
REL axioms
REL001+0.ax Relation Algebra
∀x0, x1: x0 ∨ x1 = x1 ∨ x0 fof(maddux1 join commutativity, axiom)
∀x0, x1, x2: x0 ∨ (x1 ∨ x2) = (x0 ∨ x1) ∨ x2 fof(maddux2 join associativity, axiom)
∀x0, x1: x0 = (x′

0 ∨ x′
1)′ ∨ (x′

0 ∨ x1)′ fof(maddux3 a kind of de Morgan, axiom)
∀x0, x1: x0 ∧ x1 = (x′

0 ∨ x′
1)′ fof(maddux4 definiton of meet, axiom)

∀x0, x1, x2: x0; (x1; x2) = (x0; x1); x2 fof(composition associativity, axiom)
∀x0: x0; 1 = x0 fof(composition identity, axiom)
∀x0, x1, x2: (x0 ∨ x1); x2 = x0; x2 ∨ x1; x2 fof(composition distributivity, axiom)
∀x0: (x`

0 )` = x0 fof(converse idempotence, axiom)
∀x0, x1: (x0 ∨ x1)` = x`

0 ∨ x`
1 fof(converse additivity, axiom)

∀x0, x1: (x0; x1)` = x`
1 ; x`

0 fof(converse multiplicativity, axiom)
∀x0, x1: x`

0 ; (x0; x1)′ ∨ x′
1 = x′

1 fof(converse cancellativity, axiom)
∀x0: > = x0 ∨ x′

0 fof(def top, axiom)
∀x0: 0 = x0 ∧ x′

0 fof(def zero, axiom)

REL001+1.ax Dedkind and two modular laws
∀x0, x1, x2: (x0; x1 ∧ x2) ∨ (x0 ∧ x2; x`

1 ); (x1 ∧ x`
0 ; x2) = (x0 ∧ x2; x`

1 ); (x1 ∧ x`
0 ; x2) fof(dedekind law, axiom)

∀x0, x1, x2: (x0; x1 ∧ x2) ∨ (x0; (x1 ∧ x`
0 ; x2) ∧ x2) = x0; (x1 ∧ x`

0 ; x2) ∧ x2 fof(modular law1, axiom)
∀x0, x1, x2: (x0; x1 ∧ x2) ∨ ((x0 ∧ x2; x`

1 ); x1 ∧ x2) = (x0 ∧ x2; x`
1 ); x1 ∧ x2 fof(modular law2, axiom)

REL001-0.ax Relation algebra
a ∨ b = b ∨ a cnf(maddux1 join commutativity1, axiom)
a ∨ (b ∨ c) = (a ∨ b) ∨ c cnf(maddux2 join associativity2, axiom)
a = (a′ ∨ b′)′ ∨ (a′ ∨ b)′ cnf(maddux3 a kind of de Morgan3, axiom)
a ∧ b = (a′ ∨ b′)′ cnf(maddux4 definiton of meet4, axiom)
a; (b; c) = (a; b); c cnf(composition associativity5, axiom)
a; 1 = a cnf(composition identity6, axiom)
(a ∨ b); c = a; c ∨ b; c cnf(composition distributivity7, axiom)
(a`)` = a cnf(converse idempotence8, axiom)
(a ∨ b)` = a` ∨ b` cnf(converse additivity9, axiom)
(a; b)` = b`; a` cnf(converse multiplicativity10, axiom)
a`; (a; b)′ ∨ b′ = b′ cnf(converse cancellativity11, axiom)
> = a ∨ a′ cnf(def top12, axiom)
0 = a ∧ a′ cnf(def zero13, axiom)

REL001-1.ax Dedkind and two modular laws
(a; b ∧ c) ∨ (a ∧ c; b`); (b ∧ a`; c) = (a ∧ c; b`); (b ∧ a`; c) cnf(dedekind law14, axiom)
(a; b ∧ c) ∨ (a; (b ∧ a`; c) ∧ c) = a; (b ∧ a`; c) ∧ c cnf(modular law 115, axiom)
(a; b ∧ c) ∨ ((a ∧ c; b`); b ∧ c) = (a ∧ c; b`); b ∧ c cnf(modular law 216, axiom)

REL problems
REL001+1.p There is a (unique) least element, namely 0
include(’Axioms/REL001+0.ax’)
∀x0: 0 ∨ x0 = x0 fof(goals, conjecture)

REL001-1.p There is a (unique) least element, namely 0
include(’Axioms/REL001-0.ax’)
0 ∨ sk1 6= sk1 cnf(goals14, negated conjecture)

REL002+1.p There is a (unique) greatest element, namely x + x’
include(’Axioms/REL001+0.ax’)
∀x0: x0 ∨ > = > fof(goals, conjecture)

REL002-1.p There is a (unique) greatest element, namely x + x’
include(’Axioms/REL001-0.ax’)
sk1 ∨ > 6= > cnf(goals14, negated conjecture)

REL003+1.p Isotonicity of converse
x is less or equal than y iff the converse of x is less or equal than converse of y.
include(’Axioms/REL001+0.ax’)

1



2

∀x0, x1: ((x0 ∨ x1 = x1 ⇒ x`
0 ∨ x`

1 = x`
1 ) and (x`

0 ∨ x`
1 = x`

1 ⇒ x0 ∨ x1 = x1)) fof(goals, conjecture)

REL003-1.p Isotonicity of converse
x is less or equal than y iff the converse of x is less or equal than converse of y.
include(’Axioms/REL001-0.ax’)
sk1 ∨ sk2 = sk2 or sk`

1 ∨ sk`
2 = sk`

2 cnf(goals14, negated conjecture)
sk1 ∨ sk2 = sk2 ⇒ sk`

1 ∨ sk`
2 6= sk`

2 cnf(goals17, negated conjecture)

REL004+1.p Converse negation are interconvertible
include(’Axioms/REL001+0.ax’)
∀x0: x′`

0 = (x`
0 )′ fof(goals, conjecture)

REL004+2.p Converse negation are interconvertible
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0: x′`

0 = (x`
0 )′ fof(goals, conjecture)

REL004+3.p Converse negation are interconvertible
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0: x′`

0 = (x`
0 )′ fof(goals, conjecture)

REL004-1.p Converse negation are interconvertible
include(’Axioms/REL001-0.ax’)
sk′`

1 6= (sk`
1 )′ cnf(goals14, negated conjecture)

REL004-2.p Converse negation are interconvertible
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk′`

1 6= (sk`
1 )′ cnf(goals17, negated conjecture)

REL004-3.p Converse negation are interconvertible
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk′`

1 6= (sk`
1 )′ cnf(goals17, negated conjecture)

REL005+1.p Converse distributes over meet
include(’Axioms/REL001+0.ax’)
∀x0, x1: (x0 ∧ x1)` = x`

0 ∧ x`
1 fof(goals, conjecture)

REL005+2.p Converse distributes over meet
include(’Axioms/REL001+0.ax’)
∀x0, x1: ((x0 ∧ x1)` ∨ (x`

0 ∧ x`
1 ) = x`

0 ∧ x`
1 and (x`

0 ∧ x`
1 ) ∨ (x0 ∧ x1)` = (x0 ∧ x1)`) fof(goals, conjecture)

REL005+3.p Converse distributes over meet
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1: (x0 ∧ x1)` = x`

0 ∧ x`
1 fof(goals, conjecture)

REL005+4.p Converse distributes over meet
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1: ((x0 ∧ x1)` ∨ (x`

0 ∧ x`
1 ) = x`

0 ∧ x`
1 and (x`

0 ∧ x`
1 ) ∨ (x0 ∧ x1)` = (x0 ∧ x1)`) fof(goals, conjecture)

REL005-1.p Converse distributes over meet
include(’Axioms/REL001-0.ax’)
(sk1 ∧ sk2)` 6= sk`

1 ∧ sk`
2 cnf(goals14, negated conjecture)

REL005-2.p Converse distributes over meet
include(’Axioms/REL001-0.ax’)
(sk1∧sk2)`∨(sk`

1 ∧sk`
2 ) = sk`

1 ∧sk`
2 ⇒ (sk`

1 ∧sk`
2 )∨(sk1∧sk2)` 6= (sk1∧sk2)` cnf(goals14, negated conjecture)

REL005-3.p Converse distributes over meet
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
(sk1 ∧ sk2)` 6= sk`

1 ∧ sk`
2 cnf(goals17, negated conjecture)



3

REL005-4.p Converse distributes over meet
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
(sk1∧sk2)`∨(sk`

1 ∧sk`
2 ) = sk`

1 ∧sk`
2 ⇒ (sk`

1 ∧sk`
2 )∨(sk1∧sk2)` 6= (sk1∧sk2)` cnf(goals17, negated conjecture)

REL006+1.p For empty meet the converse slides over meet
include(’Axioms/REL001+0.ax’)
∀x0, x1: (x`

