REL axioms

```
REL001+0.ax Relation Algebra
\forall x_0, x_1 \colon x_0 \lor x_1 = x_1 \lor x_0
                                       fof(maddux1_join_commutativity, axiom)
\forall x_0, x_1, x_2 : x_0 \lor (x_1 \lor x_2) = (x_0 \lor x_1) \lor x_2
                                                             fof(maddux2_join_associativity, axiom)
\forall x_0, x_1 : x_0 = (x'_0 \lor x'_1)' \lor (x'_0 \lor x_1)'
                                                    fof(maddux3_a_kind_of_de_Morgan, axiom)
\forall x_0, x_1 : x_0 \wedge x_1 = (x'_0 \vee x'_1)'
                                          fof(maddux4_definiton_of_meet, axiom)
\forall x_0, x_1, x_2 : x_0; (x_1; x_2) = (x_0; x_1); x_2
                                                     fof(composition_associativity, axiom)
                         fof(composition_identity, axiom)
\forall x_0: x_0; 1 = x_0
\forall x_0, x_1, x_2 : (x_0 \lor x_1); x_2 = x_0; x_2 \lor x_1; x_2
                                                           fof(composition_distributivity, axiom)
                           fof(converse_idempotence, axiom)
\forall x_0 : (x_0)^{\smile} = x_0
\forall x_0, x_1 \colon (x_0 \vee x_1)^{\smile} = x_0^{\smile} \vee x_1^{\smile}
                                             fof(converse_additivity, axiom)
\forall x_0, x_1 : (x_0; x_1)^{\smile} = x_1^{\smile}; x_0^{\smile}
                                        fof(converse_multiplicativity, axiom)
\forall x_0, x_1 : x_0^{\smile}; (x_0; x_1)' \lor x_1' = x_1'
                                             fof(converse_cancellativity, axiom)
\forall x_0 : \top = x_0 \vee x_0'
                           fof(def_top, axiom)
\forall x_0 : 0 = x_0 \wedge x_0'
                           fof(def_zero, axiom)
\mathbf{REL001} + \mathbf{1.ax} Dedkind and two modular laws
\forall x_0, x_1, x_2 : (x_0; x_1 \land x_2) \lor (x_0 \land x_2; x_1); (x_1 \land x_0; x_2) = (x_0 \land x_2; x_1); (x_1 \land x_0; x_2)
                                                                                                                  fof(dedekind_law, axiom)
\forall x_0, x_1, x_2 : (x_0; x_1 \land x_2) \lor (x_0; (x_1 \land x_0); x_2) \land x_2) = x_0; (x_1 \land x_0; x_2) \land x_2
                                                                                                      fof(modular\_law_1, axiom)
\forall x_0, x_1, x_2 : (x_0; x_1 \land x_2) \lor ((x_0 \land x_2; x_1); x_1 \land x_2) = (x_0 \land x_2; x_1); x_1 \land x_2
                                                                                                      fof(modular_law<sub>2</sub>, axiom)
REL001-0.ax Relation algebra
a \vee b = b \vee a
                      cnf(maddux1_join_commutativity<sub>1</sub>, axiom)
a \lor (b \lor c) = (a \lor b) \lor c
                                    cnf(maddux2_join_associativity2, axiom)
a = (a' \lor b')' \lor (a' \lor b)'
                                    cnf(maddux3_a_kind_of_de_Morgan<sub>3</sub>, axiom)
a \wedge b = (a' \vee b')'
                           cnf(maddux4\_definiton\_of\_meet_4, axiom)
a; (b; c) = (a; b); c
                            cnf(composition_associativity<sub>5</sub>, axiom)
            cnf(composition\_identity_6, axiom)
a; 1 = a
(a \lor b); c = a; c \lor b; c
                                cnf(composition_distributivity<sub>7</sub>, axiom)
(a)^{\smile} = a
                   cnf(converse_idempotence<sub>8</sub>, axiom)
(a \lor b)^{\smile} = a^{\smile} \lor b^{\smile}
                              cnf(converse\_additivity_9, axiom)
(a;b)^{\smile} = b^{\smile}; a^{\smile}
                          cnf(converse\_multiplicativity_{10}, axiom)
a \stackrel{\smile}{}; (a;b)' \lor b' = b'
                             cnf(converse\_cancellativity_{11}, axiom)
T = a \vee a'
                   cnf(def\_top_{12}, axiom)
0 = a \wedge a'
                  cnf(def\_zero_{13}, axiom)
REL001-1.ax Dedkind and two modular laws
(a;b \wedge c) \vee (a \wedge c;b^{\smile}); (b \wedge a^{\smile};c) = (a \wedge c;b^{\smile}); (b \wedge a^{\smile};c)
                                                                               cnf(dedekind\_law_{14}, axiom)
(a;b \wedge c) \vee (a;(b \wedge a \ \ ;c) \wedge c) = a;(b \wedge a \ \ ;c) \wedge c
                                                                    cnf(modular\_law\_1_{15}, axiom)
(a; b \wedge c) \vee ((a \wedge c; b); b \wedge c) = (a \wedge c; b); b \wedge c
                                                                   cnf(modular\_law\_2_{16}, axiom)
REL problems
REL001+1.p There is a (unique) least element, namely 0
include('Axioms/REL001+0.ax')
\forall x_0 : 0 \lor x_0 = x_0
                           fof(goals, conjecture)
REL001-1.p There is a (unique) least element, namely 0
include('Axioms/REL001-0.ax')
                       cnf(goals<sub>14</sub>, negated_conjecture)
0 \vee sk_1 \neq sk_1
REL002+1.p There is a (unique) greatest element, namely x + x'
include('Axioms/REL001+0.ax')
\forall x_0: x_0 \lor \top = \top
                           fof(goals, conjecture)
REL002-1.p There is a (unique) greatest element, namely x + x'
include('Axioms/REL001-0.ax')
sk_1 \lor \top \neq \top
                      cnf(goals<sub>14</sub>, negated_conjecture)
REL003+1.p Isotonicity of converse
x is less or equal than y iff the converse of x is less or equal than converse of y.
include('Axioms/REL001+0.ax')
```

