REL axioms

RELO001+0.ax Relation Algebra

Vg, x1: 2o Vo1 = 21 V X fof(maddux1_join_commutativity, axiom)

Vg, x1, T2t To V (1 V x2) = (20 V 1) V 22 fof(maddux2_join_associativity, axiom)
Vg, 21: 20 = (g V) V (zy V x1) fof(maddux3_a_kind_of_de_Morgan, axiom)
Vg, z1: 20 Az = (z V 2h)’ fof(maddux4_definiton_of_meet, axiom)

Vg, 1, xo: xo; (T1;22) = (To;x1); T2 fof(composition_associativity, axiom)

Vao: x9;1 = xq fof(composition_identity, axiom)

Vo, x1,xe: (To V 1); T2 = To; T2 V T1; To fof(composition_distributivity, axiom)
Vo: ()~ = xo fof(converse_idempotence, axiom)

Vg, x1: (xo V1)~ =xy Vg fof(converse_additivity, axiom)

Vo, x1: (xos 1) =2 ;2o fof(converse_multiplicativity, axiom)

Vg, x1: g ; (zo; 1) Vi = o) fof(converse_cancellativity, axiom)

Vzo: T =29 V x| fof(def_top, axiom)

Vzo: 0 = xo A ) fof(def_zero, axiom)

RELO001+1.ax Dedkind and two modular laws

Vo, x1, T2t (To; 1 A z2) V (T Aoy xy ); (X1 Axg s 22) = (X0 Amoyxy ); (21 Axy s T2) fof(dedekind law, axiom)
Vo, x1, T2t (To; 1 A z2) V (203 (X1 Ay 22) Ax2) = xo; (X1 Ay 3 T2) A X2 fof(modular_law;, axiom)

Vo, 1,22t (To; 21 Ax2) V ((xo A 2327 );21 Ax2) = (o AT2; 27 ); 21 A X2 fof(modular_laws, axiom)

RELO001-0.ax Relation algebra

avVb=bVa cnf(maddux1_join_commutativity, , axiom)
aV(bVe)=(aVb) Ve cnf(maddux2_join_associativity,, axiom)
a=(a'VV)V(a VD) cnf(maddux3_a_kind_of_de_Morgan, axiom)
aNb=(a V) cnf(maddux4_definiton_of_meet,, axiom)

a; (b;c) = (a;b);¢ cnf(composition_associativity,, axiom)
a;l=a cnf(composition_identity, axiom)

(aVb);e=a;cVb;c cnf(composition_distributivity,, axiom)
(a7)" =a cnf(converse_idempotenceg, axiom)

(aVb)” =a" Vb~ cnf(converse_additivity,, axiom)

(a;0)” =b";a” cnf(converse_multiplicativity, axiom)
a”;(a;b) v =¥ cnf(converse_cancellativity,, axiom)
T=aVvd cnf(def_top, 4, axiom)

0=and cnf(def_zerog3, axiom)

RELO00O1-1.ax Dedkind and two modular laws

(a;bAc)V(aned ) (bAa";¢) =(anebT);(bAa™;c) cnf(dedekind lawq 4, axiom)
(a;bN )V (a;(bAa5¢)Ae)=a;(bAa”;5¢) Ac enf(modular_law_1;5, axiom)

(a;bA )V ((ancb);bAe) =(aNe b );bAc cnf(modular_law_26, axiom)

REL problems

RELO01+1.p There is a (unique) least element, namely 0
include(’Axioms/REL001+0.ax’)

Vao: 0V o = xo fof(goals, conjecture)

RELO001-1.p There is a (unique) least element, namely 0

include(’Axioms/REL001-0.ax’)
0V sky # sky cnf(goals, 4, negated_conjecture)

RELO002+1.p There is a (unique) greatest element, namely x + x’
include(’Axioms/REL001+0.ax’)

Vrg:agVT =T fof(goals, conjecture)

RELO002-1.p There is a (unique) greatest element, namely x + x’

include(’Axioms/REL001-0.ax”)
ski VT #T cnf(goals, 4, negated_conjecture)

RELO003+1.p Isotonicity of converse
x is less or equal than y iff the converse of x is less or equal than converse of y.
include(’Axioms/REL001+0.ax’)
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Voo, z1: ((zoVar =21 = x5 Vay =27) and (zy Vo] =x] = zo V1 =121))

RELO003-1.p Isotonicity of converse

x is less or equal than y iff the converse of x is less or equal than converse of y.

include(’Axioms/REL001-0.ax’)
sky V sky = sko or sk Vsky = sky cnf(goals, 4, negated_conjecture)

sky Vsky =sky = ski Vsky #sky cnf(goals, 7, negated_conjecture)

RELO004+1.p Converse negation are interconvertible
include(’Axioms/REL001+0.ax’)

Vao: 2y = (2g)! fof(goals, conjecture)
RELO004+2.p Converse negation are interconvertible
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)

Vao: 2y = (7)) fof(goals, conjecture)
RELO004+3.p Converse negation are interconvertible
include(’Axioms/REL001+4-0.ax’)
include(’Axioms/REL001+1.ax’)

Vag: 2y = (2g)! fof(goals, conjecture)
RELO004-1.p Converse negation are interconvertible
include(’Axioms/REL001-0.ax’)

sk # (sky) cnf(goals, 4, negated _conjecture)

RELO004-2.p Converse negation are interconvertible
include(’Axioms/REL001-0.ax’)
include(’Axioms/RELO001-1.ax’)

sk # (sky) cnf(goals; 7, negated_conjecture)
RELO004-3.p Converse negation are interconvertible

include(’Axioms/REL001-0.ax’)
include(’Axioms/RELO001-1.ax’)

sk # (sky) cnf(goals; 7, negated _conjecture)

RELO005+1.p Converse distributes over meet
include(’Axioms/REL001+0.ax’)

Vo, x1: (o Ax1)” = x5 Axy fof(goals, conjecture)
RELO005+2.p Converse distributes over meet
include(’Axioms/REL001+0.ax’)

fof(goals, conjecture)

Vg, z1: (o Az1)” V(g Aay) =z Axy and (xy Axy )V (zo Az1)” = (zg Ax1)7) fof(goals, conjecture)

RELO005+3.p Converse distributes over meet
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)

Vg, x1: (xo Ax1)” = x5 Azy fof(goals, conjecture)
RELO005+4.p Converse distributes over meet

include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)

Vg, x1: (o Ax1)” V(g Axy) =2y Az] and (xy Az )V (zo Az1)” = (zo Ax1)7) fof(goals, conjecture)

RELO005-1.p Converse distributes over meet
include(’Axioms/REL001-0.ax’)

(sky A skg)™ # sk Asky cnf(goals, 4, negated_conjecture)

RELO005-2.p Converse distributes over meet
include(’Axioms/REL001-0.ax”)

(skqAsks) "V (sky Asky) = sky Asky = (sky Asky )V (skyAsks)™ # (skyAsks)™

RELO005-3.p Converse distributes over meet
include(’Axioms/REL001-0.ax”)
include(’Axioms/REL001-1.ax’)

(sky Aska)™ # sk Asky cnf(goals, 7, negated_conjecture)

cnf(goals, 4, negated_conjecture)



RELO005-4.p Converse distributes over meet

include(’Axioms/REL001-0.ax’)

include(’Axioms/RELO001-1.ax’)

(skqAska) "V (sky Asky) = sky Asky = (sky Asky )V (skyAsks)™ # (skyAsks)™ cnf(goals, 7, negated_conjecture)

RELO06+1.p For empty meet the converse slides over meet
include(’Axioms/REL001+0.ax’)
Vg, z1: (g A1 =0 = zoAzy =0) fof(goals, conjecture)

RELO06-1.p For empty meet the converse slides over meet
include(’Axioms/REL001-0.ax”)

sk Aska =0 cnf(goals, 4, negated_conjecture)

sky Asky #0 cnf(goals, 5, negated_conjecture)

RELO07+1.p For empty meet the converse slides over meet
include(’Axioms/REL001+0.ax’)
Vzo,z1: (ko Ay =0 = x5 Az =0) fof(goals, conjecture)

RELO07-1.p For empty meet the converse slides over meet
include(’Axioms/REL001-0.ax’)

sk; Asky =0 cnf(goals, 4, negated _conjecture)

ski Asks #0 cnf(goals 5, negated_conjecture)