0 ∧ x1 = 0 ⇒ x0 ∧ x`
1 = 0) fof(goals, conjecture)

REL006-1.p For empty meet the converse slides over meet
include(’Axioms/REL001-0.ax’)
sk`

1 ∧ sk2 = 0 cnf(goals14, negated conjecture)
sk1 ∧ sk`

2 6= 0 cnf(goals15, negated conjecture)

REL007+1.p For empty meet the converse slides over meet
include(’Axioms/REL001+0.ax’)
∀x0, x1: (x0 ∧ x`

1 = 0 ⇒ x`
0 ∧ x1 = 0) fof(goals, conjecture)

REL007-1.p For empty meet the converse slides over meet
include(’Axioms/REL001-0.ax’)
sk1 ∧ sk`

2 = 0 cnf(goals14, negated conjecture)
sk`

1 ∧ sk2 6= 0 cnf(goals15, negated conjecture)

REL008+1.p Sequential composition distributes over addition
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: x0; (x1 ∨ x2) = x0; x1 ∨ x0; x2 fof(goals, conjecture)

REL008+2.p Sequential composition distributes over addition
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: ((x0; (x1 ∨ x2) ∨ x0; x1) ∨ x0; x2 = x0; x1 ∨ x0; x2 and (x0; x1 ∨ x0; x2) ∨ x0; (x1 ∨ x2) = x0; (x1 ∨
x2)) fof(goals, conjecture)

REL008+3.p Sequential composition distributes over addition
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: x0; (x1 ∨ x2) = x0; x1 ∨ x0; x2 fof(goals, conjecture)

REL008+4.p Sequential composition distributes over addition
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: ((x0; (x1 ∨ x2) ∨ x0; x1) ∨ x0; x2 = x0; x1 ∨ x0; x2 and (x0; x1 ∨ x0; x2) ∨ x0; (x1 ∨ x2) = x0; (x1 ∨
x2)) fof(goals, conjecture)

REL008-1.p Sequential composition distributes over addition
include(’Axioms/REL001-0.ax’)
sk1; (sk2 ∨ sk3) 6= sk1; sk2 ∨ sk1; sk3 cnf(goals14, negated conjecture)

REL008-2.p Sequential composition distributes over addition
include(’Axioms/REL001-0.ax’)
(sk1; sk2 ∨ sk1; sk3) ∨ sk1; (sk2 ∨ sk3) = sk1; (sk2 ∨ sk3) ⇒ (sk1; (sk2 ∨ sk3) ∨ sk1; sk2) ∨ sk1; sk3 6= sk1; sk2 ∨
sk1; sk3 cnf(goals14, negated conjecture)

REL008-3.p Sequential composition distributes over addition
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1; (sk2 ∨ sk3) 6= sk1; sk2 ∨ sk1; sk3 cnf(goals17, negated conjecture)

REL008-4.p Sequential composition distributes over addition
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
(sk1; sk2 ∨ sk1; sk3) ∨ sk1; (sk2 ∨ sk3) = sk1; (sk2 ∨ sk3) ⇒ (sk1; (sk2 ∨ sk3) ∨ sk1; sk2) ∨ sk1; sk3 6= sk1; sk2 ∨
sk1; sk3 cnf(goals17, negated conjecture)

REL009+1.p Sequential composition is isotone in both arguments
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0 ∨ x1 = x1 ⇒ (x0; x2 ∨ x1; x2 = x1; x2 and x2; x0 ∨ x2; x1 = x2; x1)) fof(goals, conjecture)



4

REL009+2.p Sequential composition is isotone in both arguments
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x0 ∨ x1 = x1 ⇒ (x0; x2 ∨ x1; x2 = x1; x2 and x2; x0 ∨ x2; x1 = x2; x1)) fof(goals, conjecture)

REL009-1.p Sequential composition is isotone in both arguments
include(’Axioms/REL001-0.ax’)
sk1 ∨ sk2 = sk2 cnf(goals14, negated conjecture)
sk1; sk3 ∨ sk2; sk3 = sk2; sk3 ⇒ sk3; sk1 ∨ sk3; sk2 6= sk3; sk2 cnf(goals15, negated conjecture)

REL009-2.p Sequential composition is isotone in both arguments
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1 ∨ sk2 = sk2 cnf(goals17, negated conjecture)
sk1; sk3 ∨ sk2; sk3 = sk2; sk3 ⇒ sk3; sk1 ∨ sk3; sk2 6= sk3; sk2 cnf(goals18, negated conjecture)

REL010+1.p Schroeder equivalence (first implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0; x1 ∧ x2 = 0 ⇒ x1 ∧ x`

0 ; x2 = 0) fof(goals, conjecture)

REL010+2.p Schroeder equivalence (first implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x0; x1 ∧ x2 = 0 ⇒ x1 ∧ x`

0 ; x2 = 0) fof(goals, conjecture)

REL010-1.p Schroeder equivalence (first implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include(’Axioms/REL001-0.ax’)
sk1; sk2 ∧ sk3 = 0 cnf(goals14, negated conjecture)
sk2 ∧ sk`

1 ; sk3 6= 0 cnf(goals15, negated conjecture)

REL010-2.p Schroeder equivalence (first implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1; sk2 ∧ sk3 = 0 cnf(goals17, negated conjecture)
sk2 ∧ sk`

1 ; sk3 6= 0 cnf(goals18, negated conjecture)

REL011+1.p Schroeder equivalence (second implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0 ∧ x`

1 ; x2 = 0 ⇒ x1; x0 ∧ x2 = 0) fof(goals, conjecture)

REL011+2.p Schroeder equivalence (second implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x0 ∧ x`

1 ; x2 = 0 ⇒ x1; x0 ∧ x2 = 0) fof(goals, conjecture)

REL011-1.p Schroeder equivalence (second implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include(’Axioms/REL001-0.ax’)
sk1 ∧ sk`

2 ; sk3 = 0 cnf(goals14, negated conjecture)
sk2; sk1 ∧ sk3 6= 0 cnf(goals15, negated conjecture)

REL011-2.p Schroeder equivalence (second implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1 ∧ sk`

2 ; sk3 = 0 cnf(goals17, negated conjecture)
sk2; sk1 ∧ sk3 6= 0 cnf(goals18, negated conjecture)

REL012+1.p Cancelativity of converse



5

include(’Axioms/REL001+0.ax’)
∀x0, x1: (x0; x1)′; x`

1 ∨ x′
0 = x′

0 fof(goals, conjecture)

REL012+2.p Cancelativity of converse
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1: (x0; x1)′; x`

1 ∨ x′
0 = x′

0 fof(goals, conjecture)

REL012-1.p Cancelativity of converse
include(’Axioms/REL001-0.ax’)
(sk1; sk2)′; sk`

2 ∨ sk′
1 6= sk′

1 cnf(goals14, negated conjecture)

REL012-2.p Cancelativity of converse
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
(sk1; sk2)′; sk`

2 ∨ sk′
1 6= sk′

1 cnf(goals17, negated conjecture)

REL013+1.p Zero is annihilator
include(’Axioms/REL001+0.ax’)
∀x0: (x0; 0 = 0 and 0; x0 = 0) fof(goals, conjecture)

REL013-1.p Zero is annihilator
include(’Axioms/REL001-0.ax’)
sk1; 0 = 0 ⇒ 0; sk1 6= 0 cnf(goals14, negated conjecture)

REL014+1.p One is neutral element
include(’Axioms/REL001+0.ax’)
∀x0: (x0; 1 = x0 and 1; x0 = x0) fof(goals, conjecture)

REL014-1.p One is neutral element
include(’Axioms/REL001-0.ax’)

REL015+1.p TOP is idempotent w.r.t. composition
include(’Axioms/REL001+0.ax’)
>;> = > fof(goals, conjecture)

REL015-1.p TOP is idempotent w.r.t. composition
include(’Axioms/REL001-0.ax’)
>;> 6= > cnf(goals14, negated conjecture)

REL016+1.p A modular law
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: x0; x1 ∧ (x0; x2)′ = x0; (x1 ∧ x′

2) ∧ (x0; x2)′ fof(goals, conjecture)

REL016+2.p A modular law
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: ((x0; x1 ∧ (x0; x2)′) ∨ (x0; (x1 ∧ x′

2) ∧ (x0; x2)′) = x0; (x1 ∧ x′
2) ∧ (x0; x2)′ and (x0; (x1 ∧ x′

2) ∧ (x0; x2)′) ∨
(x0; x1 ∧ (x0; x2)′) = x0; x1 ∧ (x0; x2)′) fof(goals, conjecture)

REL016+3.p A modular law
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: x0; x1 ∧ (x0; x2)′ = x0; (x1 ∧ x′

2) ∧ (x0; x2)′ fof(goals, conjecture)

REL016+4.p A modular law
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: ((x0; x1 ∧ (x0; x2)′) ∨ (x0; (x1 ∧ x′

