situation(situation_1) \text{ and } situation(situation_2)) \Rightarrow (warm(situation_1) \text{ or } cold(situation_2))
                                                                                                                      cnf(warm_or_cold, hypothesis
(at(a, situation) \text{ and } situation(situation)) \Rightarrow at(b, walk(b, situation))
                                                                                           cnf(walk_a_to_b, hypothesis)
(at(a, situation) \text{ and } situation(situation)) \Rightarrow at(b, drive(b, situation))
                                                                                            cnf(drive_a_to_b, hypothesis)
(at(b, situation)) and situation(situation)) \Rightarrow at(a, walk(a, situation))
                                                                                            cnf(walk_b_to_a, hypothesis)
(at(b, situation)) and situation(situation)) \Rightarrow at(a, drive(a, situation))
                                                                                            cnf(drive_b_to_a, hypothesis)
(\text{cold}(\text{situation}) \text{ and } \text{at}(b, \text{situation}) \text{ and } \text{situation}(\text{situation})) \Rightarrow \text{at}(c, \text{skate}(c, \text{situation}))
                                                                                                                    cnf(cross_river_b_to_c, hypothes
(\text{cold}(\text{situation}) \text{ and } \text{at}(c, \text{situation}) \text{ and } \text{situation}(\text{situation})) \Rightarrow \text{at}(b, \text{skate}(b, \text{situation}))
                                                                                                                    cnf(cross_river_c_to_b, hypothes
(warm(situation) and at(b, situation) and situation(situation)) \Rightarrow at(d, climb(d, situation))
                                                                                                                       cnf(climb_mountain_b_to_d, h
(warm(situation) \text{ and } at(d, situation) \text{ and } situation(situation)) \Rightarrow at(b, climb(b, situation))
                                                                                                                      cnf(climb_mountain_d_to_b, h
(at(c, situation) \text{ and } situation(situation)) \Rightarrow at(d, go(d, situation))
                                                                                         cnf(go_c_to_d, hypothesis)
(at(d, situation) \text{ and } situation(situation)) \Rightarrow at(c, go(c, situation))
                                                                                         cnf(go_d_to_c, hypothesis)
(at(c, situation)) and situation(situation)) \Rightarrow at(e, go(e, situation))
                                                                                         cnf(go_c_to_e, hypothesis)
(at(e, situation)) and situation(situation)) \Rightarrow at(c, go(c, situation))
                                                                                         cnf(go_e_to_c, hypothesis)
(at(d, situation)) and situation(situation)) \Rightarrow at(f, go(f, situation))
                                                                                         cnf(go_d_to_f, hypothesis)
(at(f, situation)) and situation(situation)) \Rightarrow at(d, go(d, situation))
                                                                                         cnf(go_f_to_d, hypothesis)
                     cnf(initial_situation, hypothesis)
situation(s_0)
situation(situation) \Rightarrow situation(walk(somewhere, situation))
                                                                                  cnf(walk_situation, hypothesis)
situation(situation) \Rightarrow situation(drive(somewhere, situation))
                                                                                   cnf(drive_situation, hypothesis)
situation(situation) \Rightarrow situation(climb(somewhere, situation))
                                                                                   cnf(climb_situation, hypothesis)
situation(situation) \Rightarrow situation(skate(somewhere, situation))
                                                                                   cnf(skate_situation, hypothesis)
situation(situation) \Rightarrow situation(go(somewhere, situation))
                                                                               cnf(go_situation, hypothesis)
at(f, s_0)
               cnf(initial, hypothesis)
at(a,s) \Rightarrow \neg situation(s)
                                     cnf(prove_you_can_get_to_a_in_a_situation, negated_conjecture)
```