RELO008+1.p Sequential composition distributes over addition
include(’Axioms/REL001+0.ax’)
Vo, x1, T2 xo; (T1 V T2) = To; 1 V To; T2 fof(goals, conjecture)

RELO008+2.p Sequential composition distributes over addition

include(’Axioms/REL001+0.ax’)

Vo, x1,xe: ((xo; (x1 V x2) V o;21) V To; 22 = ;21 V To; o2 and (xo;x1 V Zo;x2) V o; (21 V 22) = wo; (1 V
x3)) fof(goals, conjecture)

RELO008+3.p Sequential composition distributes over addition
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)

Vg, x1,Te: xo; (T1 V T2) = Xo; 1 V To; To fof(goals, conjecture)

RELO008+4.p Sequential composition distributes over addition

include(’Axioms/REL001+4-0.ax’)

include(’Axioms/REL001+1.ax’)

Vo, 1,220 ((zo; (X1 V @2) V Zo;21) V To; 22 = xo;x1 V To; 2 and (zo; 21 V xo;22) V o; (21 V 22) = x0; (21 V
x2)) fof(goals, conjecture)

RELO008-1.p Sequential composition distributes over addition
include(’Axioms/REL001-0.ax”)
sky; (ska V sks) # sky;ska V sky;sks cnf(goals, 4, negated _conjecture)

RELO008-2.p Sequential composition distributes over addition

include(’Axioms/REL001-0.ax’)

(Skl; Skz \Y Skl; Skd) \Y Skl; (Sk2 \Y Skd) = Skl; (Sk2 \Y Skd) = (Skl; (Skg \Y Skg) V Skl;SkQ) V Skl;sk:j 7& Skl;SkQ \Y
sky; sks cnf(goals, ,, negated_conjecture)

RELOO08-3.p Sequential composition distributes over addition
include(’Axioms/REL001-0.ax’)

include(’Axioms/RELO001-1.ax’)

sky; (ska V sks) # ski;sks Vsky;sks cnf(goals, 7, negated_conjecture)

RELO008-4.p Sequential composition distributes over addition

include(’Axioms/REL001-0.ax’)

include(’Axioms/RELO001-1.ax’)

(Skl; Skz \Y Skl; Skg) \Y Skl; (Sk2 \Y Skg) = Skl; (Skg \Y Skg) = (Skl; (Skg \Y Skg) V Skl;SkQ) V Skl;Skg 7& Skl;SkQ \Y
sky; sk cnf(goals; 7, negated_conjecture)

RELO009+1.p Sequential composition is isotone in both arguments
include(’Axioms/REL001+0.ax’)
Vag, x1,xe: (o V1 =21 = (To;22V x1;T2 = T1; T2 and xo;x0 V To; 21 = Ta;21)) fof(goals, conjecture)



RELO009+2.p Sequential composition is isotone in both arguments

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vg, 21,22: (To Va1 =21 = (To;x2 V 1,22 = T1;x2 and To; T V To; 21 = T2;21)) fof(goals, conjecture)

RELO009-1.p Sequential composition is isotone in both arguments
include(’Axioms/REL001-0.ax’)

sky V sko = sky cnf(goals, 4, negated_conjecture)

sky;sks V sko;sks = sko;sky = skg;sky V sks;ske # sks;sko cnf(goals, 5, negated_conjecture)

RELO009-2.p Sequential composition is isotone in both arguments
include(’Axioms/REL001-0.ax”)

include(’Axioms/REL001-1.ax’)

sk; V sky = skg cnf(goals, 7, negated_conjecture)

sky;sks V sko;sky = sko;sky = skg;sky V sks;sko # sks;sko cnf(goals, g, negated_conjecture)

RELO010+1.p Schroeder equivalence (first implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include(’Axioms/REL001+0.ax’)

Vxo, x1,22: (To; 21 Ax2 =0 = x1 Axy ;22 =0) fof(goals, conjecture)

RELO010+2.p Schroeder equivalence (first implication)

Describes the interplay between composition, converse and complement, w.r.t. containment.
include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vg, 1, x2: (To;z1 Az2 =0 = 21 Azy;20 =0) fof(goals, conjecture)

RELO010-1.p Schroeder equivalence (first implication)

Describes the interplay between composition, converse and complement, w.r.t. containment.
include(’Axioms/REL001-0.ax’)

ski;ska Asks =0 cnf(goals, 4, negated_conjecture)

sko Asky;skg #0 cnf(goals, 5, negated_conjecture)

RELO010-2.p Schroeder equivalence (first implication)

Describes the interplay between composition, converse and complement, w.r.t. containment.
include(’Axioms/REL001-0.ax”)

include(’Axioms/RELO001-1.ax’)

skq;sko Asks =0 cnf(goals, 7, negated_conjecture)

sko Asky;skg # 0 cnf(goals, g, negated_conjecture)

RELO11+1.p Schroeder equivalence (second implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include(’Axioms/REL001+0.ax’)

Vg, 21, 22: (o A2y 522 =0 = x1;20 Axg =0) fof(goals, conjecture)

RELO011+2.p Schroeder equivalence (second implication)

Describes the interplay between composition, converse and complement, w.r.t. containment.
include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vo, 1,22t (o Axy ;22 =0 = z1;20 Axg =0) fof(goals, conjecture)

RELO011-1.p Schroeder equivalence (second implication)

Describes the interplay between composition, converse and complement, w.r.t. containment.
include(’Axioms/REL001-0.ax’)

sky Asky;skg =0 cnf(goals, 4, negated_conjecture)

sko;sky Asks # 0 cnf(goals, 5, negated _conjecture)

RELO011-2.p Schroeder equivalence (second implication)

Describes the interplay between composition, converse and complement, w.r.t. containment.
include(’Axioms/REL001-0.ax’)

include(’Axioms/RELO001-1.ax’)

sky Asky;skg =0 cnf(goals; 7, negated_conjecture)

sko;sky Asks # 0 cnf(goals, g, negated_conjecture)

RELO012+1.p Cancelativity of converse



include(’Axioms/REL001+0.ax’)
Vo, x1: (xos 1) 527 V ah = x4 fof(goals, conjecture)

REL012+42.p Cancelativity of converse
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)

Vo, z1: (xos21) 527 V 2l = x) fof(goals, conjecture)

RELO012-1.p Cancelativity of converse
include(’Axioms/REL001-0.ax’)

(sky;ska);sky Vsk] #sk]  cnf(goals;,, negated_conjecture)

RELO012-2.p Cancelativity of converse
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax”)

(sky;ska)’ssky V sk # ski cnf(goals, 7, negated_conjecture)

RELO013+1.p Zero is annihilator
include(’Axioms/REL001+0.ax’)
Vzo: (20;0 =0 and 0; 29 = 0) fof(goals, conjecture)

RELO013-1.p Zero is annihilator
include(’Axioms/REL001-0.ax’)
ski;0=0 = 0;sk; #0 cnf(goals, 4, negated_conjecture)

RELO014+1.p One is neutral element
include(’Axioms/REL001+0.ax’)
Vao: (xo;1 = z¢ and 1;x¢ = ) fof(goals, conjecture)

RELO014-1.p One is neutral element
include(’Axioms/REL001-0.ax”)

RELO015+1.p TOP is idempotent w.r.t. composition
include(’Axioms/REL001+0.ax’)
TT=T fof(goals, conjecture)

RELO015-1.p TOP is idempotent w.r.t. composition
include(’Axioms/REL001-0.ax’)
T T#T cnf(goals, 4, negated_conjecture)

REL016+1.p A modular law
include(’Axioms/REL001+0.ax’)
Vo, x1, T2t o; X1 A (zo; x2) = o5 (1 A 25) A (z0; 22) fof(goals, conjecture)

REL016+2.p A modular law

include(’Axioms/REL001+0.ax’)

Vg, 1,22t ((zo; 21 A (o3 22)") V (203 (21 A 2h) A (205 22)") = 2o; (21 Axh) A (zo; 22) and (zg; (21 A xh) A (205 22)) V
(zo; 21 A (zo;2)") = To; 21 A (T3 T2)") fof(goals, conjecture)