2) ∧ (x0; x2)′) = x0; (x1 ∧ x′
2) ∧ (x0; x2)′ and (x0; (x1 ∧ x′

2) ∧ (x0; x2)′) ∨
(x0; x1 ∧ (x0; x2)′) = x0; x1 ∧ (x0; x2)′) fof(goals, conjecture)

REL016-1.p A modular law
include(’Axioms/REL001-0.ax’)
sk1; sk2 ∧ (sk1; sk3)′ 6= sk1; (sk2 ∧ sk′

3) ∧ (sk1; sk3)′ cnf(goals14, negated conjecture)

REL016-2.p A modular law
include(’Axioms/REL001-0.ax’)
(sk1; sk2∧ (sk1; sk3)′)∨ (sk1; (sk2∧ sk′

3)∧ (sk1; sk3)′) = sk1; (sk2∧ sk′
3)∧ (sk1; sk3)′ ⇒ (sk1; (sk2∧ sk′

3)∧ (sk1; sk3)′)∨
(sk1; sk2 ∧ (sk1; sk3)′) 6= sk1; sk2 ∧ (sk1; sk3)′ cnf(goals14, negated conjecture)



6

REL016-3.p A modular law
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1; sk2 ∧ (sk1; sk3)′ 6= sk1; (sk2 ∧ sk′

3) ∧ (sk1; sk3)′ cnf(goals17, negated conjecture)

REL016-4.p A modular law
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
(sk1; sk2∧ (sk1; sk3)′)∨ (sk1; (sk2∧ sk′

3)∧ (sk1; sk3)′) = sk1; (sk2∧ sk′
3)∧ (sk1; sk3)′ ⇒ (sk1; (sk2∧ sk′

3)∧ (sk1; sk3)′)∨
(sk1; sk2 ∧ (sk1; sk3)′) 6= sk1; sk2 ∧ (sk1; sk3)′ cnf(goals17, negated conjecture)

REL017+1.p Another modular law
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0; x1)′ ∨ x0; x2 = (x0; (x1 ∧ x′

2))′ ∨ x0; x2 fof(goals, conjecture)

REL017+2.p Another modular law
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: ((((x0; x1)′ ∨ x0; x2)∨ (x0; (x1 ∧ x′

2))′)∨ x0; x2 = (x0; (x1 ∧ x′
2))′ ∨ x0; x2 and (((x0; (x1 ∧ x′

2))′ ∨ x0; x2)∨
(x0; x1)′) ∨ x0; x2 = (x0; x1)′ ∨ x0; x2) fof(goals, conjecture)

REL017+3.p Another modular law
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x0; x1)′ ∨ x0; x2 = (x0; (x1 ∧ x′

2))′ ∨ x0; x2 fof(goals, conjecture)

REL017+4.p Another modular law
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: ((((x0; x1)′ ∨ x0; x2)∨ (x0; (x1 ∧ x′

2))′)∨ x0; x2 = (x0; (x1 ∧ x′
2))′ ∨ x0; x2 and (((x0; (x1 ∧ x′

2))′ ∨ x0; x2)∨
(x0; x1)′) ∨ x0; x2 = (x0; x1)′ ∨ x0; x2) fof(goals, conjecture)

REL017-1.p Another modular law
include(’Axioms/REL001-0.ax’)
(sk1; sk2)′ ∨ sk1; sk3 6= (sk1; (sk2 ∧ sk′

3))′ ∨ sk1; sk3 cnf(goals14, negated conjecture)

REL017-2.p Another modular law
include(’Axioms/REL001-0.ax’)
(((sk1; sk2)′∨ sk1; sk3)∨ (sk1; (sk2∧ sk′

3))′)∨ sk1; sk3 = (sk1; (sk2∧ sk′
3))′∨ sk1; sk3 ⇒ (((sk1; (sk2∧ sk′

3))′∨ sk1; sk3)∨
(sk1; sk2)′) ∨ sk1; sk3 6= (sk1; sk2)′ ∨ sk1; sk3 cnf(goals14, negated conjecture)

REL017-3.p Another modular law
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
(sk1; sk2)′ ∨ sk1; sk3 6= (sk1; (sk2 ∧ sk′

3))′ ∨ sk1; sk3 cnf(goals17, negated conjecture)

REL017-4.p Another modular law
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
(((sk1; sk2)′∨ sk1; sk3)∨ (sk1; (sk2∧ sk′

3))′)∨ sk1; sk3 = (sk1; (sk2∧ sk′
3))′∨ sk1; sk3 ⇒ (((sk1; (sk2∧ sk′

3))′∨ sk1; sk3)∨
(sk1; sk2)′) ∨ sk1; sk3 6= (sk1; sk2)′ ∨ sk1; sk3 cnf(goals17, negated conjecture)

REL018+1.p Vectors are closed under complementation
If x is a vector then overlinex is a vector too.
include(’Axioms/REL001+0.ax’)
∀x0: (x0;> = x0 ⇒ x′

0;> = x′
0) fof(goals, conjecture)

REL018-1.p Vectors are closed under complementation
If x is a vector then overlinex is a vector too.
include(’Axioms/REL001-0.ax’)
sk1;> = sk1 cnf(goals14, negated conjecture)
sk′

1;> 6= sk′
1 cnf(goals15, negated conjecture)

REL019+1.p Vectors are closed under meet
If x and y are vectors then x meet y is a vector too.
include(’Axioms/REL001+0.ax’)
∀x0, x1: ((x0;> = x0 and x1;> = x1) ⇒ (x0 ∧ x1);> = x0 ∧ x1) fof(goals, conjecture)



7

REL019+2.p Vectors are closed under meet
If x and y are vectors then x meet y is a vector too.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1: ((x0;> = x0 and x1;> = x1) ⇒ (x0 ∧ x1);> = x0 ∧ x1) fof(goals, conjecture)

REL019-1.p Vectors are closed under meet
If x and y are vectors then x meet y is a vector too.
include(’Axioms/REL001-0.ax’)
sk1;> = sk1 cnf(goals14, negated conjecture)
sk2;> = sk2 cnf(goals15, negated conjecture)
(sk1 ∧ sk2);> 6= sk1 ∧ sk2 cnf(goals16, negated conjecture)

REL019-2.p Vectors are closed under meet
If x and y are vectors then x meet y is a vector too.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1;> = sk1 cnf(goals17, negated conjecture)
sk2;> = sk2 cnf(goals18, negated conjecture)
(sk1 ∧ sk2);> 6= sk1 ∧ sk2 cnf(goals19, negated conjecture)

REL020+1.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001+0.ax’)
∀x0, x1: (x0;> = x0 ⇒ (x0 ∧ 1); x1 = x0 ∧ x1) fof(goals, conjecture)

REL020+2.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1: (x0;> = x0 ⇒ (x0 ∧ 1); x1 = x0 ∧ x1) fof(goals, conjecture)

REL020-1.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001-0.ax’)
sk1;> = sk1 cnf(goals14, negated conjecture)
(sk1 ∧ 1); sk2 6= sk1 ∧ sk2 cnf(goals15, negated conjecture)

REL020-2.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1;> = sk1 cnf(goals17, negated conjecture)
(sk1 ∧ 1); sk2 6= sk1 ∧ sk2 cnf(goals18, negated conjecture)

REL021+1.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001+0.ax’)
∀x0, x1: (x0;> = x0 ⇒ (x0 ∧ 1); x1 ∨ (x0 ∧ x1) = x0 ∧ x1) fof(goals, conjecture)

REL021+2.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1: (x0;> = x0 ⇒ (x0 ∧ 1); x1 ∨ (x0 ∧ x1) = x0 ∧ x1) fof(goals, conjecture)

REL021-1.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001-0.ax’)
sk1;> = sk1 cnf(goals14, negated conjecture)
(sk1 ∧ 1); sk2 ∨ (sk1 ∧ sk2) 6= sk1 ∧ sk2 cnf(goals15, negated conjecture)

REL021-2.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001-0.ax’)



8

include(’Axioms/REL001-1.ax’)
sk1;> = sk1 cnf(goals17, negated conjecture)
(sk1 ∧ 1); sk2 ∨ (sk1 ∧ sk2) 6= sk1 ∧ sk2 cnf(goals18, negated conjecture)

REL022+1.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001+0.ax’)
∀x0, x1: (x0;> = x0 ⇒ (x0 ∧ x1) ∨ (x0 ∧ 1); x1 = (x0 ∧ 1); x1) fof(goals, conjecture)

REL022+2.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1: (x0;> = x0 ⇒ (x0 ∧ x1) ∨ (x0 ∧ 1); x1 = (x0 ∧ 1); x1) fof(goals, conjecture)

REL022-1.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001-0.ax’)
sk1;> = sk1 cnf(goals14, negated conjecture)
(sk1 ∧ sk2) ∨ (sk1 ∧ 1); sk2 6= (sk1 ∧ 1); sk2 cnf(goals15, negated conjecture)