1

include('Axioms/REL001-0.ax') include('Axioms/REL001-1.ax') $(sk_1 \wedge sk_2)^{\smile} \neq sk_1^{\smile} \wedge sk_2^{\smile}$ cn

```
\forall x_0, x_1 : ((x_0 \lor x_1 = x_1 \implies x_0 \lor x_1 = x_1) \text{ and } (x_0 \lor x_1 = x_1 \implies x_0 \lor x_1 = x_1))
                                                                                                                                                                                                                                   fof(goals, conjecture)
REL003-1.p Isotonicity of converse
x is less or equal than y iff the converse of x is less or equal than converse of y.
include('Axioms/REL001-0.ax')
\begin{array}{l} sk_1 \vee sk_2 = sk_2 \text{ or } sk_1^{\smile} \vee sk_2^{\smile} = sk_2^{\smile} \\ sk_1 \vee sk_2 = sk_2 \ \Rightarrow \ sk_1^{\smile} \vee sk_2^{\smile} \neq sk_2^{\smile} \end{array}
                                                                                                   cnf(goals<sub>14</sub>, negated_conjecture)
                                                                                                       cnf(goals<sub>17</sub>, negated_conjecture)
REL004+1.p Converse negation are interconvertible
include('Axioms/REL001+0.ax')
\forall x_0 : x_0^{\prime} = (x_0^{\smile})^{\prime}
                                                     fof(goals, conjecture)
REL004+2.p Converse negation are interconvertible
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0: x_0^{\prime} = (x_0^{\smile})^{\prime} fof(goals, conjecture)
REL004+3.p Converse negation are interconvertible
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0 : x_0^{\prime \smile} = (x_0^{\smile})^{\prime}
                                                     fof(goals, conjecture)
REL004-1.p Converse negation are interconvertible
include('Axioms/REL001-0.ax')
                                              cnf(goals_{14}, negated\_conjecture)
sk_1^{\prime} \neq (sk_1^{\prime})^{\prime}
REL004-2.p Converse negation are interconvertible
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
sk_1^{\prime} \neq (sk_1^{\smile})^{\prime}
                                        cnf(goals<sub>17</sub>, negated_conjecture)
REL004-3.p Converse negation are interconvertible
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
sk_1^{\prime} \neq (sk_1^{\prime})^{\prime} cnf(goals<sub>17</sub>, negated_conjecture)
REL005+1.p Converse distributes over meet
include('Axioms/REL001+0.ax')
\forall x_0, x_1 : (x_0 \wedge x_1) = x_0 \wedge x_1
                                                                                           fof(goals, conjecture)
REL005+2.p Converse distributes over meet
include('Axioms/REL001+0.ax')
\forall x_0, x_1 : ((x_0 \land x_1) \smile (x_0 \land x_1) = x_0 \smile \land x_1 \text{ and } (x_0 \smile \land x_1) \smile (x_0 \land x_1) \smile = (x_0 \land x_1) \smile \text{ fof(goals, conjecture)}
REL005+3.p Converse distributes over meet
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1 : (x_0 \wedge x_1)^{\smile} = x_0^{\smile} \wedge x_1^{\smile}
                                                                                           fof(goals, conjecture)
REL005+4.p Converse distributes over meet
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1 : ((x_0 \land x_1) \smile (x_0 \land x_1) = x_0 \smile \land x_1) = x_0 \smile \land x_1) \lor (x_0 \land x_1) \smile (x_0 \lor x_1) 
REL005-1.p Converse distributes over meet
include('Axioms/REL001-0.ax')
                                                                         cnf(goals_{14}, negated\_conjecture)
(sk_1 \wedge sk_2)^{\smile} \neq sk_1^{\smile} \wedge sk_2^{\smile}
REL005-2.p Converse distributes over meet
include('Axioms/REL001-0.ax')
(sk_1 \wedge sk_2)^{\smile} \vee (sk_1^{\smile} \wedge sk_2^{\smile}) = sk_1^{\smile} \wedge sk_2^{\smile} \Rightarrow (sk_1^{\smile} \wedge sk_2^{\smile}) \vee (sk_1 \wedge sk_2)^{\smile} \neq (sk_1 \wedge sk_2)^{\smile} \qquad cnf(goals_{14}, negated\_conjecture)
REL005-3.p Converse distributes over meet
```

 $cnf(goals_{17}, negated_conjecture)$

fof(goals, conjecture)

```
REL005-4.p Converse distributes over meet
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
(sk_1 \wedge sk_2)^{\smile} \vee (sk_1^{\smile} \wedge sk_2^{\smile}) = sk_1^{\smile} \wedge sk_2^{\smile} \implies (sk_1^{\smile} \wedge sk_2^{\smile}) \vee (sk_1 \wedge sk_2)^{\smile} \neq (sk_1 \wedge sk_2)^{\smile}
                                                                                                                                                                                                                                                                  cnf(goals<sub>17</sub>, negated_conjecture)
REL006+1.p For empty meet the converse slides over meet
include('Axioms/REL001+0.ax')
\forall x_0, x_1 \colon (x_0 \overset{\smile}{\wedge} \wedge x_1 = 0 \Rightarrow x_0 \wedge x_1 \overset{\smile}{=} 0)
                                                                                                                                        fof(goals, conjecture)
{\bf REL006\text{-}1.p} For empty meet the converse slides over meet
include('Axioms/REL001-0.ax')
sk_1^{\smile} \wedge sk_2 = 0
                                                        cnf(goals<sub>14</sub>, negated_conjecture)
                                                       cnf(goals_{15}, negated\_conjecture)
sk_1 \wedge sk_2 \neq 0
REL007+1.p For empty meet the converse slides over meet
include('Axioms/REL001+0.ax')
\forall x_0, x_1 : (x_0 \land x_1) = 0 \implies x_0 \land x_1 = 0
                                                                                                                                   fof(goals, conjecture)
REL007-1.p For empty meet the converse slides over meet
include('Axioms/REL001-0.ax')
sk_1 \wedge sk_2^{\smile} = 0
                                                      cnf(goals<sub>14</sub>, negated_conjecture)
sk_1^{\smile} \wedge sk_2 \neq 0
                                                        cnf(goals<sub>15</sub>, negated_conjecture)
REL008+1.p Sequential composition distributes over addition
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 : x_0; (x_1 \lor x_2) = x_0; x_1 \lor x_0; x_2
                                                                                                                                               fof(goals, conjecture)
REL008+2.p Sequential composition distributes over addition
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2: ((x_0; (x_1 \lor x_2) \lor x_0; x_1) \lor x_0; x_2 = x_0; x_1 \lor x_0; x_2 \text{ and } (x_0; x_1 \lor x_0; x_2) \lor x_0; (x_1 \lor x_2) = x_0; (x_1 \lor x_2) \lor x_0; (x_1
                           fof(goals, conjecture)
(x_2)
REL008+3.p Sequential composition distributes over addition
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 : x_0; (x_1 \lor x_2) = x_0; x_1 \lor x_0; x_2
                                                                                                                                               fof(goals, conjecture)
REL008+4.p Sequential composition distributes over addition
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 \colon \left( (x_0; (x_1 \lor x_2) \lor x_0; x_1) \lor x_0; x_2 = x_0; x_1 \lor x_0; x_2 \text{ and } (x_0; x_1 \lor x_0; x_2) \lor x_0; (x_1 \lor x_2) = x_0; (x_1 \lor x_2) \lor x_0; (x_
                           fof(goals, conjecture)
(x_2)
REL008-1.p Sequential composition distributes over addition
include('Axioms/REL001-0.ax')
sk_1; (sk_2 \lor sk_3) \neq sk_1; sk_2 \lor sk_1; sk_3
                                                                                                                           cnf(goals<sub>14</sub>, negated_conjecture)
REL008-2.p Sequential composition distributes over addition
include('Axioms/REL001-0.ax')
 (sk_1; sk_2 \vee sk_1; sk_3) \vee sk_1; (sk_2 \vee sk_3) \ = \ sk_1; (sk_2 \vee sk_3) \ \Rightarrow \ (sk_1; (sk_2 \vee sk_3) \vee sk_1; sk_2) \vee sk_1; sk_3 \ \neq \ sk_1; sk_2 \vee sk_3
                                     cnf(goals_{14}, negated\_conjecture)
sk_1; sk_3
REL008-3.p Sequential composition distributes over addition
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
sk_1; (sk_2 \lor sk_3) \neq sk_1; sk_2 \lor sk_1; sk_3
                                                                                                                           cnf(goals<sub>17</sub>, negated_conjecture)
REL008-4.p Sequential composition distributes over addition
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
 (sk_1; sk_2 \lor sk_1; sk_3) \lor sk_1; (sk_2 \lor sk_3) = sk_1; (sk_2 \lor sk_3) \Rightarrow (sk_1; (sk_2 \lor sk_3) \lor sk_1; sk_2) \lor sk_1; sk_3 \neq sk_1; sk_2 \lor sk_3
```

cnf(goals₁₇, negated_conjecture)

include('Axioms/REL001+0.ax')