## PLA003-1.p Monkey and Bananas Problem

 $can(monkey(location_1, floor, nothing), ladder(location_1, floor), bananas) \Rightarrow can(monkey(location_1, ceiling, nothing), ladder(location_1, floor), bananas) \Rightarrow can(monkey(location_1, floor, nothing), ladder(location_1, floor), bananas) \Rightarrow can(monkey(location_1, floor, nothing), ladder(location_1, floor), bananas) \Rightarrow can(monkey(location_2, floor, the_ladder), ladder can(monkey(location_1, floor), the_bananas), ladder, bananas(location_1, floor)) \Rightarrow can(monkey(location_2, floor, the_bananas), ladder can(monkey(location, height, the_ladder), ladder(location, any_height), bananas) \Rightarrow can(monkey(location, height, nothing), ladder can(monkey(location, height, the_bananas), ladder, bananas(location, height)) \Rightarrow can(monkey(location, height, nothing), ladder can(monkey(location, height, nothing), ladder(location, height)) \Rightarrow can(monkey(location, height, the_bananas), ladder can(monkey(location, height, nothing), ladder(location, height)) \Rightarrow can(monkey(location, height, the_bananas), ladder can(monkey(location, nothing), ladder(location, height), bananas) \Rightarrow can(monkey(location, height, the_bananas), ladder can(monkey(location, nothing), ladder(location, height), bananas) \Rightarrow can(monkey(location, height, the_bananas), ladder can(monkey(location, nothing), ladder(location, height), bananas) \Rightarrow can(monkey(location, height, the_bananas), ladder can(monkey(location, nothing), ladder(location, height), bananas) \Rightarrow can(monkey(location, height, the_bananas), ladder can(monkey(location, nothing), ladder(location, height), bananas) \Rightarrow can(monkey(location, height, the_bananas), ladder can(monkey(location, nothing), ladder(location, height), bananas) \Rightarrow can(monkey(location, height, the_bananas), ladder can(monkey(location, nothing), ladder(location, height), bananas) \Rightarrow can(monkey(location, height, the_bananas), ladder can(monkey(location, height), bananas) \Rightarrow can(monkey(location, height), the_bananas) \Rightarrow can(monkey(location, height), bananas) \Rightarrow can(monkey(location, height), bananas) \Rightarrow can(monkey(location, height), bananas) \Rightarrow can(monkey(location, h$ 

```
PLA004-1.p Block C on B on A
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{holds}(\text{and}(\text{on}(c, b), \text{on}(b, a)), \text{state})
                                               cnf(prove_CBA, negated_conjecture)
PLA004-2.p Block C on B on A
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
                                               cnf(prove_CBA, negated_conjecture)
\neg \text{holds}(\text{and}(\text{on}(b, a), \text{on}(c, b)), \text{state})
PLA005-1.p Block C on A and D on B
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{ holds}(\text{and}(\text{on}(c, a), \text{on}(d, b)), \text{ state})
                                                cnf(prove_CA_DB, negated_conjecture)
PLA005-2.p Block C on A and D on B
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \operatorname{holds}(\operatorname{and}(\operatorname{on}(d,b),\operatorname{on}(c,a)),\operatorname{state})
                                               cnf(prove_DB_AC, negated_conjecture)
PLA006-1.p Block C on Table
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
                                    cnf(prove_CTable, negated_conjecture)
\neg \text{ holds}(\text{on}(c, \text{table}), \text{state})
PLA007-1.p Block A on D
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{ holds}(\text{on}(a,d), \text{state})
                               cnf(prove_AD, negated_conjecture)
PLA008-1.p Block B on D and A on C
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{ holds}(\text{and}(\text{on}(b, d), \text{on}(a, c)), \text{ state})
                                                cnf(prove_BD_AC, negated_conjecture)
PLA009-1.p Block A on B and D clear
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{holds}(\text{and}(\text{on}(a, b), \text{clear}(d)), \text{state})
                                                cnf(prove_AB_D, negated_conjecture)
PLA009-2.p Block A on B and D clear
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{holds}(\text{and}(\text{clear}(d), \text{on}(a, b)), \text{state})
                                                cnf(prove_D_AB, negated_conjecture)
\mathbf{PLA010-1.p} Block A on D on B
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{ holds}(\text{and}(\text{on}(a, d), \text{on}(d, b)), \text{ state})
                                                cnf(prove_ADB, negated_conjecture)
PLA011-1.p Block D on C on B
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{holds}(\text{and}(\text{on}(d,c),\text{on}(c,b)),\text{state})
                                               cnf(prove_DCB, negated_conjecture)
PLA011-2.p Block D on C on B
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{holds}(\text{and}(\text{on}(c,b),\text{on}(d,c)),\text{state})