REL022-2.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1;> = sk1 cnf(goals17, negated conjecture)
(sk1 ∧ sk2) ∨ (sk1 ∧ 1); sk2 6= (sk1 ∧ 1); sk2 cnf(goals18, negated conjecture)

REL023+1.p A simple consequence of isotonicity
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0 ∧ x`

1 ); (x1 ∧ x2) ∨ x0; (x1 ∧ x2) = x0; (x1 ∧ x2) fof(goals, conjecture)

REL023+2.p A simple consequence of isotonicity
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x0 ∧ x`

1 ); (x1 ∧ x2) ∨ x0; (x1 ∧ x2) = x0; (x1 ∧ x2) fof(goals, conjecture)

REL023-1.p A simple consequence of isotonicity
include(’Axioms/REL001-0.ax’)
(sk1 ∧ sk`

2 ); (sk2 ∧ sk3) ∨ sk1; (sk2 ∧ sk3) 6= sk1; (sk2 ∧ sk3) cnf(goals14, negated conjecture)

REL023-2.p A simple consequence of isotonicity
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
(sk1 ∧ sk`

2 ); (sk2 ∧ sk3) ∨ sk1; (sk2 ∧ sk3) 6= sk1; (sk2 ∧ sk3) cnf(goals17, negated conjecture)

REL024+1.p A simple consequence of isotonicity
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0 ∧ x`

1 ); (x1 ∧ x2) ∨ (x0 ∧ x`
1 ); x2 = (x0 ∧ x`

1 ); x2 fof(goals, conjecture)

REL024+2.p A simple consequence of isotonicity
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x0 ∧ x`

1 ); (x1 ∧ x2) ∨ (x0 ∧ x`
1 ); x2 = (x0 ∧ x`

1 ); x2 fof(goals, conjecture)

REL024-1.p A simple consequence of isotonicity
include(’Axioms/REL001-0.ax’)
(sk1 ∧ sk`

2 ); (sk2 ∧ sk3) ∨ (sk1 ∧ sk`
2 ); sk3 6= (sk1 ∧ sk`

2 ); sk3 cnf(goals14, negated conjecture)

REL024-2.p A simple consequence of isotonicity
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
(sk1 ∧ sk`

2 ); (sk2 ∧ sk3) ∨ (sk1 ∧ sk`
2 ); sk3 6= (sk1 ∧ sk`

2 ); sk3 cnf(goals17, negated conjecture)

REL025+1.p For subidentities converse is redundant
If x is a subidentity then the converse of x equals x.
include(’Axioms/REL001+0.ax’)



9

∀x0: (x0 ∨ 1 = 1 ⇒ x`
0 = x0) fof(goals, conjecture)

REL025+2.p For subidentities converse is redundant
If x is a subidentity then the converse of x equals x.
include(’Axioms/REL001+0.ax’)
∀x0: ((x0 ∨ 1 = 1 ⇒ x`

0 ∨ x0 = x0) and (x0 ∨ 1 = 1 ⇒ x0 ∨ x`
0 = x`

0 )) fof(goals, conjecture)

REL025-1.p For subidentities converse is redundant
If x is a subidentity then the converse of x equals x.
include(’Axioms/REL001-0.ax’)
sk1 ∨ 1 = 1 cnf(goals14, negated conjecture)
sk`

1 6= sk1 cnf(goals15, negated conjecture)

REL025-2.p For subidentities converse is redundant
If x is a subidentity then the converse of x equals x.
include(’Axioms/REL001-0.ax’)
sk1 ∨ 1 = 1 cnf(goals14, negated conjecture)
sk1 ∨ sk`

1 = sk`
1 ⇒ sk`

1 ∨ sk1 6= sk1 cnf(goals17, negated conjecture)

REL026+1.p Splitting rule for x;y if x is a subidentity
If x is a subidentity then the composition of x and y can be split into a meet.
include(’Axioms/REL001+0.ax’)
∀x0, x1: (x0 ∨ 1 = 1 ⇒ x0;> ∧ x1 = x0; x1) fof(goals, conjecture)

REL026+2.p Splitting rule for x;y if x is a subidentity
If x is a subidentity then the composition of x and y can be split into a meet.
include(’Axioms/REL001+0.ax’)
∀x0, x1: (x0∨1 = 1 ⇒ ((x0;>∧x1)∨x0; x1 = x0; x1 and x0; x1∨(x0;>∧x1) = x0;>∧x1)) fof(goals, conjecture)

REL026+3.p Splitting rule for x;y if x is a subidentity
If x is a subidentity then the composition of x and y can be split into a meet.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1: (x0 ∨ 1 = 1 ⇒ x0;> ∧ x1 = x0; x1) fof(goals, conjecture)

REL026+4.p Splitting rule for x;y if x is a subidentity
If x is a subidentity then the composition of x and y can be split into a meet.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1: (x0∨1 = 1 ⇒ ((x0;>∧x1)∨x0; x1 = x0; x1 and x0; x1∨(x0;>∧x1) = x0;>∧x1)) fof(goals, conjecture)

REL026-1.p Splitting rule for x;y if x is a subidentity
If x is a subidentity then the composition of x and y can be split into a meet.
include(’Axioms/REL001-0.ax’)
sk1 ∨ 1 = 1 cnf(goals14, negated conjecture)
sk1;> ∧ sk2 6= sk1; sk2 cnf(goals15, negated conjecture)

REL026-2.p Splitting rule for x;y if x is a subidentity
If x is a subidentity then the composition of x and y can be split into a meet.
include(’Axioms/REL001-0.ax’)
sk1 ∨ 1 = 1 cnf(goals14, negated conjecture)
sk1; sk2 ∨ (sk1;> ∧ sk2) = sk1;> ∧ sk2 ⇒ (sk1;> ∧ sk2) ∨ sk1; sk2 6= sk1; sk2 cnf(goals15, negated conjecture)

REL026-3.p Splitting rule for x;y if x is a subidentity
If x is a subidentity then the composition of x and y can be split into a meet.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1 ∨ 1 = 1 cnf(goals17, negated conjecture)
sk1;> ∧ sk2 6= sk1; sk2 cnf(goals18, negated conjecture)

REL026-4.p Splitting rule for x;y if x is a subidentity
If x is a subidentity then the composition of x and y can be split into a meet.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1 ∨ 1 = 1 cnf(goals17, negated conjecture)
sk1; sk2 ∨ (sk1;> ∧ sk2) = sk1;> ∧ sk2 ⇒ (sk1;> ∧ sk2) ∨ sk1; sk2 6= sk1; sk2 cnf(goals18, negated conjecture)



10

REL027+1.p Complements of vectors and subidentities
The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the
corresponding vector x;TOP to a subidentity.
include(’Axioms/REL001+0.ax’)
∀x0: (x0 ∨ 1 = 1 ⇒ (x0;>)′ ∧ 1 = x′

0 ∧ 1) fof(goals, conjecture)

REL027+2.p Complements of vectors and subidentities
The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the
corresponding vector x;TOP to a subidentity.
include(’Axioms/REL001+0.ax’)
∀x0: (x0∨1 = 1 ⇒ (((x0;>)′∧1)∨(x′

0∧1) = x′
0∧1 and (x′

0∧1)∨((x0;>)′∧1) = (x0;>)′∧1)) fof(goals, conjecture)

REL027+3.p Complements of vectors and subidentities
The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the
corresponding vector x;TOP to a subidentity.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0: (x0 ∨ 1 = 1 ⇒ (x0;>)′ ∧ 1 = x′

0 ∧ 1) fof(goals, conjecture)

REL027+4.p Complements of vectors and subidentities
The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the
corresponding vector x;TOP to a subidentity.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0: (x0∨1 = 1 ⇒ (((x0;>)′∧1)∨(x′

0∧1) = x′
0∧1 and (x′

0∧1)∨((x0;>)′∧1) = (x0;>)′∧1)) fof(goals, conjecture)

REL027-1.p Complements of vectors and subidentities
The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the
corresponding vector x;TOP to a subidentity.
include(’Axioms/REL001-0.ax’)
sk1 ∨ 1 = 1 cnf(goals14, negated conjecture)
(sk1;>)′ ∧ 1 6= sk′

1 ∧ 1 cnf(goals15, negated conjecture)

REL027-2.p Complements of vectors and subidentities
The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the
corresponding vector x;TOP to a subidentity.
include(’Axioms/REL001-0.ax’)
sk1 ∨ 1 = 1 cnf(goals14, negated conjecture)
(sk′

1 ∧ 1) ∨ ((sk1;>)′ ∧ 1) = (sk1;>)′ ∧ 1 ⇒ ((sk1;>)′ ∧ 1) ∨ (sk′
1 ∧ 1) 6= sk′

1 ∧ 1 cnf(goals15, negated conjecture)

REL027-3.p Complements of vectors and subidentities
The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the
corresponding vector x;TOP to a subidentity.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1 ∨ 1 = 1 cnf(goals17, negated conjecture)
(sk1;>)′ ∧ 1 6= sk′