REL009+1.p Sequential composition is isotone in both arguments

 $\forall x_0, x_1, x_2 : (x_0 \lor x_1 = x_1 \implies (x_0; x_2 \lor x_1; x_2 = x_1; x_2 \text{ and } x_2; x_0 \lor x_2; x_1 = x_2; x_1))$

```
REL009+2.p Sequential composition is isotone in both arguments
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 : (x_0 \lor x_1 = x_1 \implies (x_0; x_2 \lor x_1; x_2 = x_1; x_2 \text{ and } x_2; x_0 \lor x_2; x_1 = x_2; x_1))
                                                                                                    fof(goals, conjecture)
REL009-1.p Sequential composition is isotone in both arguments
include('Axioms/REL001-0.ax')
sk_1 \vee sk_2 = sk_2
                      cnf(goals<sub>14</sub>, negated_conjecture)
                                                                         cnf(goals<sub>15</sub>, negated_conjecture)
sk_1; sk_3 \lor sk_2; sk_3 = sk_2; sk_3 \Rightarrow sk_3; sk_1 \lor sk_3; sk_2 \neq sk_3; sk_2
REL009-2.p Sequential composition is isotone in both arguments
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
                   cnf(goals<sub>17</sub>, negated_conjecture)
sk_1 \vee sk_2 = sk_2
sk_1; sk_3 \lor sk_2; sk_3 = sk_2; sk_3 \Rightarrow sk_3; sk_1 \lor sk_3; sk_2 \neq sk_3; sk_2
                                                                          cnf(goals<sub>18</sub>, negated_conjecture)
REL010+1.p Schroeder equivalence (first implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 : (x_0; x_1 \land x_2 = 0 \implies x_1 \land x_0; x_2 = 0)
                                                            fof(goals, conjecture)
REL010+2.p Schroeder equivalence (first implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 : (x_0; x_1 \land x_2 = 0 \implies x_1 \land x_0; x_2 = 0)
                                                            fof(goals, conjecture)
REL010-1.p Schroeder equivalence (first implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include('Axioms/REL001-0.ax')
sk_1; sk_2 \wedge sk_3 = 0
                        cnf(goals<sub>14</sub>, negated_conjecture)
sk_2 \wedge sk_1^{\smile}; sk_3 \neq 0
                         cnf(goals<sub>15</sub>, negated_conjecture)
REL010-2.p Schroeder equivalence (first implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
                        \operatorname{cnf}(\operatorname{goals}_{17}, \operatorname{negated\_conjecture})
sk_1; sk_2 \wedge sk_3 = 0
                         cnf(goals_{18}, negated\_conjecture)
sk_2 \wedge sk_1^{\smile}; sk_3 \neq 0
REL011+1.p Schroeder equivalence (second implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 : (x_0 \land x_1); x_2 = 0 \implies x_1; x_0 \land x_2 = 0
                                                            fof(goals, conjecture)
REL011+2.p Schroeder equivalence (second implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 : (x_0 \land x_1^{\smile}; x_2 = 0 \implies x_1; x_0 \land x_2 = 0)
                                                            fof(goals, conjecture)
REL011-1.p Schroeder equivalence (second implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include('Axioms/REL001-0.ax')
sk_1 \wedge sk_2; sk_3 = 0
                         cnf(goals<sub>14</sub>, negated_conjecture)
sk_2; sk_1 \wedge sk_3 \neq 0
                        cnf(goals<sub>15</sub>, negated_conjecture)
REL011-2.p Schroeder equivalence (second implication)
Describes the interplay between composition, converse and complement, w.r.t. containment.
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
sk_1 \wedge sk_2^{\smile}; sk_3 = 0
                         cnf(goals<sub>17</sub>, negated_conjecture)
sk_2; sk_1 \wedge sk_3 \neq 0
                        cnf(goals<sub>18</sub>, negated_conjecture)
```