                                               cnf(prove_DCB, negated_conjecture)
PLA012-1.p Block D on B on C
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{ holds}(\text{and}(\text{on}(d, b), \text{on}(b, c)), \text{ state})
                                               cnf(prove_DBC, negated_conjecture)
PLA013-1.p Block A on C on B
```

include('Axioms/PLA001-0.ax')

```
include('Axioms/PLA001-1.ax')
\neg \text{holds}(\text{and}(\text{on}(a, c), \text{on}(c, b)), \text{state})
                                                cnf(prove_ACB, negated_conjecture)
PLA014-1.p Block A on B on C
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{holds}(\text{and}(\text{on}(a, b), \text{on}(b, c)), \text{state})
                                                cnf(prove_ABC, negated_conjecture)
PLA014-2.p Block A on B on C
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{ holds}(\text{and}(\text{on}(b, c), \text{on}(a, b)), \text{ state})
                                                cnf(prove_ABC, negated_conjecture)
PLA015-1.p Block A on B on D
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{holds}(\text{and}(\text{on}(a, b), \text{on}(b, d)), \text{state})
                                                cnf(prove_ABD, negated_conjecture)
PLA016-1.p Block D on A
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \operatorname{holds}(\operatorname{on}(d, a), \operatorname{state})
                                cnf(prove_DA, negated_conjecture)
PLA017-1.p Block A on C
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \operatorname{holds}(\operatorname{on}(a,c),\operatorname{state})
                                cnf(prove_AC, negated_conjecture)
PLA018-1.p Block A on B and D on C
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{holds}(\text{and}(\text{on}(a, b), \text{on}(d, c)), \text{state})
                                                cnf(prove_AB_DC, negated_conjecture)
PLA019-1.p Block D on C
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{ holds}(\text{on}(d, c), \text{state})
                                cnf(prove_DC, negated_conjecture)
PLA020-1.p Block D clear
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{ holds}(\text{clear}(d), \text{state})
                                cnf(prove_D, negated_conjecture)
PLA021-1.p Block B on D and C on A
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{ holds}(\text{and}(\text{on}(b,d),\text{on}(c,a)),\text{state})
                                                cnf(prove_BD_CA, negated_conjecture)
PLA022-1.p Block A on C on D
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{holds}(\text{and}(\text{on}(c,d),\text{on}(a,c)),\text{state})
                                                cnf(prove_ACD, negated_conjecture)
\mathbf{PLA022\text{-}2.p} Block A on C on D
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
                                                cnf(prove_ACD, negated_conjecture)
\neg \text{holds}(\text{and}(\text{on}(a, c), \text{on}(c, d)), \text{state})
PLA023-1.p Block D on A on C
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
\neg \text{ holds}(\text{and}(\text{on}(d, a), \text{on}(a, c)), \text{ state})
                                                cnf(prove_DAC, negated_conjecture)
PLA024+1.p Blocks A/B, C => B/C/A
include('Axioms/PLA002+0.ax')
\forall y, x : ((\text{different}(x, y) \text{ or different}(y, x)) \Rightarrow \text{neq}(x, y))
                                                                      fof(different_not_equal, hypothesis)
different(block_1, block_2)
                                 fof(block_1_not_block_2, hypothesis)
```

```
different(block_1, block_3)
                                                        fof(block_1_not_block_3, hypothesis)
different(block<sub>2</sub>, block<sub>3</sub>)
                                                       fof(block_2_not_block_3, hypothesis)
different(block_1, table)
                                                     fof(block_1_not_table, hypothesis)
different(block<sub>2</sub>, table)
                                                     fof(block_2_not_table, hypothesis)
different(block<sub>3</sub>, table)
                                                     fof(block_3_not_table, hypothesis)
                                       fof(block_1, hypothesis)
a_{-}block(block_{1})
a_{block}(block_2)
                                       fof(block_2, hypothesis)
a_block(block<sub>3</sub>)
                                       fof(block<sub>3</sub>, hypothesis)
a_block(table)
                                     fof(table, hypothesis)
fixed(table)
                                fof(fixed_table, hypothesis)
nonfixed(block_1)
                                          fof(nonfixed_block<sub>1</sub>, hypothesis)