REL016+3.p A modular law

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vg, 1,2t o; 21 A (To; x2)" = xo; (1 A xh) A (z0; 22) fof(goals, conjecture)

REL016+4.p A modular law

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vo, 21, x2: ((2o; 21 A (o3 22)") V (z0; (1 A 2h) A (205 22)") = mo; (21 Aah) A (zo;22) and (zo; (21 A xh) A (205 22)) V
(zo; 21 A (mo;m2)") = To; 21 A (w03 T2)") fof(goals, conjecture)

RELO016-1.p A modular law

include(’Axioms/REL001-0.ax’)
sky;ska A (sky;sks) # sky; (ska A sky) A (sky;sks)’ cnf(goals, 4, negated_conjecture)

REL016-2.p A modular law

include(’Axioms/REL001-0.ax’)

(sky;ska A (sky;sks)') V (sky; (ska Asks) A (sky;sks)’) = sky; (ska Asks) A (ski;sks) = (sky; (sko Asky) A (sky;sks)') v
(sky;ska A (ski;sks)’) # sky;ska A (sky;sks)’ cnf(goals, 4, negated_conjecture)
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RELO016-3.p A modular law

include(’Axioms/REL001-0.ax’)

include(’Axioms/RELO001-1.ax’)

sky;ska A (sky;sks) # sky; (ska A sky) A (sky;sks)’ cnf(goals, 7, negated _conjecture)

REL016-4.p A modular law

include(’Axioms/REL001-0.ax”)

include(’Axioms/REL001-1.ax’)

(sky;ska A (sky;sks)’) V (sky; (ska Asky) A (sky;sks)') = sky; (ska Asky) A (ski;sks) = (sky; (sko Asky) A (sky;sks)’) v
(skq;ska A (skyjsks)’) # skisska A (sky;sks)’ cnf(goals; 7, negated_conjecture)

RELO17+1.p Another modular law
include(’Axioms/REL001+0.ax’)
Vg, 21, x2: (o;21) V xo; e = (x0; (1 A b)) V 20; 229 fof(goals, conjecture)

RELO017+2.p Another modular law

include(’Axioms/REL001+0.ax’)

Vo, 21,220 ((((xo;21)" V @o; 22) V (203 (1 Axh))) V xo; 22 = (x0; (21 Axh)) V xo; 22 and (((zo; (21 Axh)) V xo;22) V
(zo;21)") V xo; w2 = (x0;21) V X0 T2) fof(goals, conjecture)

RELO017+3.p Another modular law

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vo, 1, T2t (To;21) V 20; 22 = (o5 (1 A b)) V 20522 fof(goals, conjecture)

RELO017+4.p Another modular law

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vo, 1, x2: ((((xo;21)" V @o; 22) V (203 (1 Axh))) V xo; 22 = (20; (21 Axh)) V xo; 22 and (((zo; (x1 Axh)) V xo;22) V
(zo;21)") V xo; w2 = (x0; 1) V X0 T2) fof(goals, conjecture)

RELO017-1.p Another modular law

include(’Axioms/REL001-0.ax’)

ski;ska)” V sky;sks ski;(ska A's V sky; sks cnf(goals, 4, negated_conjecture
ky;sko) V sky;sk ky; (sko A skp)) V sky;sk f(goals,, d_conj

RELO017-2.p Another modular law

include(’Axioms/REL001-0.ax’)

(((skq;ska)' Vsky;sks) V (sky; (ska Asks))') Vsky;sks = (sky; (ska Asky)) Vskyysks = (((sky; (ska Asky)) Vsky;sks) Vv
(sky;ska)’) Vsky;sks # (sky;ska)’ Vsky;sks cnf(goals, 4, negated _conjecture)

RELO017-3.p Another modular law

include(’Axioms/REL001-0.ax’)

include(’Axioms/REL001-1.ax’)

(sky;ska)’ V sky;sks # (sky; (ska A sky))’ V sky;sks cnf(goals, 7, negated_conjecture)

RELO017-4.p Another modular law

include(’Axioms/REL001-0.ax’)

include(’Axioms/RELO001-1.ax’)

(((skq;ska)' Vsky;sks) V (sky; (ska Asks))') Vsky;sks = (sky; (ska Asky)) Vskyysks = (((ski; (ska Asky)) Vsky;sks) Vv
(ski;ska)) Vsky;sks # (sky;sks)’ V sky;sks cnf(goals; 7, negated_conjecture)

RELO018+1.p Vectors are closed under complementation
If x is a vector then overlinex is a vector too.
include(’Axioms/REL001+0.ax’)

Vao: (xo; T =20 = x(; T = () fof(goals, conjecture)

RELO018-1.p Vectors are closed under complementation
If x is a vector then overlinex is a vector too.
include(’Axioms/REL001-0.ax’)

ski; T =5k cnf(goals, 4, negated _conjecture)

ski; T # skj cnf(goals, 5, negated_conjecture)

RELO019+1.p Vectors are closed under meet

If x and y are vectors then x meet y is a vector too.

include(’Axioms/REL001+0.ax’)

Vzo,z1: ((xo; T =29 and x1; T =x1) = (o Ax1); T =29 Axy) fof(goals, conjecture)



REL019+42.p Vectors are closed under meet

If x and y are vectors then x meet y is a vector too.

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vao, z1: ((xo; T =29 and 21; T =21) = (o Ax1); T =29 Ay) fof(goals, conjecture)

RELO019-1.p Vectors are closed under meet

If x and y are vectors then x meet y is a vector too.
include(’Axioms/REL001-0.ax”)

sky; T =sky cnf(goals, 4, negated_conjecture)

sko; T = sko cnf(goals, 5, negated_conjecture)

(sky Aska); T # sky Asks cnf(goals, 4, negated_conjecture)

RELO019-2.p Vectors are closed under meet

If x and y are vectors then x meet y is a vector too.
include(’Axioms/REL001-0.ax’)
include(’Axioms/RELO001-1.ax’)

ski; T = sk cnf(goals; 7, negated_conjecture)

sko; T = sko cnf(goals, g, negated_conjecture)

(sky Aska); T # sky Asks cnf(goals, o, negated_conjecture)

RELO020+1.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001+0.ax’)

Vzo, z1: (x0; T =29 = (zg Al);21 =29 A7) fof(goals, conjecture)

RELO020+2.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Veo, 21 (x0; T =29 = (zg Al);21 =29 A1) fof(goals, conjecture)

RELO020-1.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001-0.ax”)

ski; T =5k cnf(goals, 4, negated_conjecture)

(sky A 1);8ks # sky Asks cnf(goals, 5, negated_conjecture)

RELO020-2.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001-0.ax”)

include(’Axioms/RELO001-1.ax’)

sky; T =sky cnf(goals; 7, negated_conjecture)

(sky A 1);ske # sky A sks cnf(goals, g, negated_conjecture)

RELO021+1.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001+0.ax’)

Vro,z1: (0; T =29 = (o Al);z1V (zo A1) =20 AT1) fof(goals, conjecture)

RELO021+2.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vzo,z1: (0; T =20 = (o Al);z1V (zo A1) =20 A21) fof(goals, conjecture)

RELO021-1.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001-0.ax’)

ski; T = sk cnf(goals, 4, negated _conjecture)

(sky A 1);sks V (sky A sks) # sk A sk cnf(goals; 5, negated _conjecture)

RELO021-2.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.

include(’Axioms/REL001-0.ax’)
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include(’Axioms/RELO001-1.ax’)

ski; T = sk cnf(goals, 7, negated_conjecture)

(skq A 1);sko V (sky A sks) # sk A sks cnf(goals, g, negated_conjecture)
RELO022+1.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001+0.ax’)

Vzo,z1: (0; T =20 = (o Ax1) V(o Al);z1 = (2o AL);21) fof(goals, conjecture)
RELO022+2.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vao,z1: (xo; T =20 = (o Ax1)V (xgAl);z1 = (9 A1);21) fof(goals, conjecture)
RELO022-1.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001-0.ax’)

sky; T =sky cnf(goals, 4, negated _conjecture)

(sky Aska) V (sky A 1);8ke # (sky A 1);ske cnf(goals 5, negated _conjecture)
RELO022-2.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001-0.ax’)

include(’Axioms/REL001-1.ax’)

ski; T =sky cnf(goals, 7, negated_conjecture)