REL012+1.p Cancelativity of converse

```
include('Axioms/REL001+0.ax')
\forall x_0, x_1 : (x_0; x_1)'; x_1 \smile x_0' = x_0'
                                                                                                                                                 fof(goals, conjecture)
REL012+2.p Cancelativity of converse
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1 : (x_0; x_1)'; x_1^{\smile} \lor x_0' = x_0'
                                                                                                                                                 fof(goals, conjecture)
REL012-1.p Cancelativity of converse
include('Axioms/REL001-0.ax')
(sk_1; sk_2)'; sk_2 \lor sk_1 \neq sk_1'
                                                                                                                               cnf(goals<sub>14</sub>, negated_conjecture)
REL012-2.p Cancelativity of converse
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
(sk_1; sk_2)'; sk_2 \lor sk_1 \neq sk_1'
                                                                                                                                cnf(goals<sub>17</sub>, negated_conjecture)
REL013+1.p Zero is annihilator
include('Axioms/REL001+0.ax')
\forall x_0: (x_0; 0 = 0 \text{ and } 0; x_0 = 0)
                                                                                                                                            fof(goals, conjecture)
REL013-1.p Zero is annihilator
include('Axioms/REL001-0.ax')
sk_1; 0 = 0 \implies 0; sk_1 \neq 0
                                                                                                                       cnf(goals<sub>14</sub>, negated_conjecture)
REL014+1.p One is neutral element
include('Axioms/REL001+0.ax')
                                                                                                                                                       fof(goals, conjecture)
\forall x_0: (x_0; 1 = x_0 \text{ and } 1; x_0 = x_0)
REL014-1.p One is neutral element
include('Axioms/REL001-0.ax')
REL015+1.p TOP is idempotent w.r.t. composition
include('Axioms/REL001+0.ax')
 T; T = T
                                                          fof(goals, conjecture)
REL015-1.p TOP is idempotent w.r.t. composition
include('Axioms/REL001-0.ax')
                                                         cnf(goals<sub>14</sub>, negated_conjecture)
T; T \neq T
REL016+1.p A modular law
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 : x_0; x_1 \land (x_0; x_2)' = x_0; (x_1 \land x_2') \land (x_0; x_2)'
                                                                                                                                                                                                                                                   fof(goals, conjecture)
REL016+2.p A modular law
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 : ((x_0; x_1 \land (x_0; x_2)') \lor (x_0; (x_1 \land x_2') \land (x_0; x_2)') = x_0; (x_1 \land x_2') \land (x_0; x_2)' \text{ and } (x_0; (x_1 \land x_2') \land (x_0; x_2)') \lor (x_0; x_1, x_2) \lor (x_0; x_1, x_
(x_0; x_1 \wedge (x_0; x_2)') = x_0; x_1 \wedge (x_0; x_2)')
                                                                                                                                                                          fof(goals, conjecture)
REL016+3.p A modular law
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 \colon x_0; x_1 \land (x_0; x_2)' = x_0; (x_1 \land x_2') \land (x_0; x_2)'
                                                                                                                                                                                                                                                   fof(goals, conjecture)
REL016+4.p A modular law
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 : ((x_0; x_1 \land (x_0; x_2)') \lor (x_0; (x_1 \land x_2') \land (x_0; x_2)') = x_0; (x_1 \land x_2') \land (x_0; x_2)' \text{ and } (x_0; (x_1 \land x_2') \land (x_0; x_2)') \lor (x_0; (x_0; x_2) \land (x_0; x_2)') \lor (x_0; (x_0; x_2) \land (x_0; x_2) \lor 
(x_0; x_1 \wedge (x_0; x_2)') = x_0; x_1 \wedge (x_0; x_2)')
                                                                                                                                                                             fof(goals, conjecture)
REL016-1.p A modular law
include('Axioms/REL001-0.ax')
sk_1; sk_2 \land (sk_1; sk_3)' \neq sk_1; (sk_2 \land sk_3') \land (sk_1; sk_3)'
                                                                                                                                                                                                                               cnf(goals<sub>14</sub>, negated_conjecture)
REL016-2.p A modular law
include('Axioms/REL001-0.ax')
(sk_1; sk_2 \wedge (sk_1; sk_3)') \vee (sk_1; (sk_2 \wedge sk_3') \wedge (sk_1; sk_3)') = sk_1; (sk_2 \wedge sk_3') \wedge (sk_1; sk_3)' \implies (sk_1; (sk_2 \wedge sk_3') \wedge (sk_1; sk_3)') \vee (sk_1; (sk_2 \wedge sk_3') \wedge (sk_1; sk_3)') \vee (sk_1; (sk_2 \wedge sk_3') \wedge (sk_1; sk_3)') = sk_1; (sk_2 \wedge sk_3') \wedge (sk_1; sk_3)' \implies (sk_1; (sk_2 \wedge sk_3') \wedge (sk_1; sk_3)') \vee (sk_1; (sk_2 \wedge sk_3') \wedge (sk_1; sk_3)') = sk_1; (sk_2 \wedge sk_3') \wedge (sk_1; sk_3)' \implies (sk_1; (sk_2 \wedge sk_3') \wedge (sk_1; sk_3)') \vee (sk_1; sk_3)' \implies (sk_1; (sk_2 \wedge sk_3') \wedge (sk_1; sk_3)') \vee (sk_1; (sk_2 \wedge sk_3') \wedge (sk_1; sk_3)') \otimes (sk_1; sk_3)' \otimes (sk_1; 
 (sk_1; sk_2 \land (sk_1; sk_3)') \neq sk_1; sk_2 \land (sk_1; sk_3)' cnf(goals_{14}, negated\_conjecture)
```

```
REL016-3.p A modular law
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
sk_1; sk_2 \wedge (sk_1; sk_3)' \neq sk_1; (sk_2 \wedge sk_3') \wedge (sk_1; sk_3)'
                                                                                                                                                                                                                                                                                                                                            cnf(goals<sub>17</sub>, negated_conjecture)
 REL016-4.p A modular law
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
  (sk_1; sk_2 \wedge (sk_1; sk_3)') \vee (sk_1; (sk_2 \wedge sk_3') \wedge (sk_1; sk_3)') = sk_1; (sk_2 \wedge sk_3') \wedge (sk_1; sk_3)' \Rightarrow (sk_1; (sk_2 \wedge sk_3') \wedge (sk_1; sk_3)') \vee (sk_1; sk_3)' \otimes (sk_
 (sk_1; sk_2 \land (sk_1; sk_3)') \neq sk_1; sk_2 \land (sk_1; sk_3)'
                                                                                                                                                                                                                                                                                                 cnf(goals_{17}, negated\_conjecture)
 REL017+1.p Another modular law
include('Axioms/REL001+0.ax')
 \forall x_0, x_1, x_2 \colon (x_0; x_1)' \lor x_0; x_2 = (x_0; (x_1 \land x_2'))' \lor x_0; x_2
                                                                                                                                                                                                                                                                                                                                                                      fof(goals, conjecture)
 REL017+2.p Another modular law
include('Axioms/REL001+0.ax')
 \forall x_0, x_1, x_2 : ((((x_0; x_1)' \lor x_0; x_2) \lor (x_0; (x_1 \land x_2'))') \lor x_0; x_2 = (x_0; (x_1 \land x_2'))' \lor x_0; x_2 \text{ and } (((x_0; (x_1 \land x_2'))' \lor x_0; x_2) \lor (x_0; (x_1 \land x_2'))' \lor x_0; x_2) \lor (x_0; (x_1 \land x_2'))' \lor x_0; x_2 \lor (x_0; (x_1 \land x_2'))' \lor x_0; x_2) \lor (x_0; (x_1 \land x_2'))' \lor x_0; x_2 \lor (x_0; (x_1 \land x_2'))' \lor x_0; x_1 \lor (x_0; (x_1 \land x_2')) \lor (x_0; (x_1 \lor x_2')) \lor 
 (x_0; x_1)') \lor x_0; x_2 = (x_0; x_1)' \lor x_0; x_2)
                                                                                                                                                                                                                                                               fof(goals, conjecture)
REL017+3.p Another modular law
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 : (x_0; x_1)' \lor x_0; x_2 = (x_0; (x_1 \land x_2))' \lor x_0; x_2
                                                                                                                                                                                                                                                                                                                                                                       fof(goals, conjecture)
REL017+4.p Another modular law
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
 \forall x_0, x_1, x_2 : ((((x_0; x_1)' \lor x_0; x_2) \lor (x_0; (x_1 \land x_2'))') \lor x_0; x_2 = (x_0; (x_1 \land x_2'))' \lor x_0; x_2 \text{ and } (((x_0; (x_1 \land x_2'))' \lor x_0; x_2) \lor (x_0; (x_1 \land x_2'))' \lor (x_0; (x_1 \lor x_2')) \lor (x_0; 
 (x_0; x_1)') \lor x_0; x_2 = (x_0; x_1)' \lor x_0; x_2)
                                                                                                                                                                                                                                                               fof(goals, conjecture)
 REL017-1.p Another modular law
include('Axioms/REL001-0.ax')
 (sk_1; sk_2)' \lor sk_1; sk_3 \neq (sk_1; (sk_2 \land sk_3'))' \lor sk_1; sk_3
                                                                                                                                                                                                                                                                                                                                      cnf(goals<sub>14</sub>, negated_conjecture)
REL017-2.p Another modular law
include('Axioms/REL001-0.ax')
 (((sk_1; sk_2)' \lor sk_1; sk_3) \lor (sk_1; (sk_2 \land sk_3'))') \lor sk_1; sk_3 = (sk_1; (sk_2 \land sk_3'))' \lor sk_1; sk_3 \implies (((sk_1; (sk_2 \land sk_3'))' \lor sk_1; sk_3) \lor (sk_1; (sk_2 \land sk_3'))' \lor sk_1; sk_3) \lor (sk_1; (sk_2 \land sk_3'))' \lor sk_1; sk_3) \lor (sk_1; (sk_2 \land sk_3'))' \lor sk_1; sk_3 \implies (((sk_1; (sk_2 \land sk_3'))' \lor sk_1; sk_3) \lor (sk_1; (sk_2 \land sk_3'))' \lor sk_1; sk_2 \lor sk_3 \lor 
 (sk_1; sk_2)') \lor sk_1; sk_3 \neq (sk_1; sk_2)' \lor sk_1; sk_3
                                                                                                                                                                                                                                                                                          cnf(goals<sub>14</sub>, negated_conjecture)
REL017-3.p Another modular law
 include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
 (sk_1; sk_2)' \vee sk_1; sk_3 \neq (sk_1; (sk_2 \wedge sk_3))' \vee sk_1; sk_3
                                                                                                                                                                                                                                                                                                                                            cnf(goals<sub>17</sub>, negated_conjecture)
REL017-4.p Another modular law
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
 (((sk_1; sk_2)' \vee sk_1; sk_3) \vee (sk_1; (sk_2 \wedge sk_3'))') \vee sk_1; sk_3 = (sk_1; (sk_2 \wedge sk_3'))' \vee sk_1; sk_3 \ \Rightarrow \ (((sk_1; (sk_2 \wedge sk_3'))' \vee sk_1; sk_3) \vee (sk_1; (sk_2 \wedge sk_3')) \vee sk_1; sk_2 \wedge sk_3 \wedge sk_3
 (sk_1; sk_2)') \vee sk_1; sk_3 \neq (sk_1; sk_2)' \vee sk_1; sk_3
                                                                                                                                                                                                                                                                                                 cnf(goals<sub>17</sub>, negated_conjecture)
 REL018+1.p Vectors are closed under complementation
If x is a vector then overlinex is a vector too.
include('Axioms/REL001+0.ax')
\forall x_0: (x_0; \top = x_0 \Rightarrow x_0'; \top = x_0')
                                                                                                                                                                                                                          fof(goals, conjecture)
REL018-1.p Vectors are closed under complementation
If x is a vector then overlinex is a vector too.
include('Axioms/REL001-0.ax')
                                                                                                     cnf(goals<sub>14</sub>, negated_conjecture)
sk_1; T = sk_1
sk'_1; \top \neq sk'_1
                                                                                                   cnf(goals<sub>15</sub>, negated_conjecture)
```

REL019+1.p Vectors are closed under meet

If x and y are vectors then x meet y is a vector too.

include('Axioms/REL001+0.ax')

 $\forall x_0, x_1 : ((x_0; \top = x_0 \text{ and } x_1; \top = x_1) \Rightarrow (x_0 \land x_1); \top = x_0 \land x_1)$ fof(goals, conjecture)