1 ∧ 1 cnf(goals18, negated conjecture)

REL027-4.p Complements of vectors and subidentities
The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the
corresponding vector x;TOP to a subidentity.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1 ∨ 1 = 1 cnf(goals17, negated conjecture)
(sk′

1 ∧ 1) ∨ ((sk1;>)′ ∧ 1) = (sk1;>)′ ∧ 1 ⇒ ((sk1;>)′ ∧ 1) ∨ (sk′
1 ∧ 1) 6= sk′

1 ∧ 1 cnf(goals18, negated conjecture)

REL028+1.p For subidentities meet and composition coincide
include(’Axioms/REL001+0.ax’)
∀x0, x1: ((x0 ∨ 1 = 1 and x1 ∨ 1 = 1) ⇒ x0; x1 = x0 ∧ x1) fof(goals, conjecture)

REL028+2.p For subidentities meet and composition coincide
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1: ((x0 ∨ 1 = 1 and x1 ∨ 1 = 1) ⇒ x0; x1 = x0 ∧ x1) fof(goals, conjecture)



11

REL028-1.p For subidentities meet and composition coincide
include(’Axioms/REL001-0.ax’)
sk1 ∨ 1 = 1 cnf(goals14, negated conjecture)
sk2 ∨ 1 = 1 cnf(goals15, negated conjecture)
sk1; sk2 6= sk1 ∧ sk2 cnf(goals16, negated conjecture)

REL028-2.p For subidentities meet and composition coincide
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1 ∨ 1 = 1 cnf(goals17, negated conjecture)
sk2 ∨ 1 = 1 cnf(goals18, negated conjecture)
sk1; sk2 6= sk1 ∧ sk2 cnf(goals19, negated conjecture)

REL029+1.p Distributivity of subidentities
For subidentities, sequential composition distributes over meet.
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: ((x0 ∨ 1 = 1 and x1 ∨ 1 = 1) ⇒ x0; x2 ∧ x1; x2 = (x0 ∧ x1); x2) fof(goals, conjecture)

REL029+2.p Distributivity of subidentities
For subidentities, sequential composition distributes over meet.
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: ((x0 ∨ 1 = 1 and x1 ∨ 1 = 1) ⇒ ((x0; x2 ∧ x1; x2) ∨ (x0 ∧ x1); x2 = (x0 ∧ x1); x2 and (x0 ∧ x1); x2 ∨
(x0; x2 ∧ x1; x2) = x0; x2 ∧ x1; x2)) fof(goals, conjecture)

REL029+3.p Distributivity of subidentities
For subidentities, sequential composition distributes over meet.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: ((x0 ∨ 1 = 1 and x1 ∨ 1 = 1) ⇒ x0; x2 ∧ x1; x2 = (x0 ∧ x1); x2) fof(goals, conjecture)

REL029+4.p Distributivity of subidentities
For subidentities, sequential composition distributes over meet.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: ((x0 ∨ 1 = 1 and x1 ∨ 1 = 1) ⇒ ((x0; x2 ∧ x1; x2) ∨ (x0 ∧ x1); x2 = (x0 ∧ x1); x2 and (x0 ∧ x1); x2 ∨
(x0; x2 ∧ x1; x2) = x0; x2 ∧ x1; x2)) fof(goals, conjecture)

REL029-1.p Distributivity of subidentities
For subidentities, sequential composition distributes over meet.
include(’Axioms/REL001-0.ax’)
sk1 ∨ 1 = 1 cnf(goals14, negated conjecture)
sk2 ∨ 1 = 1 cnf(goals15, negated conjecture)
sk1; sk3 ∧ sk2; sk3 6= (sk1 ∧ sk2); sk3 cnf(goals16, negated conjecture)

REL029-2.p Distributivity of subidentities
For subidentities, sequential composition distributes over meet.
include(’Axioms/REL001-0.ax’)
sk1 ∨ 1 = 1 cnf(goals14, negated conjecture)
sk2 ∨ 1 = 1 cnf(goals15, negated conjecture)
(sk1 ∧ sk2); sk3 ∨ (sk1; sk3 ∧ sk2; sk3) = sk1; sk3 ∧ sk2; sk3 ⇒ (sk1; sk3 ∧ sk2; sk3) ∨ (sk1 ∧ sk2); sk3 6= (sk1 ∧
sk2); sk3 cnf(goals16, negated conjecture)

REL029-3.p Distributivity of subidentities
For subidentities, sequential composition distributes over meet.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1 ∨ 1 = 1 cnf(goals17, negated conjecture)
sk2 ∨ 1 = 1 cnf(goals18, negated conjecture)
sk1; sk3 ∧ sk2; sk3 6= (sk1 ∧ sk2); sk3 cnf(goals19, negated conjecture)

REL029-4.p Distributivity of subidentities
For subidentities, sequential composition distributes over meet.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1 ∨ 1 = 1 cnf(goals17, negated conjecture)



12

sk2 ∨ 1 = 1 cnf(goals18, negated conjecture)
(sk1 ∧ sk2); sk3 ∨ (sk1; sk3 ∧ sk2; sk3) = sk1; sk3 ∧ sk2; sk3 ⇒ (sk1; sk3 ∧ sk2; sk3) ∨ (sk1 ∧ sk2); sk3 6= (sk1 ∧
sk2); sk3 cnf(goals19, negated conjecture)

REL030+1.p Propagation of subidentities
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0 ∨ 1 = 1 ⇒ x0; x1 ∧ x′

2 = x0; x1 ∧ (x0; x2)′) fof(goals, conjecture)

REL030+2.p Propagation of subidentities
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0∨1 = 1 ⇒ ((x0; x1∧x′

2)∨(x0; x1∧(x0; x2)′) = x0; x1∧(x0; x2)′ and (x0; x1∧(x0; x2)′)∨(x0; x1∧x′
2) =

x0; x1 ∧ x′
2)) fof(goals, conjecture)

REL030+3.p Propagation of subidentities
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x0 ∨ 1 = 1 ⇒ x0; x1 ∧ x′

2 = x0; x1 ∧ (x0; x2)′) fof(goals, conjecture)

REL030+4.p Propagation of subidentities
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x0∨1 = 1 ⇒ ((x0; x1∧x′

2)∨(x0; x1∧(x0; x2)′) = x0; x1∧(x0; x2)′ and (x0; x1∧(x0; x2)′)∨(x0; x1∧x′
2) =

x0; x1 ∧ x′
2)) fof(goals, conjecture)

REL030-1.p Propagation of subidentities
include(’Axioms/REL001-0.ax’)
sk1 ∨ 1 = 1 cnf(goals14, negated conjecture)
sk1; sk2 ∧ sk′

3 6= sk1; sk2 ∧ (sk1; sk3)′ cnf(goals15, negated conjecture)

REL030-2.p Propagation of subidentities
include(’Axioms/REL001-0.ax’)
sk1 ∨ 1 = 1 cnf(goals14, negated conjecture)
(sk1; sk2 ∧ sk′

3)∨ (sk1; sk2 ∧ (sk1; sk3)′) = sk1; sk2 ∧ (sk1; sk3)′ ⇒ (sk1; sk2 ∧ (sk1; sk3)′)∨ (sk1; sk2 ∧ sk′
3) 6= sk1; sk2 ∧

sk′
3 cnf(goals15, negated conjecture)

REL030-3.p Propagation of subidentities
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1 ∨ 1 = 1 cnf(goals17, negated conjecture)
sk1; sk2 ∧ sk′

3 6= sk1; sk2 ∧ (sk1; sk3)′ cnf(goals18, negated conjecture)

REL030-4.p Propagation of subidentities
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1 ∨ 1 = 1 cnf(goals17, negated conjecture)
(sk1; sk2 ∧ sk′

3)∨ (sk1; sk2 ∧ (sk1; sk3)′) = sk1; sk2 ∧ (sk1; sk3)′ ⇒ (sk1; sk2 ∧ (sk1; sk3)′)∨ (sk1; sk2 ∧ sk′
3) 6= sk1; sk2 ∧

sk′
3 cnf(goals18, negated conjecture)

REL031+1.p Partial functions are closed under composition
If x and y are partial functions then x;y is also a partial functions.
include(’Axioms/REL001+0.ax’)
∀x0, x1: ((x`

0 ; x0 ∨ 1 = 1 and x`
1 ; x1 ∨ 1 = 1) ⇒ (x0; x1)`; (x0; x1) ∨ 1 = 1) fof(goals, conjecture)

REL031+2.p Partial functions are closed under composition
If x and y are partial functions then x;y is also a partial functions.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1: ((x`

0 ; x0 ∨ 1 = 1 and x`
1 ; x1 ∨ 1 = 1) ⇒ (x0; x1)`; (x0; x1) ∨ 1 = 1) fof(goals, conjecture)