(sky Aska) V (sky A 1);8ks # (sky A 1);sko cnf(goals, g, negated_conjecture)
RELO023+1.p A simple consequence of isotonicity

include(’Axioms/REL001+0.ax’)

Vo, 1,22t (To Az ); (1 A z2) V xo; (X1 A T2) = To; (X1 A T2) fof(goals, conjecture)
REL023+2.p A simple consequence of isotonicity

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vo, x1, x2: (To Axy); (1 Ax2) V xo; (21 A 22) = 205 (21 A 22) fof(goals, conjecture)
RELO023-1.p A simple consequence of isotonicity

include(’Axioms/REL001-0.ax’)

(sky Asky); (ska Asks) V sky; (ske A sks) # sky; (ska A sks) cnf(goals, 4, negated _conjecture)
RELO023-2.p A simple consequence of isotonicity

include(’Axioms/REL001-0.ax’)

include(’Axioms/REL001-1.ax’)

(sky Asky); (ska Asks) V sky; (ske A sks) # sky; (ska A sks) cnf(goals; 7, negated_conjecture)
RELO024+1.p A simple consequence of isotonicity

include(’Axioms/REL001+0.ax’)

Vo, 1,22t (To Az ); (x1 Az2) V (2o Ay ); 22 = (To A2y ); @2 fof(goals, conjecture)
RELO024+2.p A simple consequence of isotonicity

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vo, 1,22t (xo Az ); (1 Ax2) V (o Ay ); 22 = (xo A2y ); X2 fof(goals, conjecture)
RELO024-1.p A simple consequence of isotonicity

include(’Axioms/REL001-0.ax’)

(sky Asky); (ska Asks) V (sky Asky);skg # (sky Asky);sks cnf(goals, 4, negated_conjecture)
RELO024-2.p A simple consequence of isotonicity

include(’Axioms/REL001-0.ax”)

include(’Axioms/RELO001-1.ax’)

(skq Asky); (ska Asks) V (sky Asky);sks # (sky Asky);sks cnf(goals, 7, negated_conjecture)
REL025+1.p For subidentities converse is redundant

If x is a subidentity then the converse of x equals x.
include(’Axioms/REL001+0.ax’)



Voo (zoV1=1 = x5 = z9) fof(goals, conjecture)

RELO025+2.p For subidentities converse is redundant
If x is a subidentity then the converse of x equals x.
include(’Axioms/REL001+0.ax’)

Vog: (1oV1=1 = xy Vag=x0) and (zgV1=1 = zoVa, =z7)) fof(goals, conjecture)

RELO025-1.p For subidentities converse is redundant
If x is a subidentity then the converse of x equals x.
include(’Axioms/REL001-0.ax”)

skivi=1 cnf(goals, 4, negated _conjecture)

sk # sk cnf(goals, 5, negated_conjecture)

RELO025-2.p For subidentities converse is redundant

If x is a subidentity then the converse of x equals x.
include(’Axioms/REL001-0.ax’)

skivli=1 cnf(goals, 4, negated_conjecture)

sky Vsky =ski = ski Vsky #sky cnf(goals; 7, negated_conjecture)

RELO026+1.p Splitting rule for x;y if x is a subidentity

If x is a subidentity then the composition of x and y can be split into a meet.
include(’Axioms/REL001+0.ax’)

Voo, z1: (xoV1=1 = z0; T Ax1 = x0; 1) fof(goals, conjecture)

RELO026+2.p Splitting rule for x;y if x is a subidentity

If x is a subidentity then the composition of x and y can be split into a meet.
include(’Axioms/REL001+4-0.ax”)

Vo, 21: (2oV1=1 = ((xo; TAZ1)Vae; 21 = xo; 21 and ;21 V (20; TAZ1) = xo; T Axq))

RELO026+3.p Splitting rule for x;y if x is a subidentity

If x is a subidentity then the composition of x and y can be split into a meet.
include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Voo, z1: (xoV1=1 = zo; T Axy = x0; 1) fof(goals, conjecture)

RELO026+4.p Splitting rule for x;y if x is a subidentity

If x is a subidentity then the composition of x and y can be split into a meet.
include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vao,z1: (xoV1 =1 = ((zo; TAZ1)Vxo; 21 = 20521 and zo; 1V (zo; T Az1) = xo; TAZ1))

RELO026-1.p Splitting rule for x;y if x is a subidentity

If x is a subidentity then the composition of x and y can be split into a meet.
include(’Axioms/REL001-0.ax’)

skpvi=1 cnf(goals, 4, negated _conjecture)

ski; T A sko # sky;sko cnf(goals; 5, negated_conjecture)

RELO026-2.p Splitting rule for x;y if x is a subidentity

If x is a subidentity then the composition of x and y can be split into a meet.
include(’Axioms/REL001-0.ax”)

skivi=1 cnf(goals, 4, negated _conjecture)

fof(goals, conjecture)

fof(goals, conjecture)

skq;sko V (sky; T Asks) =sky; T Aska = (sky; T Asks) Vsky;ske # sky; sk cnf(goals, 5, negated_conjecture)

RELO026-3.p Splitting rule for x;y if x is a subidentity

If x is a subidentity then the composition of x and y can be split into a meet.
include(’Axioms/REL001-0.ax’)

include(’Axioms/RELO001-1.ax’)

skpvi=1 cnf(goals, 7, negated _conjecture)

skq; T A skg # sky; sk cnf(goals, g, negated_conjecture)

RELO026-4.p Splitting rule for x;y if x is a subidentity

If x is a subidentity then the composition of x and y can be split into a meet.
include(’Axioms/REL001-0.ax”)

include(’Axioms/RELO001-1.ax’)

skivli=1 cnf(goals, 7, negated_conjecture)

skq;sko V (sky; T Asks) =sky; T Aska = (sky; T Asks) Vsky;ske # sky;ske cnf(goals, g, negated_conjecture)
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RELO027+1.p Complements of vectors and subidentities

The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the
corresponding vector x;TOP to a subidentity.

include(’Axioms/REL001+0.ax’)

Veg: (oV1=1 = (zo; T Al=2(A1) fof(goals, conjecture)

RELO027+2.p Complements of vectors and subidentities

The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the
corresponding vector x;TOP to a subidentity.

include(’Axioms/REL001+0.ax’)

Vo (zoV1 =1 = (((zo; T) ALV (zGAL) = 25A1 and (zgAL)V((xo; T) AL) = (z0; T)'AL)) fof(goals, conjecture)

RELO027+3.p Complements of vectors and subidentities

The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the
corresponding vector x;TOP to a subidentity.

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Voo (zoV1=1 = (zo; T Al=2a5A1) fof(goals, conjecture)

RELO027+4.p Complements of vectors and subidentities

The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the
corresponding vector x;TOP to a subidentity.

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vo (zoV1 =1 = (((zo; T) ALV (z5AL) = 25AL and (zgAL)V((xo; T) AL) = (zo; T)'AL)) fof(goals, conjecture)

RELO027-1.p Complements of vectors and subidentities

The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the
corresponding vector x;TOP to a subidentity.

include(’Axioms/REL001-0.ax”)

skivli=1 cnf(goals, 4, negated_conjecture)

(ski; TY A1 #£sk) Al cnf(goals, 5, negated_conjecture)

REL027-2.p Complements of vectors and subidentities

The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the
corresponding vector x;TOP to a subidentity.

include(’Axioms/REL001-0.ax”)

skivli=1 cnf(goals, 4, negated _conjecture)

(SKyAD)V ((sky; TY A1) = (sky; T AL = ((sky; T A1)V (sk)] A1) #sk] Al cnf(goals, 5, negated_conjecture)

REL027-3.p Complements of vectors and subidentities

The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the
corresponding vector x;TOP to a subidentity.

include(’Axioms/REL001-0.ax”)

include(’Axioms/REL001-1.ax’)

skivli=1 cnf(goals; 7, negated_conjecture)

(ski; TY A1 #sk) Al cnf(goals, g, negated_conjecture)

RELO027-4.p Complements of vectors and subidentities

The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the
corresponding vector x;TOP to a subidentity.

include(’Axioms/REL001-0.ax”)

include(’Axioms/RELO001-1.ax’)

skivli=1 cnf(goals; 7, negated_conjecture)