REL019+2.p Vectors are closed under meet

If x and y are vectors then x meet y is a vector too.

include('Axioms/REL001+0.ax')

include('Axioms/REL001+1.ax')

 $\forall x_0, x_1 : ((x_0; \top = x_0 \text{ and } x_1; \top = x_1) \Rightarrow (x_0 \land x_1); \top = x_0 \land x_1)$ fof(goals, conjecture)

REL019-1.p Vectors are closed under meet

If x and y are vectors then x meet y is a vector too.

include('Axioms/REL001-0.ax')

 $sk_1; \top = sk_1 \qquad cnf(goals_{14}, negated_conjecture)$

 sk_2 ; $T = sk_2$ $cnf(goals_{15}, negated_conjecture)$

 $(sk_1 \wedge sk_2)$; $\top \neq sk_1 \wedge sk_2$ $cnf(goals_{16}, negated_conjecture)$

REL019-2.p Vectors are closed under meet

If x and y are vectors then x meet y is a vector too.

include('Axioms/REL001-0.ax')

include('Axioms/REL001-1.ax')

 sk_1 ; $T = sk_1$ $cnf(goals_{17}, negated_conjecture)$

 sk_2 ; $T = sk_2$ $cnf(goals_{18}, negated_conjecture)$

 $(sk_1 \wedge sk_2); \top \neq sk_1 \wedge sk_2 \qquad cnf(goals_{19}, negated_conjecture)$

REL020+1.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.

include('Axioms/REL001+0.ax')

 $\forall x_0, x_1: (x_0; \top = x_0 \Rightarrow (x_0 \land 1); x_1 = x_0 \land x_1)$ fof(goals, conjecture)

REL020+2.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.

include('Axioms/REL001+0.ax')

include('Axioms/REL001+1.ax')

 $\forall x_0, x_1: (x_0; \top = x_0 \Rightarrow (x_0 \land 1); x_1 = x_0 \land x_1)$ fof(goals, conjecture)

REL020-1.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.

include('Axioms/REL001-0.ax')

 $sk_1; T = sk_1$ $cnf(goals_{14}, negated_conjecture)$

 $(sk_1 \wedge 1); sk_2 \neq sk_1 \wedge sk_2$ $cnf(goals_{15}, negated_conjecture)$

REL020-2.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.

include('Axioms/REL001-0.ax')

include('Axioms/REL001-1.ax')

 sk_1 ; $T = sk_1$ $cnf(goals_{17}, negated_conjecture)$

 $(sk_1 \wedge 1); sk_2 \neq sk_1 \wedge sk_2 \qquad cnf(goals_{18}, negated_conjecture)$

REL021+1.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.

include('Axioms/REL001+0.ax')

 $\forall x_0, x_1: (x_0; \top = x_0 \Rightarrow (x_0 \land 1); x_1 \lor (x_0 \land x_1) = x_0 \land x_1)$ fof(goals, conjecture)

REL021+2.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.

include('Axioms/REL001+0.ax')

include ('Axioms/REL001+1.ax')

 $\forall x_0, x_1 : (x_0; \top = x_0 \Rightarrow (x_0 \land 1); x_1 \lor (x_0 \land x_1) = x_0 \land x_1)$ fof(goals, conjecture)

REL021-1.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.

include('Axioms/REL001-0.ax')

 $sk_1; T = sk_1$ $cnf(goals_{14}, negated_conjecture)$

 $(sk_1 \wedge 1); sk_2 \vee (sk_1 \wedge sk_2) \neq sk_1 \wedge sk_2$ $cnf(goals_{15}, negated_conjecture)$

REL021-2.p Restriction of subidentities

For vectors restriction of subidientities equals intersection with vectors.

include('Axioms/REL001-0.ax')

```
include('Axioms/REL001-1.ax')
sk_1; T = sk_1
                    cnf(goals<sub>17</sub>, negated_conjecture)
                                                   cnf(goals_{18}, negated\_conjecture)
(sk_1 \wedge 1); sk_2 \vee (sk_1 \wedge sk_2) \neq sk_1 \wedge sk_2
REL022+1.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.
include('Axioms/REL001+0.ax')
\forall x_0, x_1: (x_0; \top = x_0 \Rightarrow (x_0 \land x_1) \lor (x_0 \land 1); x_1 = (x_0 \land 1); x_1)
                                                                                 fof(goals, conjecture)
REL022+2.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1 : (x_0; \top = x_0 \implies (x_0 \land x_1) \lor (x_0 \land 1); x_1 = (x_0 \land 1); x_1)
                                                                                 fof(goals, conjecture)
REL022-1.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.
include('Axioms/REL001-0.ax')
                    cnf(goals<sub>14</sub>, negated_conjecture)
sk_1; T = sk_1
(sk_1 \wedge sk_2) \vee (sk_1 \wedge 1); sk_2 \neq (sk_1 \wedge 1); sk_2
                                                        cnf(goals<sub>15</sub>, negated_conjecture)
REL022-2.p Restriction of subidentities
For vectors restriction of subidientities equals intersection with vectors.
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
                    cnf(goals<sub>17</sub>, negated_conjecture)
sk_1; T = sk_1
(sk_1 \wedge sk_2) \vee (sk_1 \wedge 1); sk_2 \neq (sk_1 \wedge 1); sk_2
                                                        cnf(goals_{18}, negated\_conjecture)
REL023+1.p A simple consequence of isotonicity
include('Axioms/REL001+0.ax')
                                                                                fof(goals, conjecture)
\forall x_0, x_1, x_2 : (x_0 \land x_1); (x_1 \land x_2) \lor x_0; (x_1 \land x_2) = x_0; (x_1 \land x_2)
REL023+2.p A simple consequence of isotonicity
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 : (x_0 \land x_1); (x_1 \land x_2) \lor x_0; (x_1 \land x_2) = x_0; (x_1 \land x_2)
                                                                                fof(goals, conjecture)
REL023-1.p A simple consequence of isotonicity
include('Axioms/REL001-0.ax')
(sk_1 \wedge sk_2); (sk_2 \wedge sk_3) \vee sk_1; (sk_2 \wedge sk_3) \neq sk_1; (sk_2 \wedge sk_3)
                                                                           cnf(goals<sub>14</sub>, negated_conjecture)
REL023-2.p A simple consequence of isotonicity
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
(sk_1 \wedge sk_2); (sk_2 \wedge sk_3) \vee sk_1; (sk_2 \wedge sk_3) \neq sk_1; (sk_2 \wedge sk_3)
                                                                           cnf(goals<sub>17</sub>, negated_conjecture)
REL024+1.p A simple consequence of isotonicity
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 : (x_0 \land x_1); (x_1 \land x_2) \lor (x_0 \land x_1); x_2 = (x_0 \land x_1); x_2
                                                                                 fof(goals, conjecture)
REL024+2.p A simple consequence of isotonicity
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 \colon (x_0 \land x_1^{\smile}); (x_1 \land x_2) \lor (x_0 \land x_1^{\smile}); x_2 = (x_0 \land x_1^{\smile}); x_2
                                                                                 fof(goals, conjecture)
REL024-1.p A simple consequence of isotonicity
include('Axioms/REL001-0.ax')
(sk_1 \wedge sk_2); (sk_2 \wedge sk_3) \vee (sk_1 \wedge sk_2); sk_3 \neq (sk_1 \wedge sk_2); sk_3
                                                                            cnf(goals<sub>14</sub>, negated_conjecture)
REL024-2.p A simple consequence of isotonicity
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
(sk_1 \wedge sk_2); (sk_2 \wedge sk_3) \vee (sk_1 \wedge sk_2); sk_3 \neq (sk_1 \wedge sk_2); sk_3
                                                                            cnf(goals<sub>17</sub>, negated_conjecture)
REL025+1.p For subidentities converse is redundant
If x is a subidentity then the converse of x equals x.
```

include('Axioms/REL001+0.ax')

```
\forall x_0: (x_0 \lor 1 = 1 \implies x_0 = x_0) fof(goals, conjecture)
```