REL031-1.p Partial functions are closed under composition
If x and y are partial functions then x;y is also a partial functions.
include(’Axioms/REL001-0.ax’)
sk`

1 ; sk1 ∨ 1 = 1 cnf(goals14, negated conjecture)
sk`

2 ; sk2 ∨ 1 = 1 cnf(goals15, negated conjecture)
(sk1; sk2)`; (sk1; sk2) ∨ 1 6= 1 cnf(goals16, negated conjecture)



13

REL031-2.p Partial functions are closed under composition
If x and y are partial functions then x;y is also a partial functions.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk`

1 ; sk1 ∨ 1 = 1 cnf(goals17, negated conjecture)
sk`

2 ; sk2 ∨ 1 = 1 cnf(goals18, negated conjecture)
(sk1; sk2)`; (sk1; sk2) ∨ 1 6= 1 cnf(goals19, negated conjecture)

REL032+1.p Subdistributivity
Sequential composition subdistributes over meet, i.e. x;(y meet z) ≤ x;y meet x;z.
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: x0; (x1 ∧ x2) ∨ (x0; x1 ∧ x0; x2) = x0; x1 ∧ x0; x2 fof(goals, conjecture)

REL032+2.p Subdistributivity
Sequential composition subdistributes over meet, i.e. x;(y meet z) ≤ x;y meet x;z.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: x0; (x1 ∧ x2) ∨ (x0; x1 ∧ x0; x2) = x0; x1 ∧ x0; x2 fof(goals, conjecture)

REL032-1.p Subdistributivity
Sequential composition subdistributes over meet, i.e. x;(y meet z) ≤ x;y meet x;z.
include(’Axioms/REL001-0.ax’)
sk1; (sk2 ∧ sk3) ∨ (sk1; sk2 ∧ sk1; sk3) 6= sk1; sk2 ∧ sk1; sk3 cnf(goals14, negated conjecture)

REL032-2.p Subdistributivity
Sequential composition subdistributes over meet, i.e. x;(y meet z) ≤ x;y meet x;z.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1; (sk2 ∧ sk3) ∨ (sk1; sk2 ∧ sk1; sk3) 6= sk1; sk2 ∧ sk1; sk3 cnf(goals17, negated conjecture)

REL033+1.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0;> = x0 ⇒ (x0 ∧ x1); x2 = x0 ∧ x1; x2) fof(goals, conjecture)

REL033+2.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0;> = x0 ⇒ ((x0 ∧ x1); x2 ∨ (x0 ∧ x1; x2) = x0 ∧ x1; x2 and (x0 ∧ x1; x2) ∨ (x0 ∧ x1); x2 = (x0 ∧
x1); x2)) fof(goals, conjecture)

REL033+3.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x0;> = x0 ⇒ (x0 ∧ x1); x2 = x0 ∧ x1; x2) fof(goals, conjecture)

REL033+4.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x0;> = x0 ⇒ ((x0 ∧ x1); x2 ∨ (x0 ∧ x1; x2) = x0 ∧ x1; x2 and (x0 ∧ x1; x2) ∨ (x0 ∧ x1); x2 = (x0 ∧
x1); x2)) fof(goals, conjecture)

REL033-1.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include(’Axioms/REL001-0.ax’)
sk1;> = sk1 cnf(goals14, negated conjecture)
(sk1 ∧ sk2); sk3 6= sk1 ∧ sk2; sk3 cnf(goals15, negated conjecture)

REL033-2.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include(’Axioms/REL001-0.ax’)
sk1;> = sk1 cnf(goals14, negated conjecture)
(sk1∧sk2); sk3∨(sk1∧sk2; sk3) = sk1∧sk2; sk3 ⇒ (sk1∧sk2; sk3)∨(sk1∧sk2); sk3 6= (sk1∧sk2); sk3 cnf(goals15, negated conjecture)



14

REL033-3.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1;> = sk1 cnf(goals17, negated conjecture)
(sk1 ∧ sk2); sk3 6= sk1 ∧ sk2; sk3 cnf(goals18, negated conjecture)

REL033-4.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1;> = sk1 cnf(goals17, negated conjecture)
(sk1∧sk2); sk3∨(sk1∧sk2; sk3) = sk1∧sk2; sk3 ⇒ (sk1∧sk2; sk3)∨(sk1∧sk2); sk3 6= (sk1∧sk2); sk3 cnf(goals18, negated conjecture)

REL034+1.p Propagation of vectors
Pre-assertion x to z can be propagated as post-assertion x∧ to the left cofactor y.
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0;> = x0 ⇒ x1; (x0 ∧ x2) ∨ (x1 ∧ x`

0 ); (x0 ∧ x2) = (x1 ∧ x`
0 ); (x0 ∧ x2)) fof(goals, conjecture)

REL034+2.p Propagation of vectors
Pre-assertion x to z can be propagated as post-assertion x∧ to the left cofactor y.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x0;> = x0 ⇒ x1; (x0 ∧ x2) ∨ (x1 ∧ x`

0 ); (x0 ∧ x2) = (x1 ∧ x`
0 ); (x0 ∧ x2)) fof(goals, conjecture)

REL034-1.p Propagation of vectors
Pre-assertion x to z can be propagated as post-assertion x∧ to the left cofactor y.
include(’Axioms/REL001-0.ax’)
sk1;> = sk1 cnf(goals14, negated conjecture)
sk2; (sk1 ∧ sk3) ∨ (sk2 ∧ sk`

1 ); (sk1 ∧ sk3) 6= (sk2 ∧ sk`
1 ); (sk1 ∧ sk3) cnf(goals15, negated conjecture)

REL034-2.p Propagation of vectors
Pre-assertion x to z can be propagated as post-assertion x∧ to the left cofactor y.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1;> = sk1 cnf(goals17, negated conjecture)
sk2; (sk1 ∧ sk3) ∨ (sk2 ∧ sk`

1 ); (sk1 ∧ sk3) 6= (sk2 ∧ sk`
1 ); (sk1 ∧ sk3) cnf(goals18, negated conjecture)

REL035+1.p Propagation of vectors
Pre-assertion x to z can be propagated as post-assertion x∧ to the left cofactor y.
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0;> = x0 ⇒ (x1 ∧ x`

0 ); (x0 ∧ x2) = x1; (x0 ∧ x2)) fof(goals, conjecture)

REL035+2.p Propagation of vectors
Pre-assertion x to z can be propagated as post-assertion x∧ to the left cofactor y.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x0;> = x0 ⇒ (x1 ∧ x`

0 ); (x0 ∧ x2) = x1; (x0 ∧ x2)) fof(goals, conjecture)

REL035-1.p Propagation of vectors
Pre-assertion x to z can be propagated as post-assertion x∧ to the left cofactor y.
include(’Axioms/REL001-0.ax’)
sk1;> = sk1 cnf(goals14, negated conjecture)
(sk2 ∧ sk`

1 ); (sk1 ∧ sk3) 6= sk2; (sk1 ∧ sk3) cnf(goals15, negated conjecture)

REL035-2.p Propagation of vectors
Pre-assertion x to z can be propagated as post-assertion x∧ to the left cofactor y.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1;> = sk1 cnf(goals17, negated conjecture)
(sk2 ∧ sk`

1 ); (sk1 ∧ sk3) 6= sk2; (sk1 ∧ sk3) cnf(goals18, negated conjecture)

REL036+1.p Propagation of vectors
Post-assertion x∧ to y can be propagated as pre-assertion x to the right cofactor z.
include(’Axioms/REL001+0.ax’)



15

∀x0, x1, x2: (x0;> = x0 ⇒ (x1 ∧ x`
0 ); x2 ∨ (x1 ∧ x`

0 ); (x0 ∧ x2) = (x1 ∧ x`
0 ); (x0 ∧ x2)) fof(goals, conjecture)

REL036+2.p Propagation of vectors
Post-assertion x∧ to y can be propagated as pre-assertion x to the right cofactor z.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x0;> = x0 ⇒ (x1 ∧ x`

0 ); x2 ∨ (x1 ∧ x`
0 ); (x0 ∧ x2) = (x1 ∧ x`

0 ); (x0 ∧ x2)) fof(goals, conjecture)

REL036-1.p Propagation of vectors
Post-assertion x∧ to y can be propagated as pre-assertion x to the right cofactor z.
include(’Axioms/REL001-0.ax’)
sk1;> = sk1 cnf(goals14, negated conjecture)
(sk2 ∧ sk`

1 ); sk3 ∨ (sk2 ∧ sk`
1 ); (sk1 ∧ sk3) 6= (sk2 ∧ sk`

1 ); (sk1 ∧ sk3) cnf(goals15, negated conjecture)

REL036-2.p Propagation of vectors
Post-assertion x∧ to y can be propagated as pre-assertion x to the right cofactor z.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1;> = sk1 cnf(goals17, negated conjecture)
(sk2 ∧ sk`