(sSKy ALV ((skis TY A1) = (sky; T A1 = ((sky; T A1)V (sk] A1) #sk] Al cnf(goals, g, negated_conjecture)

RELO028+1.p For subidentities meet and composition coincide
include(’Axioms/REL001+0.ax’)
Vrzo,z1: (zgV1=1land 21 V1 =1) = zp;21 =29 A1) fof(goals, conjecture)

RELO028+2.p For subidentities meet and composition coincide
include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vzo,z1: ((zoV1=1land 21 V1=1) = z¢;21 =29 A1) fof(goals, conjecture)
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RELO028-1.p For subidentities meet and composition coincide
include(’Axioms/REL001-0.ax’)

skivli=1 cnf(goals, 4, negated_conjecture)

skovV1=1 cnf(goals, 5, negated _conjecture)

ski;sky # ski A sks cnf(goals, 4, negated _conjecture)

RELO028-2.p For subidentities meet and composition coincide
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax”)

skivli=1 cnf(goals, 7, negated_conjecture)

skoV1=1 cnf(goals, g, negated_conjecture)

sky;sko #£ sky A sko cnf(goals, ¢, negated_conjecture)

RELO029+1.p Distributivity of subidentities

For subidentities, sequential composition distributes over meet.

include(’Axioms/REL001+0.ax’)

Vxo,x1,22: (toV1=1and 21 V1=1) = xo;22 Az1;22 = (2o Ax1);T2) fof(goals, conjecture)

RELO029+2.p Distributivity of subidentities

For subidentities, sequential composition distributes over meet.

include(’Axioms/REL001+0.ax’)

Vzo,x1,22: (zoV1=1andzy V1 =1) = ((zo;22 Ax1;22) V (To Ax1);22 = (2o A x1);22 and (xg A x1);22 V
(To; o A 15 T9) = To; T2 A T1;22)) fof(goals, conjecture)

REL029+3.p Distributivity of subidentities

For subidentities, sequential composition distributes over meet.

include(’Axioms/REL001+4-0.ax")

include(’Axioms/REL001+1.ax’)

Vrg, z1,22: (opV1=1land 21 V1=1) = xg;22 Ax1;22 = (2o Ax1);Z2) fof(goals, conjecture)

RELO029+4.p Distributivity of subidentities

For subidentities, sequential composition distributes over meet.

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vzo, z1,22: (koV1=1landzy V1 =1) = ((zo;22 Ax1;22)V (2o Ax1);22 = (2o A x1);22 and (xg A x1);22 V
(xo; 2 AN 15 T2) = Xo; T2 A T1;22)) fof(goals, conjecture)

RELO029-1.p Distributivity of subidentities

For subidentities, sequential composition distributes over meet.
include(’Axioms/REL001-0.ax’)

skivli=1 cnf(goals, 4, negated_conjecture)

skoV1=1 cnf(goals, 5, negated _conjecture)

sky;skg A sko; sk # (sky A ska);sks cnf(goals, 4, negated _conjecture)

RELO029-2.p Distributivity of subidentities

For subidentities, sequential composition distributes over meet.

include(’Axioms/REL001-0.ax”)

skivi=1 cnf(goals, 4, negated _conjecture)

skoV1=1 cnf(goals, 5, negated_conjecture)

(Sk1 A Skz);Skg vV (Sk1;Sk3 A Skz;Skg) = Skl;Skg A SkQ;Skg = (Skl;Skg AN SkQ;Skg) V (Skl A SkQ);Skg 7é (Skl A
sko); sks cnf(goals, 4, negated_conjecture)

RELO029-3.p Distributivity of subidentities

For subidentities, sequential composition distributes over meet.
include(’Axioms/REL001-0.ax’)

include(’Axioms/REL001-1.ax’)

skpvi=1 cnf(goals, 7, negated _conjecture)

skoV1=1 cnf(goals, g, negated_conjecture)

skq;sks A sko;sks # (sky A sks); sks cnf(goals, ¢, negated_conjecture)

RELO029-4.p Distributivity of subidentities

For subidentities, sequential composition distributes over meet.
include(’Axioms/REL001-0.ax’)
include(’Axioms/RELO001-1.ax’)

skivli=1 cnf(goals; 7, negated_conjecture)
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skoV1=1 cnf(goals, g, negated_conjecture)
(Sk1 A Skg);skg \Y (Sk1;Sk3 A SkQ;Skg) = Skl;Skg A SkQ;Skg = (Skl;Skg AN SkQ;Skg) V (Skl A SkQ);Skg 7é (Skl A
sko); sks cnf(goals, ¢, negated_conjecture)

RELO030+1.p Propagation of subidentities
include(’Axioms/REL001+0.ax’)
Vo, x1,22: (o V1=1 = mo;a1 Axh = zo;21 A (T0; 22)") fof(goals, conjecture)

RELO030+2.p Propagation of subidentities

include(’Axioms/REL001+0.ax’)

Vo, x1, 22t (toV1 =1 = ((zo;x1Azh)V(zo; 21 A (T0;22)") = zo; 21 A (205 22)" and (xo; 1 A(zo; x2)" )V (z0; 1 AZh) =
xo; 1 A Th)) fof(goals, conjecture)

RELO030+3.p Propagation of subidentities

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vg, 21,22: (o V1=1 = xg;21 Aah = xo;21 A (205 22)") fof(goals, conjecture)

RELO030+4.p Propagation of subidentities

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vo, 1,22t (oV1 =1 = ((xo;z1AZL)V (z0; 21 A (205 22)") = To; 1 A(20;22)" and (xo; z1 A (20 22) )V (203 21 ATh) =
To; w1 A xh)) fof(goals, conjecture)

RELO030-1.p Propagation of subidentities
include(’Axioms/REL001-0.ax’)

skivli=1 cnf(goals, 4, negated_conjecture)

sky;sko A sky # ski;ska A (sky;sks)’ cnf(goals, 5, negated_conjecture)

RELO030-2.p Propagation of subidentities

include(’Axioms/REL001-0.ax’)

skivli=1 cnf(goals, 4, negated_conjecture)

(sky;sko Asky) V (sky;ska A (sky;skz)’) = sky;ska A (sky;sks) = (sky;ska A (sky;sks)’) V (sky;ska Asky) # sky;ska A
sk cnf(goals; 5, negated _conjecture)

RELO030-3.p Propagation of subidentities
include(’Axioms/REL001-0.ax’)

include(’Axioms/REL001-1.ax’)

skivli=1 cnf(goals, 7, negated_conjecture)

sky;sko A sky # ski;skg A (sky;sks)’ cnf(goals, g, negated_conjecture)

RELO030-4.p Propagation of subidentities

include(’Axioms/REL001-0.ax”)

include(’Axioms/RELO001-1.ax’)

skivli=1 cnf(goals; 7, negated_conjecture)

(skq;ska Asky) V (sky;ska A (skq;sks)’) = sky;ska A (skyssks)’ = (sky;ska A (sky;sks)’) V (sky;ske Asky) # sky;ska A
sk cnf(goals, g, negated_conjecture)

RELO031+1.p Partial functions are closed under composition
If x and y are partial functions then x;y is also a partial functions.
include(’Axioms/REL001+0.ax’)

Voo, z1: ((zgszoV1i=1land 27521 V1=1) = (zo;21)7;(zo;21) V1=1) fof(goals, conjecture)

RELO031+2.p Partial functions are closed under composition

If x and y are partial functions then x;y is also a partial functions.
include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vg, z1: ((zyszoV1i=1land 27521 V1=1) = (zo;21)7;(zo;21)V1=1) fof(goals, conjecture)
RELO031-1.p Partial functions are closed under composition

If x and y are partial functions then x;y is also a partial functions.

include(’Axioms/REL001-0.ax’)

ski;sk; v1i=1 cnf(goals, 4, negated_conjecture)

sky ;skoV1=1 cnf(goals, 5, negated_conjecture)

(skq;ska)™; (skyjska) V1 #1 cnf(goals, 4, negated_conjecture)



RELO031-2.p Partial functions are closed under composition

If x and y are partial functions then x;y is also a partial functions.
include(’Axioms/REL001-0.ax’)

include(’Axioms/REL001-1.ax’)

ski;sk;v1i=1 cnf(goals, 7, negated_conjecture)

sky;sko V1=1 cnf(goals, g, negated_conjecture)