REL025+2.p For subidentities converse is redundant

If x is a subidentity then the converse of x equals x.

include('Axioms/REL001+0.ax')

```
\forall x_0: ((x_0 \lor 1 = 1 \Rightarrow x_0 \lor x_0 = x_0) \text{ and } (x_0 \lor 1 = 1 \Rightarrow x_0 \lor x_0 = x_0)) fof(goals, conjecture)
```

REL025-1.p For subidentities converse is redundant

If x is a subidentity then the converse of x equals x.

include('Axioms/REL001-0.ax')

 $sk_1 \lor 1 = 1$ $cnf(goals_{14}, negated_conjecture)$

 $sk_1^{\smallsmile} \neq sk_1 \qquad cnf(goals_{15}, negated_conjecture)$

REL025-2.p For subidentities converse is redundant

If x is a subidentity then the converse of x equals x.

include('Axioms/REL001-0.ax')

 $sk_1 \lor 1 = 1$ $cnf(goals_{14}, negated_conjecture)$

 $sk_1 \lor sk_1 = sk_1 \Rightarrow sk_1 \lor sk_1 \neq sk_1 \quad cnf(goals_{17}, negated_conjecture)$

$\mathbf{REL026} + \mathbf{1.p}$ Splitting rule for x;y if x is a subidentity

If x is a subidentity then the composition of x and y can be split into a meet.

include('Axioms/REL001+0.ax')

 $\forall x_0, x_1 : (x_0 \lor 1 = 1 \implies x_0; \top \land x_1 = x_0; x_1)$ fof(goals, conjecture)

REL026+2.p Splitting rule for x;y if x is a subidentity

If x is a subidentity then the composition of x and y can be split into a meet.

include('Axioms/REL001+0.ax')

 $\forall x_0, x_1 \colon (x_0 \lor 1 = 1 \implies ((x_0; \top \land x_1) \lor x_0; x_1 = x_0; x_1 \text{ and } x_0; x_1 \lor (x_0; \top \land x_1) = x_0; \top \land x_1)) \qquad \text{fof(goals, conjecture)}$

REL026+3.p Splitting rule for x;y if x is a subidentity

If x is a subidentity then the composition of x and y can be split into a meet.

include('Axioms/REL001+0.ax')

include('Axioms/REL001+1.ax')

 $\forall x_0, x_1: (x_0 \lor 1 = 1 \implies x_0; \top \land x_1 = x_0; x_1)$ fof(goals, conjecture)

REL026+4.p Splitting rule for x;y if x is a subidentity

If x is a subidentity then the composition of x and y can be split into a meet.

include('Axioms/REL001+0.ax')

include('Axioms/REL001+1.ax')

 $\forall x_0, x_1: (x_0 \lor 1 = 1 \Rightarrow ((x_0; \top \land x_1) \lor x_0; x_1 = x_0; x_1 \text{ and } x_0; x_1 \lor (x_0; \top \land x_1) = x_0; \top \land x_1))$ fof(goals, conjecture)

REL026-1.p Splitting rule for x;y if x is a subidentity

If x is a subidentity then the composition of x and y can be split into a meet.

include('Axioms/REL001-0.ax')

 $sk_1 \lor 1 = 1 \qquad cnf(goals_{14}, negated_conjecture)$

 sk_1 ; $T \wedge sk_2 \neq sk_1$; sk_2 cnf(goals₁₅, negated_conjecture)

REL026-2.p Splitting rule for x;y if x is a subidentity

If x is a subidentity then the composition of x and y can be split into a meet.

include('Axioms/REL001-0.ax')

 $sk_1 \lor 1 = 1 \qquad cnf(goals_{14}, negated_conjecture)$

 $sk_1; sk_2 \lor (sk_1; \top \land sk_2) = sk_1; \top \land sk_2 \Rightarrow (sk_1; \top \land sk_2) \lor sk_1; sk_2 \neq sk_1; sk_2 \qquad cnf(goals_{15}, negated_conjecture)$

REL026-3.p Splitting rule for x;y if x is a subidentity

If x is a subidentity then the composition of x and y can be split into a meet.

include('Axioms/REL001-0.ax')

include('Axioms/REL001-1.ax')

 $sk_1 \lor 1 = 1 \qquad cnf(goals_{17}, negated_conjecture)$

 sk_1 ; $T \wedge sk_2 \neq sk_1$; sk_2 $cnf(goals_{18}, negated_conjecture)$

$\bf REL026\text{-}4.p$ Splitting rule for x;y if x is a subidentity

If x is a subidentity then the composition of x and y can be split into a meet.

include('Axioms/REL001-0.ax')

include('Axioms/REL001-1.ax')

 $sk_1 \lor 1 = 1$ $cnf(goals_{17}, negated_conjecture)$

 $sk_1; sk_2 \lor (sk_1; \top \land sk_2) = sk_1; \top \land sk_2 \Rightarrow (sk_1; \top \land sk_2) \lor sk_1; sk_2 \neq sk_1; sk_2 \qquad cnf(goals_{18}, negated_conjecture)$

REL027+1.p Complements of vectors and subidentities

The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the corresponding vector x;TOP to a subidentity.

```
include('Axioms/REL001+0.ax')
```

```
\forall x_0: (x_0 \vee 1 = 1 \Rightarrow (x_0; \top)' \wedge 1 = x_0' \wedge 1) fof(goals, conjecture)
```

REL027+2.p Complements of vectors and subidentities

The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the corresponding vector x; TOP to a subidentity.

include('Axioms/REL001+0.ax')

```
\forall x_0: (x_0 \lor 1 = 1 \Rightarrow (((x_0; \top)' \land 1) \lor (x_0' \land 1) = x_0' \land 1 \text{ and } (x_0' \land 1) \lor ((x_0; \top)' \land 1) = (x_0; \top)' \land 1)) \qquad \text{fof(goals, conjecture)}
```

REL027+3.p Complements of vectors and subidentities

The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the corresponding vector x; TOP to a subidentity.

include('Axioms/REL001+0.ax')

include('Axioms/REL001+1.ax')

```
\forall x_0: (x_0 \lor 1 = 1 \implies (x_0; \top)' \land 1 = x_0' \land 1) fof(goals, conjecture)
```

REL027+4.p Complements of vectors and subidentities

The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the corresponding vector x; TOP to a subidentity.

include('Axioms/REL001+0.ax')

include('Axioms/REL001+1.ax')

```
\forall x_0: (x_0 \lor 1 = 1 \Rightarrow (((x_0; \top)' \land 1) \lor (x_0' \land 1) = x_0' \land 1 \text{ and } (x_0' \land 1) \lor ((x_0; \top)' \land 1) = (x_0; \top)' \land 1)) \qquad \text{fof(goals, conjecture)}
```

REL027-1.p Complements of vectors and subidentities

The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the corresponding vector x; TOP to a subidentity.

include('Axioms/REL001-0.ax')

 $sk_1 \lor 1 = 1 \qquad cnf(goals_{14}, negated_conjecture)$

 $(sk_1; \top)' \land 1 \neq sk'_1 \land 1$ $cnf(goals_{15}, negated_conjecture)$

REL027-2.p Complements of vectors and subidentities

The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the corresponding vector x; TOP to a subidentity.

include('Axioms/REL001-0.ax')

 $sk_1 \lor 1 = 1$ $cnf(goals_{14}, negated_conjecture)$

```
(sk'_1 \wedge 1) \vee ((sk_1; \top)' \wedge 1) = (sk_1; \top)' \wedge 1 \Rightarrow ((sk_1; \top)' \wedge 1) \vee (sk'_1 \wedge 1) \neq sk'_1 \wedge 1 \qquad cnf(goals_{15}, negated\_conjecture)
```