1 ); sk3 ∨ (sk2 ∧ sk`
1 ); (sk1 ∧ sk3) 6= (sk2 ∧ sk`

1 ); (sk1 ∧ sk3) cnf(goals18, negated conjecture)

REL037+1.p Propagation of vectors
Post-assertion x∧ to y can be propagated as pre-assertion x to the right cofactor z.
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0;> = x0 ⇒ (x1 ∧ x`

0 ); (x0 ∧ x2) = (x1 ∧ x`
0 ); x2) fof(goals, conjecture)

REL037+2.p Propagation of vectors
Post-assertion x∧ to y can be propagated as pre-assertion x to the right cofactor z.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x0;> = x0 ⇒ (x1 ∧ x`

0 ); (x0 ∧ x2) = (x1 ∧ x`
0 ); x2) fof(goals, conjecture)

REL037-1.p Propagation of vectors
Post-assertion x∧ to y can be propagated as pre-assertion x to the right cofactor z.
include(’Axioms/REL001-0.ax’)
sk1;> = sk1 cnf(goals14, negated conjecture)
(sk2 ∧ sk`

1 ); (sk1 ∧ sk3) 6= (sk2 ∧ sk`
1 ); sk3 cnf(goals15, negated conjecture)

REL037-2.p Propagation of vectors
Post-assertion x∧ to y can be propagated as pre-assertion x to the right cofactor z.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1;> = sk1 cnf(goals17, negated conjecture)
(sk2 ∧ sk`

1 ); (sk1 ∧ sk3) 6= (sk2 ∧ sk`
1 ); sk3 cnf(goals18, negated conjecture)

REL038+1.p Modular law
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0; x1 ∧ x2) ∨ (x0; (x1 ∧ x`

0 ; x2) ∧ x2) = x0; (x1 ∧ x`
0 ; x2) ∧ x2 fof(goals, conjecture)

REL038-1.p Modular law
include(’Axioms/REL001-0.ax’)
(sk1; sk2 ∧ sk3) ∨ (sk1; (sk2 ∧ sk`

1 ; sk3) ∧ sk3) 6= sk1; (sk2 ∧ sk`
1 ; sk3) ∧ sk3 cnf(goals14, negated conjecture)

REL039+1.p Dedekind law
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0; x1 ∧ x2) ∨ (x0 ∧ x2; x`

1 ); (x1 ∧ x`
0 ; x2) = (x0 ∧ x2; x`

1 ); (x1 ∧ x`
0 ; x2) fof(goals, conjecture)

REL039-1.p Dedekind law
include(’Axioms/REL001-0.ax’)
(sk1; sk2∧sk3)∨(sk1∧sk3; sk`

2 ); (sk2∧sk`
1 ; sk3) 6= (sk1∧sk3; sk`

2 ); (sk2∧sk`
1 ; sk3) cnf(goals14, negated conjecture)

REL040+1.p Partial functions distribute over meet under sequential comp’n
If x is partial function then x;(y meet z) = x;y meet x;z.
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x`

0 ; x0 ∨ 1 = 1 ⇒ x0; (x1 ∧ x2) = x0; x1 ∧ x0; x2) fof(goals, conjecture)



16

REL040+2.p Partial functions distribute over meet under sequential comp’n
If x is partial function then x;(y meet z) = x;y meet x;z.
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x`

0 ; x0∨1 = 1 ⇒ (x0; (x1∧x2)∨ (x0; x1∧x0; x2) = x0; x1∧x0; x2 and (x0; x1∧x0; x2)∨x0; (x1∧x2) =
x0; (x1 ∧ x2))) fof(goals, conjecture)

REL040+3.p Partial functions distribute over meet under sequential comp’n
If x is partial function then x;(y meet z) = x;y meet x;z.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x`

0 ; x0 ∨ 1 = 1 ⇒ x0; (x1 ∧ x2) = x0; x1 ∧ x0; x2) fof(goals, conjecture)

REL040+4.p Partial functions distribute over meet under sequential comp’n
If x is partial function then x;(y meet z) = x;y meet x;z.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x`

0 ; x0∨1 = 1 ⇒ (x0; (x1∧x2)∨ (x0; x1∧x0; x2) = x0; x1∧x0; x2 and (x0; x1∧x0; x2)∨x0; (x1∧x2) =
x0; (x1 ∧ x2))) fof(goals, conjecture)

REL040-1.p Partial functions distribute over meet under sequential comp’n
If x is partial function then x;(y meet z) = x;y meet x;z.
include(’Axioms/REL001-0.ax’)
sk`

1 ; sk1 ∨ 1 = 1 cnf(goals14, negated conjecture)
sk1; (sk2 ∧ sk3) 6= sk1; sk2 ∧ sk1; sk3 cnf(goals15, negated conjecture)

REL040-2.p Partial functions distribute over meet under sequential comp’n
If x is partial function then x;(y meet z) = x;y meet x;z.
include(’Axioms/REL001-0.ax’)
sk`

1 ; sk1 ∨ 1 = 1 cnf(goals14, negated conjecture)
sk1; (sk2 ∧ sk3) ∨ (sk1; sk2 ∧ sk1; sk3) = sk1; sk2 ∧ sk1; sk3 ⇒ (sk1; sk2 ∧ sk1; sk3) ∨ sk1; (sk2 ∧ sk3) 6= sk1; (sk2 ∧
sk3) cnf(goals15, negated conjecture)

REL040-3.p Partial functions distribute over meet under sequential comp’n
If x is partial function then x;(y meet z) = x;y meet x;z.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk`

1 ; sk1 ∨ 1 = 1 cnf(goals17, negated conjecture)
sk1; (sk2 ∧ sk3) 6= sk1; sk2 ∧ sk1; sk3 cnf(goals18, negated conjecture)

REL040-4.p Partial functions distribute over meet under sequential comp’n
If x is partial function then x;(y meet z) = x;y meet x;z.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk`

1 ; sk1 ∨ 1 = 1 cnf(goals17, negated conjecture)
sk1; (sk2 ∧ sk3) ∨ (sk1; sk2 ∧ sk1; sk3) = sk1; sk2 ∧ sk1; sk3 ⇒ (sk1; sk2 ∧ sk1; sk3) ∨ sk1; (sk2 ∧ sk3) 6= sk1; (sk2 ∧
sk3) cnf(goals18, negated conjecture)

REL041+1.p Equivalence of different definitions of partial functions
x is a partial function if x∧;x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.
include(’Axioms/REL001+0.ax’)
∀x0: (x`

0 ; x0 ∨ 1 = 1 ⇒ ∀x1: x0; x1 ∧ x0; x′
1 = 0) fof(goals, conjecture)

REL041+2.p Equivalence of different definitions of partial functions
x is a partial function if x∧;x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0: (x`

0 ; x0 ∨ 1 = 1 ⇒ ∀x1: x0; x1 ∧ x0; x′
1 = 0) fof(goals, conjecture)

REL041-1.p Equivalence of different definitions of partial functions
x is a partial function if x∧;x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.
include(’Axioms/REL001-0.ax’)



17

sk`
1 ; sk1 ∨ 1 = 1 cnf(goals14, negated conjecture)

sk1; sk2 ∧ sk1; sk′
2 6= 0 cnf(goals15, negated conjecture)

REL041-2.p Equivalence of different definitions of partial functions
x is a partial function if x∧;x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk`

1 ; sk1 ∨ 1 = 1 cnf(goals17, negated conjecture)
sk1; sk2 ∧ sk1; sk′

2 6= 0 cnf(goals18, negated conjecture)

REL042+1.p Equivalence of different definitions of partial functions
x is a partial function if x∧;x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.
include(’Axioms/REL001+0.ax’)
∀x0: (∀x1: x0; x1 ∧ x0; x′

1 = 0 ⇒ x`
0 ; x0 ∨ 1 = 1) fof(goals, conjecture)

REL042+2.p Equivalence of different definitions of partial functions
x is a partial function if x∧;x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0: (∀x1: x0; x1 ∧ x0; x′

1 = 0 ⇒ x`
0 ; x0 ∨ 1 = 1) fof(goals, conjecture)

REL042-1.p Equivalence of different definitions of partial functions
x is a partial function if x∧;x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.
include(’Axioms/REL001-0.ax’)
sk1; a ∧ sk1; a′ = 0 cnf(goals14, negated conjecture)
sk`

1 ; sk1 ∨ 1 6= 1 cnf(goals15, negated conjecture)

REL042-2.p Equivalence of different definitions of partial functions
x is a partial function if x∧;x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1; a ∧ sk1; a′ = 0 cnf(goals17, negated conjecture)
sk`

1 ; sk1 ∨ 1 6= 1 cnf(goals18, negated conjecture)

REL043+1.p Shunting rule
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0; x`

1 ∨ x2 = x2 ⇒ x′
2; x1 ∨ x′

0 = x′
0) fof(goals, conjecture)

REL043+2.p Shunting rule
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x0; x`