nonfixed(block<sub>2</sub>)
                                          fof(nonfixed_block<sub>2</sub>, hypothesis)
nonfixed(block<sub>3</sub>)
                                          fof(nonfixed_block<sub>3</sub>, hypothesis)
time(time_0)
                                fof(time_0, hypothesis)
time(s(time_0))
                                      fof(time_1, hypothesis)
time(s(s(time_0)))
                                            fof(time_2, hypothesis)
time(s(s(s(time_0))))
                                                 fof(time_3, hypothesis)
\forall i : (\text{time}(i) \Rightarrow (\text{source}(\text{block}_1, i) \text{ or source}(\text{block}_2, i) \text{ or source}(\text{block}_3, i) \text{ or source}(\text{table}, i)))
                                                                                                                                                                                               fof(some_source, hypothesis
\forall i: (time(i) \Rightarrow (destination(block_1, i) \text{ or } destination(block_2, i) \text{ or } destination(block_3, i) \text{ or } destination(table, i)))
\forall i: (time(i) \Rightarrow (object(block_1, i) \text{ or } object(block_2, i) \text{ or } object(block_3, i)))
                                                                                                                                                           fof(some_object, hypothesis)
on(block_1, block_2, time_0)
                                                         fof(initial_1_on2, hypothesis)
clear(block_1, time_0)
                                               fof(initial_clear<sub>1</sub>, hypothesis)
on(block_2, table, time_0)
                                                       fof(initial_2_on_table, hypothesis)
on(block<sub>3</sub>, table, time<sub>0</sub>)
                                                       fof(initial_3_on_table, hypothesis)
                                               fof(initial_clear<sub>3</sub>, hypothesis)
clear(block_3, time_0)
goal\_time(s(s(s(time_0))))
                                                           fof(goal_time<sub>3</sub>, hypothesis)
\forall s: (\text{goal\_time}(s) \Rightarrow (\text{on}(\text{block}_2, \text{block}_3, s) \text{ and } \text{clear}(\text{block}_2, s) \text{ and } \text{on}(\text{block}_3, \text{block}_1, s) \text{ and } \text{on}(\text{block}_1, \text{table}, s)))
                                                                                                                                                                                                                                        fof(goa
PLA027+1.p Blocks A/B/C/D => D/C/B/A
include('Axioms/PLA002+0.ax')
\forall y, x : ((\text{different}(x, y) \text{ or different}(y, x)) \Rightarrow \text{neq}(x, y))
                                                                                                                    fof(different_not_equal, hypothesis)
                                                        fof(block_1\_not\_block_2, hypothesis)
different(block_1, block_2)
different(block_1, block_3)
                                                        fof(block_1_not_block_3, hypothesis)
different(block<sub>1</sub>, block<sub>4</sub>)
                                                        fof(block_1_not_block_4, hypothesis)
different(block_2, block_3)
                                                       fof(block_2_not_block_3, hypothesis)
different(block_2, block_4)
                                                       fof(block_2_not_block_4, hypothesis)
different(block_3, block_4)
                                                       fof(block_3_not_block_4, hypothesis)
different(block_1, table)
                                                     fof(block_1_not_table, hypothesis)
different(block<sub>2</sub>, table)
                                                     fof(block_2\_not\_table, hypothesis)
                                                     fof(block_3_not_table, hypothesis)
different(block_3, table)
different(block<sub>4</sub>, table)
                                                     fof(block_4_not_table, hypothesis)
a_{block}(block_1)
                                       fof(block_1, hypothesis)
a_block(block<sub>2</sub>)
                                       fof(block<sub>2</sub>, hypothesis)
a_block(block<sub>3</sub>)
                                       fof(block<sub>3</sub>, hypothesis)
a_block(block<sub>4</sub>)
                                       fof(block<sub>4</sub>, hypothesis)
a_block(table)
                                     fof(table, hypothesis)
fixed(table)
                                fof(fixed_table, hypothesis)
nonfixed(block_1)
                                          fof(nonfixed\_block_1, hypothesis)
nonfixed(block<sub>2</sub>)