REL027-3.p Complements of vectors and subidentities

The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the corresponding vector x;TOP to a subidentity.

include('Axioms/REL001-0.ax')

include('Axioms/REL001-1.ax')

 $sk_1 \lor 1 = 1$ $cnf(goals_{17}, negated_conjecture)$

 $(sk_1; \top)' \land 1 \neq sk'_1 \land 1$ $cnf(goals_{18}, negated_conjecture)$

REL027-4.p Complements of vectors and subidentities

The relative complement of subidentity x w.r.t. 1 can also be obtained by projecting the complement of the corresponding vector x; TOP to a subidentity.

include('Axioms/REL001-0.ax')

include('Axioms/REL001-1.ax')

```
sk_1 \lor 1 = 1 cnf(goals_{17}, negated\_conjecture)
```

```
(sk'_1 \wedge 1) \vee ((sk_1; \top)' \wedge 1) = (sk_1; \top)' \wedge 1 \Rightarrow ((sk_1; \top)' \wedge 1) \vee (sk'_1 \wedge 1) \neq sk'_1 \wedge 1 \qquad cnf(goals_{18}, negated\_conjecture)
```

REL028+1.p For subidentities meet and composition coincide

include('Axioms/REL001+0.ax')

```
\forall x_0, x_1 : ((x_0 \lor 1 = 1 \text{ and } x_1 \lor 1 = 1) \Rightarrow x_0; x_1 = x_0 \land x_1) fof(goals, conjecture)
```

REL028+2.p For subidentities meet and composition coincide

include('Axioms/REL001+0.ax')

include('Axioms/REL001+1.ax')

```
\forall x_0, x_1 : ((x_0 \lor 1 = 1 \text{ and } x_1 \lor 1 = 1) \Rightarrow x_0; x_1 = x_0 \land x_1) fof(goals, conjecture)
```

11 REL028-1.p For subidentities meet and composition coincide include('Axioms/REL001-0.ax') $sk_1 \lor 1 = 1$ cnf(goals₁₄, negated_conjecture) $sk_2 \lor 1 = 1$ cnf(goals₁₅, negated_conjecture) $sk_1; sk_2 \neq sk_1 \wedge sk_2$ cnf(goals₁₆, negated_conjecture) REL028-2.p For subidentities meet and composition coincide include('Axioms/REL001-0.ax') include('Axioms/REL001-1.ax') $sk_1 \lor 1 = 1$ cnf(goals₁₇, negated_conjecture) ${\rm cnf}({\rm goals}_{18}, {\rm negated_conjecture})$ $sk_2 \lor 1 = 1$ $sk_1; sk_2 \neq sk_1 \wedge sk_2$ $cnf(goals_{19}, negated_conjecture)$ REL029+1.p Distributivity of subidentities For subidentities, sequential composition distributes over meet. include('Axioms/REL001+0.ax') $\forall x_0, x_1, x_2 : ((x_0 \lor 1 = 1 \text{ and } x_1 \lor 1 = 1) \Rightarrow x_0; x_2 \land x_1; x_2 = (x_0 \land x_1); x_2)$ fof(goals, conjecture) REL029+2.p Distributivity of subidentities For subidentities, sequential composition distributes over meet. include('Axioms/REL001+0.ax') $\forall x_0, x_1, x_2 : ((x_0 \lor 1 = 1 \text{ and } x_1 \lor 1 = 1) \Rightarrow ((x_0; x_2 \land x_1; x_2) \lor (x_0 \land x_1); x_2 = (x_0 \land x_1); x_2 \text{ and } (x_0 \land x_1); x_2 \lor (x_0 \lor x_1); x_2 \lor$ $(x_0; x_2 \wedge x_1; x_2) = x_0; x_2 \wedge x_1; x_2)$ fof(goals, conjecture) REL029+3.p Distributivity of subidentities For subidentities, sequential composition distributes over meet. include('Axioms/REL001+0.ax') include('Axioms/REL001+1.ax') $\forall x_0, x_1, x_2 : ((x_0 \lor 1 = 1 \text{ and } x_1 \lor 1 = 1) \Rightarrow x_0; x_2 \land x_1; x_2 = (x_0 \land x_1); x_2)$ fof(goals, conjecture) REL029+4.p Distributivity of subidentities For subidentities, sequential composition distributes over meet. include('Axioms/REL001+0.ax') include('Axioms/REL001+1.ax') $\forall x_0, x_1, x_2 : ((x_0 \lor 1 = 1 \text{ and } x_1 \lor 1 = 1) \Rightarrow ((x_0; x_2 \land x_1; x_2) \lor (x_0 \land x_1); x_2 = (x_0 \land x_1); x_2 \text{ and } (x_0 \land x_1); x_2 \lor (x_0 \lor x_1); x_2 \lor$ $(x_0; x_2 \wedge x_1; x_2) = x_0; x_2 \wedge x_1; x_2)$ fof(goals, conjecture) REL029-1.p Distributivity of subidentities For subidentities, sequential composition distributes over meet. include('Axioms/REL001-0.ax') $sk_1 \lor 1 = 1$ cnf(goals₁₄, negated_conjecture) $sk_2 \lor 1 = 1$ cnf(goals₁₅, negated_conjecture) $sk_1; sk_3 \wedge sk_2; sk_3 \neq (sk_1 \wedge sk_2); sk_3$ $cnf(goals_{16}, negated_conjecture)$ REL029-2.p Distributivity of subidentities For subidentities, sequential composition distributes over meet. include('Axioms/REL001-0.ax') $sk_1 \lor 1 = 1$ cnf(goals₁₄, negated_conjecture) $sk_2 \lor 1 = 1$ $cnf(goals_{15}, negated_conjecture)$ $(sk_{1} \wedge sk_{2}); sk_{3} \vee (sk_{1}; sk_{3} \wedge sk_{2}; sk_{3}) \ = \ sk_{1}; sk_{3} \wedge sk_{2}; sk_{3} \ \Rightarrow \ (sk_{1}; sk_{3} \wedge sk_{2}; sk_{3}) \vee (sk_{1} \wedge sk_{2}); sk_{3} \ \neq \ (sk_{1} \wedge sk_{2}); sk_{3} \wedge sk_{2}; sk_{3} \wedge sk_{2}$ cnf(goals₁₆, negated_conjecture) REL029-3.p Distributivity of subidentities For subidentities, sequential composition distributes over meet. include('Axioms/REL001-0.ax') include('Axioms/REL001-1.ax') $cnf(goals_{17}, negated_conjecture)$ $sk_1 \lor 1 = 1$

 $sk_2 \lor 1 = 1$ cnf(goals₁₈, negated_conjecture)

 $sk_1; sk_3 \wedge sk_2; sk_3 \neq (sk_1 \wedge sk_2); sk_3$ cnf(goals₁₉, negated_conjecture)

REL029-4.p Distributivity of subidentities

For subidentities, sequential composition distributes over meet.

include('Axioms/REL001-0.ax')

include('Axioms/REL001-1.ax')