(ski;ska)7; (sky;ska) V1 #£1 cnf(goals, ¢, negated_conjecture)

RELO032+1.p Subdistributivity

Sequential composition subdistributes over meet, i.e. x;(y meet z) < x;y meet x;z.

include(’Axioms/REL001+0.ax’)

Vg, 1, T2t To; (X1 A T2) V (To; X1 A To; T2) = Zo; 1 A Xo; T2 fof(goals, conjecture)

RELO032+2.p Subdistributivity

Sequential composition subdistributes over meet, i.e. x;(y meet z) < x;y meet x;z.

include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)

Vg, x1,x2: To; (T1 A 22) V (20521 A Zo; T2) = To; X1 A Xo; To fof(goals, conjecture)

RELO032-1.p Subdistributivity

Sequential composition subdistributes over meet, i.e. x;(y meet z) < x;y meet x;z.

include(’Axioms/REL001-0.ax”)

sky; (ska A sks) V (sky; sko A sky;sks) # sky;sko A sky;sks cnf(goals, 4, negated _conjecture)

RELO032-2.p Subdistributivity

Sequential composition subdistributes over meet, i.e. x;(y meet z) < x;y meet x;z.

include(’Axioms/REL001-0.ax”)
include(’Axioms/RELO001-1.ax’)

skq; (ska Asks) V (sky; sko A skyjsks) # sky;ske A sky;sks cnf(goals, 7, negated_conjecture)
RELO033+1.p Sequential composition distributes in each argument of meet

If x is a vector then sequential composition distributes over meet.
include(’Axioms/REL001+0.ax’)

Vag, x1,x2: (xo; T =20 = (o AT1);T2 = To AX1;22) fof(goals, conjecture)

RELO033+2.p Sequential composition distributes in each argument of meet

If x is a vector then sequential composition distributes over meet.
include(’Axioms/REL001+0.ax’)
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on,xl,zgz (ZL‘(),T = X = (({170 A $1);$2 V (xo A I]Sl;l’g) = X A T1;T2 and (130 A $1;l‘2) V (xo A I]Sl);l‘g = (1’0 A\

x1);x2)) fof(goals, conjecture)

RELO033+3.p Sequential composition distributes in each argument of meet

If x is a vector then sequential composition distributes over meet.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)

Vo, 21, 22: (xo; T =29 = (o Ax1);22 = 2o A Z1;T2) fof(goals, conjecture)

RELO033+4.p Sequential composition distributes in each argument of meet

If x is a vector then sequential composition distributes over meet.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)

Vo, 21,22: (Xo; T = 20 = (o Ax1);22 V (o A x1;22) = 29 A 21522 and (zg A x1522) V (2o A 21);22 = (2o A

x1);x2)) fof(goals, conjecture)

RELO033-1.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include(’Axioms/REL001-0.ax’)

sky; T =sky cnf(goals, 4, negated _conjecture)

(sky A ska);sks # sky A ska;sks cnf(goals, 5, negated_conjecture)

RELO033-2.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include(’Axioms/REL001-0.ax’)

sky; T =sky cnf(goals, 4, negated _conjecture)

(Sk1 /\Skg); Skg\/(Skl /\Skg; Skg) = Sk1 /\SkQ; Sk3 = (Skl /\SkQ; Skg)\/(skl /\Skg); Sk3 # (Skl /\Skg); Skg

cnf(goals, 5, negated_conje
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RELO033-3.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include(’Axioms/REL001-0.ax’)

include(’Axioms/REL001-1.ax”)

ski; T =sky cnf(goals, 7, negated _conjecture)

(ski A sko);sks # sky A sko;sks cnf(goals, g, negated_conjecture)

RELO033-4.p Sequential composition distributes in each argument of meet

If x is a vector then sequential composition distributes over meet.

include(’Axioms/REL001-0.ax’)

include(’Axioms/REL001-1.ax”)

ski; T = sk cnf(goals, 7, negated_conjecture)

(skiAsks); skaV(skyAskg; sks) = skyAska;sky = (skyjAsks;sks)V(skyAsks); skg # (skiAsks); sks cnf(goals, g, negated_conje
REL034+1.p Propagation of vectors

Pre-assertion x to z can be propagated as post-assertion xA to the left cofactor y.
include(’Axioms/REL001+0.ax’)

Vo, 1, x2: (xo; T =20 = @13 (@0 Ax2) V (T1 Az ); (o Axe) = (21 Az ); (o A x2)) fof(goals, conjecture)
REL034+2.p Propagation of vectors

Pre-assertion x to z can be propagated as post-assertion xA to the left cofactor y.
include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vo, 1,2t (xo; T =20 = x1;3 (@0 Ax2) V (T1 Ay ); (o Axe) = (21 Ay ); (o A x2)) fof(goals, conjecture)
RELO034-1.p Propagation of vectors

Pre-assertion x to z can be propagated as post-assertion xA to the left cofactor y.
include(’Axioms/REL001-0.ax’)

sky; T =sky cnf(goals, 4, negated _conjecture)

ska; (sky Asks) V (ske A sky); (sky Asks) # (ska Asky); (sky A sks) cnf(goals, 5, negated_conjecture)
RELO034-2.p Propagation of vectors

Pre-assertion x to z can be propagated as post-assertion xA to the left cofactor y.
include(’Axioms/REL001-0.ax”)

include(’Axioms/RELO001-1.ax’)

ski; T = sk cnf(goals, 7, negated_conjecture)

sko; (sky Asks) V (ska A sky); (sky Asks) # (ska A sky); (sky A sks) cnf(goals, g, negated_conjecture)
RELO035+1.p Propagation of vectors

Pre-assertion x to z can be propagated as post-assertion xA to the left cofactor y.
include(’Axioms/REL001+0.ax’)

Vg, x1,x2: (xo; T =20 = (21 Axy); (o A xa) = x1; (T0 A 22)) fof(goals, conjecture)
RELO035+2.p Propagation of vectors

Pre-assertion x to z can be propagated as post-assertion xA to the left cofactor y.
include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vo, 1,22t (xo; T =20 = (z1 Axy); (2o Ax2) =215 (T0 A 22)) fof(goals, conjecture)
RELO035-1.p Propagation of vectors

Pre-assertion x to z can be propagated as post-assertion xA to the left cofactor y.
include(’Axioms/REL001-0.ax”)

ski; T =sky cnf(goals, 4, negated _conjecture)

(ske Asky); (sky Asks) # sko; (sky A sks) cnf(goals, 5, negated_conjecture)

RELO035-2.p Propagation of vectors

Pre-assertion x to z can be propagated as post-assertion xA to the left cofactor y.
include(’Axioms/REL001-0.ax”)

include(’Axioms/REL001-1.ax’)

ski; T = sk cnf(goals, 7, negated_conjecture)

(sko Asky); (sky Asks) # ska; (sky A sks) cnf(goals, g, negated_conjecture)

REL036+1.p Propagation of vectors

Post-assertion xA to y can be propagated as pre-assertion x to the right cofactor z.
include(’Axioms/REL001+0.ax’)
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Vg, x1,z2: (xo; T =20 = (m1 Axy);xe V(21 Axg); (To Axa) = (1 Axy); (o A z2)) fof(goals, conjecture)

RELO036+2.p Propagation of vectors

Post-assertion xA to y can be propagated as pre-assertion x to the right cofactor z.
include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vo, x1,22: (To; T =20 = (v1 Az );x2V (z1 Axy); (o Aza) = (21 Ay ); (o A x2)) fof(goals, conjecture)
RELO036-1.p Propagation of vectors

Post-assertion xA to y can be propagated as pre-assertion x to the right cofactor z.
include(’Axioms/REL001-0.ax’)

ski; T =sky cnf(goals, 4, negated _conjecture)

(ska Asky);sks V (ska A sky); (sky A skg) # (ska Asky); (sky A sks) cnf(goals, 5, negated _conjecture)
RELO036-2.p Propagation of vectors

Post-assertion xA to y can be propagated as pre-assertion x to the right cofactor z.
include(’Axioms/REL001-0.ax”)

include(’Axioms/RELO001-1.ax”)

sky; T =sky cnf(goals; 7, negated_conjecture)

(ska A sky);sks V (ska Asky); (sky A sks) # (ska Asky); (sky A sks) cnf(goals; g, negated_conjecture)
RELO037+1.p Propagation of vectors

Post-assertion xA to y can be propagated as pre-assertion x to the right cofactor z.
include(’Axioms/REL001+0.ax’)

Vg, x1,x2: (xo; T =20 = (m1 Axy); (o Axa) = (21 Ay ); 2) fof(goals, conjecture)
RELO037+2.p Propagation of vectors
Post-assertion xA to y can be propagated as pre-assertion x to the right cofactor z.