                                          fof(nonfixed_block2, hypothesis)
nonfixed(block<sub>3</sub>)
                                          fof(nonfixed_block<sub>3</sub>, hypothesis)
                                          fof(nonfixed_block<sub>4</sub>, hypothesis)
nonfixed(block_4)
time(time_0)
                                fof(time_0, hypothesis)
time(s(time_0))
                                      fof(time_1, hypothesis)
time(s(s(time_0)))
                                            fof(time_2, hypothesis)
time(s(s(s(time_0))))
                                                 fof(time<sub>3</sub>, hypothesis)
time(s(s(s(time_0)))))
                                                       fof(time_4, hypothesis)
\forall i: (time(i) \Rightarrow (source(block_1, i) \text{ or } source(block_2, i) \text{ or } source(block_3, i) \text{ or } source(block_4, i) \text{ or } source(table, i)))
\forall i: (time(i) \Rightarrow (destination(block_1, i) \text{ or } destination(block_2, i) \text{ or } destination(block_3, i) \text{ or } destination(block_4, i) \text{ or } destination
\forall i: (time(i) \Rightarrow (object(block_1, i) \text{ or object}(block_2, i) \text{ or object}(block_3, i) \text{ or object}(block_4, i)))
                                                                                                                                                                                                 fof(some_object, hypothesi
on(block_1, block_2, time_0)
                                                         fof(initial_1_on<sub>2</sub>, hypothesis)
```

```
clear(block_1, time_0)
                                                                 fof(initial_clear<sub>1</sub>, hypothesis)
on(block_2, block_3, time_0)
                                                                               fof(initial_2_on<sub>3</sub>, hypothesis)
                                                                               fof(initial_3_on<sub>4</sub>, hypothesis)
on(block_3, block_4, time_0)
on(block_4, table, time_0)
                                                                            fof(initial_4_on_table, hypothesis)
goal\_time(s(s(s(time_0)))))
                                                                                         fof(goal_time<sub>4</sub>, hypothesis)
\forall s: (\text{goal\_time}(s) \Rightarrow (\text{on}(\text{block}_4, \text{block}_3, s) \text{ and } \text{clear}(\text{block}_4, s) \text{ and } \text{on}(\text{block}_3, \text{block}_2, s) \text{ and } \text{on}(\text{block}_2, \text{block}_1, s) \text{ and } \text{on}(\text{block}_3, s) \text{ and } \text{on}(\text{block}_4, s) \text{ and } 
PLA028+1.p Blocks A, B => A/B
include('Axioms/PLA002+0.ax')
\forall y, x : ((\text{different}(x, y) \text{ or different}(y, x)) \Rightarrow \text{neq}(x, y))
                                                                                                                                                                 fof(different_not_equal, hypothesis)
different(block_1, block_2)
                                                                             fof(block_1_not_block_2, hypothesis)
different(block_1, table)
                                                                         fof(block_1_not_table, hypothesis)
different(block_2, table)
                                                                         fof(block_2_not_table, hypothesis)
a_{block}(block_1)
                                                       fof(block_1, hypothesis)
                                                       fof(block_2, hypothesis)
a_{block}(block_2)
a_block(table)
                                                   fof(table, hypothesis)
                                            fof(fixed_table, hypothesis)
fixed(table)
nonfixed(block_1)
                                                          fof(nonfixed_block<sub>1</sub>, hypothesis)
nonfixed(block_2)
                                                          fof(nonfixed_block2, hypothesis)
                                             fof(time_0, hypothesis)
time(time_0)
time(s(time_0))
                                                     fof(time_1, hypothesis)
\forall i: (time(i) \Rightarrow (source(block_1, i) \text{ or } source(block_2, i) \text{ or } source(table, i)))
                                                                                                                                                                                                                    fof(some_source, hypothesis)
\forall i: (time(i) \Rightarrow (destination(block_1, i) \text{ or } destination(block_2, i) \text{ or } destination(table, i)))