1 ∨ x2 = x2 ⇒ x′
2; x1 ∨ x′

0 = x′
0) fof(goals, conjecture)

REL043-1.p Shunting rule
include(’Axioms/REL001-0.ax’)
sk1; sk`

2 ∨ sk3 = sk3 cnf(goals14, negated conjecture)
sk′

3; sk2 ∨ sk′
1 6= sk′

1 cnf(goals15, negated conjecture)

REL043-2.p Shunting rule
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1; sk`

2 ∨ sk3 = sk3 cnf(goals17, negated conjecture)
sk′

3; sk2 ∨ sk′
1 6= sk′

1 cnf(goals18, negated conjecture)

REL044+1.p Shunting rule
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x′

0; x1 ∨ x′
2 = x′

2 ⇒ x2; x`
1 ∨ x0 = x0) fof(goals, conjecture)

REL044+2.p Shunting rule
include(’Axioms/REL001+0.ax’)



18

include(’Axioms/REL001+1.ax’)
∀x0, x1, x2: (x′

0; x1 ∨ x′
2 = x′

2 ⇒ x2; x`
1 ∨ x0 = x0) fof(goals, conjecture)

REL044-1.p Shunting rule
include(’Axioms/REL001-0.ax’)
sk′

1; sk2 ∨ sk′
3 = sk′

3 cnf(goals14, negated conjecture)
sk3; sk`

2 ∨ sk1 6= sk1 cnf(goals15, negated conjecture)

REL044-2.p Shunting rule
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk′

1; sk2 ∨ sk′
3 = sk′

3 cnf(goals17, negated conjecture)
sk3; sk`

2 ∨ sk1 6= sk1 cnf(goals18, negated conjecture)

REL045+1.p An unfold law
include(’Axioms/REL001+0.ax’)
∀x0: x0 ∨ (x0; x`

0 ); x0 = (x0; x`
0 ); x0 fof(goals, conjecture)

REL045+2.p An unfold law
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0: x0 ∨ (x0; x`

0 ); x0 = (x0; x`
0 ); x0 fof(goals, conjecture)

REL045-1.p An unfold law
include(’Axioms/REL001-0.ax’)
sk1 ∨ (sk1; sk`

1 ); sk1 6= (sk1; sk`
1 ); sk1 cnf(goals14, negated conjecture)

REL045-2.p An unfold law
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
sk1 ∨ (sk1; sk`

1 ); sk1 6= (sk1; sk`
1 ); sk1 cnf(goals17, negated conjecture)

REL046+1.p Meet splitting
Meet can be split into 2 inequations iff the meet is on the right hand side of an inequation.
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: (x0 ∨ (x1 ∧ x2) = x1 ∧ x2 ⇒ (x0 ∨ x1 = x1 and x0 ∨ x2 = x2)) fof(goals, conjecture)

REL046-1.p Meet splitting
Meet can be split into 2 inequations iff the meet is on the right hand side of an inequation.
include(’Axioms/REL001-0.ax’)
sk1 ∨ (sk2 ∧ sk3) = sk2 ∧ sk3 cnf(goals14, negated conjecture)
sk1 ∨ sk2 = sk2 ⇒ sk1 ∨ sk3 6= sk3 cnf(goals15, negated conjecture)

REL047+1.p Meet splitting
Meet can be split into 2 inequations iff the meet is on the right hand side of an inequation.
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: ((x0 ∨ x1 = x1 and x0 ∨ x2 = x2) ⇒ x0 ∨ (x1 ∧ x2) = x1 ∧ x2) fof(goals, conjecture)

REL047-1.p Meet splitting
Meet can be split into 2 inequations iff the meet is on the right hand side of an inequation.
include(’Axioms/REL001-0.ax’)
sk1 ∨ sk2 = sk2 cnf(goals14, negated conjecture)
sk1 ∨ sk3 = sk3 cnf(goals15, negated conjecture)
sk1 ∨ (sk2 ∧ sk3) 6= sk2 ∧ sk3 cnf(goals16, negated conjecture)

REL048+1.p Join splitting
Join can be split into 2 inequations iff the join is on the left hand side of an inequation.
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: ((x0 ∨ x1) ∨ x2 = x2 ⇒ (x0 ∨ x2 = x2 and x1 ∨ x2 = x2)) fof(goals, conjecture)

REL048-1.p Join splitting
Join can be split into 2 inequations iff the join is on the left hand side of an inequation.
include(’Axioms/REL001-0.ax’)
(sk1 ∨ sk2) ∨ sk3 = sk3 cnf(goals14, negated conjecture)
sk1 ∨ sk3 = sk3 ⇒ sk2 ∨ sk3 6= sk3 cnf(goals15, negated conjecture)

REL049+1.p Join splitting



19

Join can be split into 2 inequations iff the join is on the left hand side of an inequation.
include(’Axioms/REL001+0.ax’)
∀x0, x1, x2: ((x0 ∨ x1 = x1 and x2 ∨ x1 = x1) ⇒ (x0 ∨ x2) ∨ x1 = x1) fof(goals, conjecture)

REL049-1.p Join splitting
Join can be split into 2 inequations iff the join is on the left hand side of an inequation.
include(’Axioms/REL001-0.ax’)
sk1 ∨ sk2 = sk2 cnf(goals14, negated conjecture)
sk3 ∨ sk2 = sk2 cnf(goals15, negated conjecture)
(sk1 ∨ sk3) ∨ sk2 6= sk2 cnf(goals16, negated conjecture)

REL050+1.p The complement of x;TOP is left ideal
include(’Axioms/REL001+0.ax’)
∀x0: (x0;>)′ = (x0;>)′;> fof(goals, conjecture)

REL050+2.p The complement of x;TOP is left ideal
include(’Axioms/REL001+0.ax’)
∀x0: ((x0;>)′ ∨ (x0;>)′;> = (x0;>)′;> and (x0;>)′;> ∨ (x0;>)′ = (x0;>)′) fof(goals, conjecture)

REL050+3.p The complement of x;TOP is left ideal
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0: (x0;>)′ = (x0;>)′;> fof(goals, conjecture)

REL050+4.p The complement of x;TOP is left ideal
include(’Axioms/REL001+0.ax’)
include(’Axioms/REL001+1.ax’)
∀x0: ((x0;>)′ ∨ (x0;>)′;> = (x0;>)′;> and (x0;>)′;> ∨ (x0;>)′ = (x0;>)′) fof(goals, conjecture)

REL050-1.p The complement of x;TOP is left ideal
include(’Axioms/REL001-0.ax’)
(sk1;>)′ 6= (sk1;>)′;> cnf(goals14, negated conjecture)

REL050-2.p The complement of x;TOP is left ideal
include(’Axioms/REL001-0.ax’)
(sk1;>)′ ∨ (sk1;>)′;> = (sk1;>)′;> ⇒ (sk1;>)′;> ∨ (sk1;>)′ 6= (sk1;>)′ cnf(goals14, negated conjecture)

REL050-3.p The complement of x;TOP is left ideal
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
(sk1;>)′ 6= (sk1;>)′;> cnf(goals17, negated conjecture)

REL050-4.p The complement of x;TOP is left ideal
include(’Axioms/REL001-0.ax’)
include(’Axioms/REL001-1.ax’)
(sk1;>)′ ∨ (sk1;>)′;> = (sk1;>)′;> ⇒ (sk1;>)′;> ∨ (sk1;>)′ 6= (sk1;>)′ cnf(goals17, negated conjecture)

REL051+1.p Dense linear ordering
∀a: o(a, a) fof(f01, axiom)
∀a, b: ((a 6= b and o(a, b)) ⇒ ¬ o(b, a)) fof(f02, axiom)
∀a, b, c: ((o(a, b) and o(b, c)) ⇒ o(a, c)) fof(f03, axiom)
∀a, b: ((a 6= b and o(a, b)) ⇒ (o(a, f(a, b)) and o(f(a, b), b))) fof(f04, axiom)
∀a, b: (f(a, b) 6= a and f(a, b) 6= b) fof(f05, axiom)
∀a, b: (o(a, b) or o(b, a)) fof(f06, axiom)

REL052+1.p Non-discrete dense ordering
∀a: o(a, a) fof(f01, axiom)
∀a, b: ((a 6= b and o(a, b)) ⇒ ¬ o(b, a)) fof(f02, axiom)
∀a, b, c: ((o(a, b) and o(b, c)) ⇒ o(a, c)) fof(f03, axiom)
∀a, b: ((a 6= b and o(a, b)) ⇒ (o(a, f(a, b)) and o(f(a, b), b))) fof(f04, axiom)
∀a, b: (f(a, b) 6= a and f(a, b) 6= b) fof(f05, axiom)
∃a, b: (o(a, b) and a 6= b) fof(f06, axiom)

REL053+1.p Relation Algebra
include(’Axioms/REL001+0.ax’)

REL053-1.p Relation Algebra



20

include(’Axioms/REL001-0.ax’)