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vo, x1,22: (To; T =20 = (v1 Axy); (o Az2) = (21 Ay ); 22) fof(goals, conjecture)

RELO037-1.p Propagation of vectors

Post-assertion xA to y can be propagated as pre-assertion x to the right cofactor z.
include(’Axioms/REL001-0.ax’)

ski; T = sk cnf(goals, 4, negated _conjecture)

(ska Asky); (sky Asks) # (ska A sky);sks cnf(goals, 5, negated _conjecture)

RELO037-2.p Propagation of vectors

Post-assertion xA to y can be propagated as pre-assertion x to the right cofactor z.
include(’Axioms/REL001-0.ax”)

include(’Axioms/REL001-1.ax’)

sky; T =sky cnf(goals, 7, negated_conjecture)

(ska A sky); (sky Asks) # (ska Asky);sks cnf(goals, g, negated_conjecture)

REL038+1.p Modular law

include(’Axioms/REL001+0.ax’)

Vg, x1, T2t (To; 21 A 22) V (203 (X1 Ay 22) Ax2) = xo; (X1 Ay 5 T2) A X2 fof(goals, conjecture)
RELO038-1.p Modular law

include(’Axioms/REL001-0.ax")

(sky;ska A sks) V (sky; (ska A sky';sks) A sks) # sky; (ska A sky';sks) A sks cnf(goals, 4, negated_conjecture)
REL039+1.p Dedekind law

include(’Axioms/REL001+0.ax’)

Vo, x1, T2t (To; 21 A z2) V (T Aoy 2y ); (X1 Ay s 22) = (T Az 2y )5 (T1 Az s T2) fof(goals, conjecture)
RELO039-1.p Dedekind law

include(’Axioms/REL001-0.ax’)

(sky;skaAsks)V (sky Asks;sky ); (ska Asky s sks) # (sky Asks; sk ); (ska Asky s sks) cnf(goals, 4, negated _conjecture)
REL040+1.p Partial functions distribute over meet under sequential comp’n

If x is partial function then x;(y meet z) = x;y meet x;z.
include(’Axioms/REL001+0.ax’)

Vo, 1,22t (g ;00 V1=1 = xo; (21 A x2) = 20521 A Z0; T2) fof(goals, conjecture)
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REL040+2.p Partial functions distribute over meet under sequential comp’n

If x is partial function then x;(y meet z) = x;y meet x;z.

include(’Axioms/REL001+0.ax’)

Vo, 1, x2: (g ;20 V1=1 = (x;(x1 Ax2)V (To; 21 AZ0; T2) = To; T1 AZo; T2 and (xo; x1 Azo; T2) V To; (1 Az2) =
xo; (1 A 22))) fof(goals, conjecture)

REL040+3.p Partial functions distribute over meet under sequential comp’n
If x is partial function then x;(y meet z) = x;y meet x;z.
include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vo, 1, x2: (g 20 V1=1 = zo;(x1 A x2) = xo; T1 A Z0; T2) fof(goals, conjecture)

REL040+4.p Partial functions distribute over meet under sequential comp’n

If x is partial function then x;(y meet z) = x;y meet x;z.

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vo, 1, x2: (g 320V =1 = (x0; (w1 Az2)V (To; 21 AZ0o; T2) = Zo; 21 AZo; T2 and (xo; 21 Azo; x2) V To; (21 Az2) =
xo; (1 A 22))) fof(goals, conjecture)

RELO040-1.p Partial functions distribute over meet under sequential comp’n
If x is partial function then x;(y meet z) = x;y meet x;z.
include(’Axioms/REL001-0.ax”)

ski;sk;v1i=1 cnf(goals, 4, negated_conjecture)

sky; (skg A sks) # sky;ska A sky;sks cnf(goals, 5, negated_conjecture)

RELO040-2.p Partial functions distribute over meet under sequential comp’n

If x is partial function then x;(y meet z) = x;y meet x;z.

include(’Axioms/REL001-0.ax”)

ski;sk;v1=1 cnf(goals, 4, negated_conjecture)

Skl; (Sk2 AN Skg) \Y (Skl;SkQ A Skl; Skg) = Skl; Sk2 A Skl;Skg = (Skl; Skz A Sk1;8k3) \Y Skl; (Skz A Skg) # Skl; (Skg AN
sks) cnf(goals; 5, negated _conjecture)

RELO040-3.p Partial functions distribute over meet under sequential comp’n
If x is partial function then x;(y meet z) = x;y meet x;z.
include(’Axioms/REL001-0.ax’)

include(’Axioms/REL001-1.ax’)

ski;sk;v1=1 cnf(goals, 7, negated_conjecture)

sky; (ska A sks) # sky;ska A sky;sks cnf(goals, g, negated_conjecture)

RELO040-4.p Partial functions distribute over meet under sequential comp’n

If x is partial function then x;(y meet z) = x;y meet x;z.

include(’Axioms/REL001-0.ax’)

include(’Axioms/REL001-1.ax’)

ski;sk;v1=1 cnf(goals, 7, negated_conjecture)

Skl; (Sk2 A Skg) vV (Skl;SkQ AN Skl; Skg) = Skl; Sk2 A Skl;Skg = (Skl; Skz A Skl;Skg) \Y Skl; (Skz A Skg) 7& Skl; (Skg AN
sks) cnf(goals, g, negated_conjecture)

REL041+1.p Equivalence of different definitions of partial functions

x is a partial function if xA;x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.

include(’Axioms/REL001+0.ax’)

Voo (zg ;20 V1=1 = Vai: zo;21 A xo; 2] =0) fof(goals, conjecture)

RELO041+2.p Equivalence of different definitions of partial functions

x is a partial function if xA;x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Voo (zy ;20 V1I=1 = Vai:zo;21 Azo; 2] =0) fof(goals, conjecture)

RELO041-1.p Equivalence of different definitions of partial functions

x is a partial function if xA;x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.

include(’Axioms/REL001-0.ax’)
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ski;sk;v1i=1 cnf(goals, 4, negated _conjecture)
sky;ska A sky;skh # 0 cnf(goals, 5, negated_conjecture)

RELO041-2.p Equivalence of different definitions of partial functions

x is a partial function if xA;x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.

include(’Axioms/REL001-0.ax”)

include(’Axioms/REL001-1.ax’)

ski;sk;v1=1 cnf(goals, 7, negated_conjecture)

sky;skg A sky;sky # 0 cnf(goals, g, negated_conjecture)

REL042+1.p Equivalence of different definitions of partial functions

x is a partial function if xA;x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.

include(’Axioms/REL001+0.ax’)

Vro: (Vai: zo;x1 Azo; ) =0 = zy;20V1=1) fof(goals, conjecture)

REL042+2.p Equivalence of different definitions of partial functions

x is a partial function if xA;x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vao: (Vai: zo;z1 Azo; ) =0 = zp;20V1I=1) fof(goals, conjecture)

RELO042-1.p Equivalence of different definitions of partial functions

x is a partial function if xA;x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.

include(’Axioms/REL001-0.ax”)

ski;a Asky;a’ =0 cnf(goals, 4, negated _conjecture)

sky;sk; V1#1 enf(goals, 5, negated _conjecture)

RELO042-2.p Equivalence of different definitions of partial functions

x is a partial function if xA;x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.

include(’Axioms/REL001-0.ax’)

include(’Axioms/RELO001-1.ax’)

ski;a Asky;al =0 cnf(goals; 7, negated _conjecture)

ski;sk; V1#1 cnf(goals, g, negated_conjecture)

RELO043+1.p Shunting rule
include(’Axioms/REL001+4-0.ax’)