                                                                                                                                                                                                                                                           fof(some_destination, hypothesis)
\forall i: (time(i) \Rightarrow (object(block_1, i) \text{ or object}(block_2, i)))
                                                                                                                                                                  fof(some_object, hypothesis)
on(block<sub>1</sub>, table, time<sub>0</sub>)
                                                                           fof(initial_1_on_table, hypothesis)
clear(block_1, time_0)
                                                                 fof(initial_clear<sub>1</sub>, hypothesis)
on(block_2, table, time_0)
                                                                            fof(initial_2_on_table, hypothesis)
clear(block_2, time_0)
                                                                 fof(initial_clear<sub>2</sub>, hypothesis)
goal\_time(s(time_0))
                                                                  fof(goal_time<sub>1</sub>, hypothesis)
\forall s: (\text{goal\_time}(s) \Rightarrow (\text{clear}(\text{block}_1, s) \text{ and on}(\text{block}_1, \text{block}_2, s) \text{ and on}(\text{block}_2, \text{table}, s)))
                                                                                                                                                                                                                                                            fof(goal_state, conjecture)
PLA029+2.p Blocks world axioms
include('Axioms/PLA002+0.ax')
PLA029-1.p Blocks world axioms
include('Axioms/PLA001-0.ax')
PLA030-1.p Blocks world difference axioms for 4 blocks
include('Axioms/PLA001-0.ax')
include('Axioms/PLA001-1.ax')
PLA032∧7.p Abductive planning: Bomb-in-the-toilet with detector
include('Axioms/LCL015^0.ax')
include('Axioms/LCL013^5.ax')
include('Axioms/LCL015^1.ax')
defused: mu \rightarrow \$i \rightarrow \$o
                                                                           thf(defused_type, type)
h \colon \mathbf{mu} \to \$\mathbf{i} \to \$\mathbf{o}
                                                          thf(h_type, type)
bomb: mu \rightarrow \$i \rightarrow \$o
                                                                      thf(bomb_type, type)
mvalid@(mbox\_s_4@(mexists\_ind@\lambda b: mu: (bomb@b)))
                                                                                                                                                              thf(ax_1, axiom)
mvalid@(mexists\_ind@\lambda a: mu: (mbox\_s_4@(mforall\_ind@\lambda x: mu: (mimplies@(mand@(bomb@x)@(h@a))@(mbox\_s_4@(bomb@x)a: mu: (mbox\_s_4@(bomb@x)a: mu: (mimplies@(mand@(bomb@x)a)a: mu: (mbox\_s_4@(bomb@x)a: mu: (mbox_s_4)a: mu: (mbox_s
\operatorname{mvalid@(mbox\_s_4@(mforall\_ind@\lambda x: mu: (mexists\_ind@\lambda d: mu: (mbox\_s_4@(mimplies@(mand@(bomb@x)@(h@d))@(defused@nbox\_s_4@(mimplies@nand@nbox\_s_4@(mimplies@nand@nbox_s_a))}
\operatorname{mvalid@(mbox\_s_4@(mforall\_ind@\lambda x: mu: (mexists\_ind@\lambda d: mu: (mimplies@(mand@(bomb@x)@(h@d))@(defused@x)))))}
PLA033∧7.p Abductive planning: Safe problem
include('Axioms/LCL015^0.ax')
include('Axioms/LCL013^5.ax')
include('Axioms/LCL015^1.ax')
closed: mu \rightarrow \$i \rightarrow \$o
                                                                       thf(closed_type, type)
open: mu \rightarrow \$i \rightarrow \$o
                                                                    thf(open_type, type)
h: \mathbf{mu} \to \$\mathbf{i} \to \$\mathbf{o}
                                                          thf(h_type, type)
combo: mu \rightarrow mu \rightarrow \$i \rightarrow \$o
                                                                                           thf(combo_type, type)
o: mu
                           thf(o_type, type)
\forall v: $i: (exists_in_world@o@v)
                                                                                            thf(existence_of_o_ax, axiom)
```

```
n: mu
       thf(n_type, type)
\forall v: $i: (exists_in_world@n@v)
                       thf(existence\_of\_n\_ax, axiom)
d: mu
       thf(d_type, type)
\forall v: $i: (exists_in_world@d@v)
                       thf(existence_of_d_ax, axiom)
mvalid@(mbox\_s_4@(closed@d))
                        thf(ax_2, axiom)
\operatorname{mvalid@(mbox\_s_4@(mor@(combo@d@n)@(mnot@(combo@d@n))))}
                                                 thf(ax_3, axiom)
 mvalid@(mbox\_s_4@(mforall\_ind@\lambda s: mu: (mnot@(mand@(open@s)@(closed@s)))))) \\
                                                            thf(ax_4, axiom)
mvalid@(mexists\_ind@\lambda v: mu: (mbox\_s_4@(combo@d@v)))
                                           thf(ax_5, axiom)
```