Yz, 1,22t (To; 2] VX2 =22 = zhx1 V) = () fof(goals, conjecture)
REL043+2.p Shunting rule

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vo, 1,22t (To; 2] Vo2 =22 = zhx1 V) = x() fof(goals, conjecture)
RELO043-1.p Shunting rule

include(’Axioms/REL001-0.ax’)

sky;sky Vsks = sks cnf(goals, 4, negated _conjecture)

skj;sky V sk # ski cnf(goals, 5, negated_conjecture)

RELO043-2.p Shunting rule
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)

sky;sky Vsks = sks cnf(goals, 7, negated_conjecture)
skj;sky V sk # ski cnf(goals, g, negated_conjecture)

REL044+1.p Shunting rule

include(’Axioms/REL001+0.ax’)

Vo, 1,22t (0,21 V oy =ah = x9;2] Vo = o) fof(goals, conjecture)
REL044+2.p Shunting rule

include(’Axioms/REL001+0.ax’)
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include(’Axioms/REL001+1.ax’)

Vg, x1, xo: (zh;21 V oy =z = x9;2] Vo = o) fof(goals, conjecture)
RELO044-1.p Shunting rule

include(’Axioms/REL001-0.ax”)

ski;sky V sky = skj cnf(goals, 4, negated_conjecture)

sks; sk, V sky # sky cnf(goals, 5, negated _conjecture)

RELO044-2.p Shunting rule
include(’Axioms/REL001-0.ax”)
include(’Axioms/RELO001-1.ax’)

ski;sko V sky = skj cnf(goals, 7, negated_conjecture)
sks;sky V sky # sky cnf(goals, g, negated _conjecture)

REL045+1.p An unfold law
include(’Axioms/REL001+0.ax’)
Vo zo V (203 2y ); xo = (@03 g ); To fof(goals, conjecture)

RELO045+2.p An unfold law
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)

Vo zo V (z0; 2y ); o = (@03 g ); To fof(goals, conjecture)

RELO045-1.p An unfold law
include(’Axioms/REL001-0.ax’)
sky V (sky;sky);sky # (skyssky);sky cnf(goals, 4, negated _conjecture)

RELO045-2.p An unfold law

include(’Axioms/REL001-0.ax’)

include(’Axioms/RELO001-1.ax’)

sky V (sky;sky);sky # (skissky);sky cnf(goals, 7, negated _conjecture)

REL046+1.p Meet splitting

Meet can be split into 2 inequations iff the meet is on the right hand side of an inequation.
include(’Axioms/REL001+0.ax’)

Vo, x1,x2: (To V (x1 Ax2) =21 A2 = (2o Va1 =1 and z¢ V 23 = 22)) fof(goals, conjecture)

RELO046-1.p Meet splitting

Meet can be split into 2 inequations iff the meet is on the right hand side of an inequation.
include(’Axioms/REL001-0.ax”)

sky V (sko A skz) = ska A sks cnf(goals, 4, negated _conjecture)

sky V sky = sky = sk V sks #£ skg cnf(goals, 5, negated_conjecture)

REL047+1.p Meet splitting

Meet can be split into 2 inequations iff the meet is on the right hand side of an inequation.
include(’Axioms/REL001+0.ax’)

Vo, 21, 22: (o Vor =21 and 2o V 29 = x2) = zo V (21 Ax2) = 21 A T2) fof(goals, conjecture)

RELO047-1.p Meet splitting

Meet can be split into 2 inequations iff the meet is on the right hand side of an inequation.
include(’Axioms/REL001-0.ax’)

skq V sko = sky cnf(goals, 4, negated_conjecture)

sky V sks = sks cnf(goals; 5, negated_conjecture)

sky V (sko A sksz) # ska A sks cnf(goals, 4, negated _conjecture)

REL048+1.p Join splitting

Join can be split into 2 inequations iff the join is on the left hand side of an inequation.
include(’Axioms/REL001+0.ax’)

Vao,x1,x2: ((To V1) Vas =x2 = (2o V2 =29 and x1 V x2 = 2)) fof(goals, conjecture)
RELO048-1.p Join splitting

Join can be split into 2 inequations iff the join is on the left hand side of an inequation.
include(’Axioms/REL001-0.ax”)

(ski V sko) V skg = skg cnf(goals, 4, negated _conjecture)

sky V skg = sky = skg V sks #£ skg cnf(goals, 5, negated_conjecture)

REL049+1.p Join splitting



Join can be split into 2 inequations iff the join is on the left hand side of an inequation.
include(’Axioms/REL001+0.ax’)
Vag,x1,xe: (o Va1 =21 and ze Va1 =21) = (o Vas) Ve =1x1) fof(goals, conjecture)

RELO049-1.p Join splitting

Join can be split into 2 inequations iff the join is on the left hand side of an inequation.
include(’Axioms/REL001-0.ax’)

sky V sky = sko cnf(goals, ,, negated_conjecture)

sks V sko = sko cnf(goals; 5, negated_conjecture)

(sky V sks) V sky # sk cnf(goals, 4, negated _conjecture)

RELO050+1.p The complement of x;TOP is left ideal
include(’Axioms/REL001+0.ax’)
Vao: (xo; T) = (xo; T); T fof(goals, conjecture)

RELO050+2.p The complement of x;TOP is left ideal
include(’Axioms/REL001+0.ax’)
Vo ((xo; T) V (xo; T)5T = (z0; T); T and (xo; T)5 TV (x0; T) = (z0; T)) fof(goals, conjecture)

RELO050+3.p The complement of x;TOP is left ideal
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)

Vao: (xo; T) = (xo; T); T fof(goals, conjecture)

RELO050+4.p The complement of x;TOP is left ideal

include(’Axioms/REL001+0.ax’)

include(’Axioms/REL001+1.ax’)

Vao: ((xo; T) V (xo; T)5T = (z0; T); T and (xo; T) 5TV (x0; T) = (z0; T)) fof(goals, conjecture)

RELO050-1.p The complement of x;TOP is left ideal
include(’Axioms/REL001-0.ax’)
(ski; T) # (sky; T); T cnf(goals, 4, negated_conjecture)

RELO050-2.p The complement of x;TOP is left ideal
include(’Axioms/REL001-0.ax’)

(sky; T) V (sky; )T = (sky; T)5 T = (sky; T); TV (sky; T) # (sky; T) cnf(goals, 4, negated_conjecture)

RELO050-3.p The complement of x;TOP is left ideal
include(’Axioms/REL001-0.ax”)
include(’Axioms/RELO001-1.ax’)

(ski; T) # (sky; T T cnf(goals, 7, negated_conjecture)

RELO050-4.p The complement of x;TOP is left ideal
include(’Axioms/REL001-0.ax’)
include(’Axioms/RELO001-1.ax’)

(ski; T) V (sky; T); T = (sky; T);5 T = (sky; T); TV (sky; T) # (sky; T) enf(goals, 7, negated _conjecture)

RELO051+1.p Dense linear ordering

Va: o(a,a) fof( fo1, axiom)

Va,b: ((a # b and o(a,b)) = —o(b,a)) fof( foz, axiom)

Va,b,c: ((o(a,b) and o(b,c)) = o(a,c)) fof( fo3, axiom)

Va,b: ((a # b and o(a,b)) = (o(a, f(a,b)) and o(f(a,b),b))) fof( foa, axiom)
Va,b: (f(a,b) # a and f(a,b) #b) fof(f05, axiom)

Ya,b: (o(a,b) or o(b,a)) fof( fos, axiom)

RELO052+1.p Non-discrete dense ordering

Ya: o(a,a) fof( fo1, axiom)

Va,b: ((a # b and o(a,b)) = —o(b,a)) fof( foz, axiom)

Va,b,c: ((o(a,b) and o(b,c)) = o(a,c)) fof( fos, axiom)

Va,b: ((a # b and o(a,b)) = (o(a, f(a,b)) and o(f(a,b),b))) fof( fos, axiom)
Va,b: (f(a,b) # a and f(a,b) # b) fof( fo5, axiom)

Ja, b: (o(a,b) and a # b) fof( fog, axiom)

RELO053+1.p Relation Algebra

include(’Axioms/REL001+0.ax’)

RELO053-1.p Relation Algebra
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include(’Axioms/REL001-0.ax’)