 $sk_1 \lor 1 = 1$ cnf(goals₁₇, negated_conjecture)

```
sk_2 \lor 1 = 1
                                                                         cnf(goals<sub>18</sub>, negated_conjecture)
(sk_1 \wedge sk_2); sk_3 \vee (sk_1; sk_3 \wedge sk_2; sk_3) = sk_1; sk_3 \wedge sk_2; sk_3 \Rightarrow (sk_1; sk_3 \wedge sk_2; sk_3) \vee (sk_1 \wedge sk_2); sk_3 \neq (sk_1 \wedge sk_2); sk_3 \neq (sk_1 \wedge sk_2); sk_3 \neq (sk_1 \wedge sk_2); sk_3 \vee (sk_1 \wedge sk_2); sk_3 \neq (sk_1 \wedge sk_2); sk_3 \vee (sk_1 \wedge sk_2); sk_3 \neq (sk_1 \wedge sk_2); sk_3 \wedge sk_2; sk_3 \Rightarrow (sk_1 \otimes sk_2); sk_3 \wedge sk_2; sk_3 \neq (sk_1 \wedge sk_2); sk_3 \wedge sk_2; sk_3 \wedge sk_2
sk_2); sk_3
                                                            cnf(goals<sub>19</sub>, negated_conjecture)
REL030+1.p Propagation of subidentities
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 : (x_0 \lor 1 = 1 \implies x_0; x_1 \land x_2' = x_0; x_1 \land (x_0; x_2)') fof(goals, conjecture)
REL030+2.p Propagation of subidentities
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 \colon (x_0 \lor 1 = 1 \implies ((x_0; x_1 \land x_2') \lor (x_0; x_1 \land (x_0; x_2)') = x_0; x_1 \land (x_0; x_2)' \text{ and } (x_0; x_1 \land (x_0; x_2)') \lor (x_0; x_1 \land x_2') = x_0 \land (x_0; x_1 \land (x_0; x_1) \land (x_0; x
                                                                              fof(goals, conjecture)
x_0; x_1 \wedge x_2'))
REL030+3.p Propagation of subidentities
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 : (x_0 \lor 1 = 1 \implies x_0; x_1 \land x_2' = x_0; x_1 \land (x_0; x_2)') fof(goals, conjecture)
REL030+4.p Propagation of subidentities
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 : (x_0 \lor 1 = 1 \implies ((x_0; x_1 \land x_2') \lor (x_0; x_1 \land (x_0; x_2)') = x_0; x_1 \land (x_0; x_2)' \text{ and } (x_0; x_1 \land (x_0; x_2)') \lor (x_0; x_1 \land x_2') = x_0; x_1 \land (x_0; x_1) \land (
x_0; x_1 \wedge x_2')
                                                                           fof(goals, conjecture)
REL030-1.p Propagation of subidentities
include('Axioms/REL001-0.ax')
sk_1 \lor 1 = 1
                                                                cnf(goals_{14}, negated\_conjecture)
\operatorname{sk}_1; \operatorname{sk}_2 \wedge \operatorname{sk}_3' \neq \operatorname{sk}_1; \operatorname{sk}_2 \wedge (\operatorname{sk}_1; \operatorname{sk}_3)'
                                                                                                                                                                                         cnf(goals<sub>15</sub>, negated_conjecture)
REL030-2.p Propagation of subidentities
include('Axioms/REL001-0.ax')
\mathrm{sk}_1 \vee 1 = 1
                                                                cnf(goals_{14}, negated\_conjecture)
(sk_1; sk_2 \wedge sk_3') \vee (sk_1; sk_2 \wedge (sk_1; sk_3)') = sk_1; sk_2 \wedge (sk_1; sk_3)' \implies (sk_1; sk_2 \wedge (sk_1; sk_3)') \vee (sk_1; sk_2 \wedge sk_3') \neq sk_1; sk_2 \wedge (sk_1; sk_3)' = sk_1; sk_2 \wedge (sk_1; sk
                                    cnf(goals<sub>15</sub>, negated_conjecture)
REL030-3.p Propagation of subidentities
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
                                                             cnf(goals<sub>17</sub>, negated_conjecture)
sk_1 \lor 1 = 1
\operatorname{sk}_1; \operatorname{sk}_2 \wedge \operatorname{sk}_3' \neq \operatorname{sk}_1; \operatorname{sk}_2 \wedge (\operatorname{sk}_1; \operatorname{sk}_3)'
                                                                                                                                                                                             cnf(goals<sub>18</sub>, negated_conjecture)
REL030-4.p Propagation of subidentities
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
                                                                        cnf(goals<sub>17</sub>, negated_conjecture)
sk_1 \lor 1 = 1
 (sk_1; sk_2 \wedge sk_3') \vee (sk_1; sk_2 \wedge (sk_1; sk_3)') = sk_1; sk_2 \wedge (sk_1; sk_3)' \ \Rightarrow \ (sk_1; sk_2 \wedge (sk_1; sk_3)') \vee (sk_1; sk_2 \wedge sk_3') \neq sk_1; sk_2 \wedge (sk_1; sk_3)' 
                                    cnf(goals<sub>18</sub>, negated_conjecture)
REL031+1.p Partial functions are closed under composition
If x and y are partial functions then x; y is also a partial functions.
include('Axioms/REL001+0.ax')
\forall x_0, x_1 : ((x_0 : x_0 \lor 1 = 1 \text{ and } x_1 : x_1 \lor 1 = 1) \implies (x_0 : x_1) : (x_0 : x_1) \lor 1 = 1)
                                                                                                                                                                                                                                                                                                                                                                                          fof(goals, conjecture)
REL031+2.p Partial functions are closed under composition
If x and y are partial functions then x;y is also a partial functions.
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1 : ((x_0 : x_0 \lor 1 = 1 \text{ and } x_1 : x_1 \lor 1 = 1) \Rightarrow (x_0 : x_1) : (x_0 : x_1) \lor 1 = 1)
                                                                                                                                                                                                                                                                                                                                                                                         fof(goals, conjecture)
REL031-1.p Partial functions are closed under composition
If x and y are partial functions then x;y is also a partial functions.
include('Axioms/REL001-0.ax')
                                                                                              cnf(goals_{14}, negated\_conjecture)
sk_1^{\smile}; sk_1 \lor 1 = 1
\operatorname{sk}_{2}^{\smile}; \operatorname{sk}_{2} \vee 1 = 1
                                                                                             cnf(goals_{15}, negated\_conjecture)
(sk_1; sk_2)^{\sim}; (sk_1; sk_2) \vee 1 \neq 1 cnf(goals_{16}, negated\_conjecture)
```

```
13
REL031-2.p Partial functions are closed under composition
If x and y are partial functions then x;y is also a partial functions.
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
                                                             cnf(goals<sub>17</sub>, negated_conjecture)
sk_1^{\smile}; sk_1 \lor 1 = 1
\operatorname{sk}_{2}^{\smile}; \operatorname{sk}_{2} \vee 1 = 1
                                                             cnf(goals_{18}, negated\_conjecture)
                                                                                                   cnf(goals<sub>19</sub>, negated_conjecture)
(sk_1; sk_2)^{\smile}; (sk_1; sk_2) \lor 1 \neq 1
REL032+1.p Subdistributivity
Sequential composition subdistributes over meet, i.e. x_i(y \text{ meet } z) \leq x_i y \text{ meet } x_i z.
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 : x_0; (x_1 \land x_2) \lor (x_0; x_1 \land x_0; x_2) = x_0; x_1 \land x_0; x_2
                                                                                                                                                                                                    fof(goals, conjecture)
REL032+2.p Subdistributivity
Sequential composition subdistributes over meet, i.e. x_i(y \text{ meet } z) \leq x_i y \text{ meet } x_i z.
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 \colon x_0; (x_1 \land x_2) \lor (x_0; x_1 \land x_0; x_2) = x_0; x_1 \land x_0; x_2
                                                                                                                                                                                                    fof(goals, conjecture)
\bf REL032\text{-}1.p \ Subdistributivity
Sequential composition subdistributes over meet, i.e. x_i(y \text{ meet } z) \le x_i y \text{ meet } x_i z.
include('Axioms/REL001-0.ax')
                                                                                                                                                                                          cnf(goals_{14}, negated\_conjecture)
sk_1; (sk_2 \wedge sk_3) \vee (sk_1; sk_2 \wedge sk_1; sk_3) \neq sk_1; sk_2 \wedge sk_1; sk_3
REL032-2.p Subdistributivity
Sequential composition subdistributes over meet, i.e. x_i(y \text{ meet } z) < x_i(y \text{ meet } z)
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
sk_1; (sk_2 \wedge sk_3) \vee (sk_1; sk_2 \wedge sk_1; sk_3) \neq sk_1; sk_2 \wedge sk_1; sk_3
                                                                                                                                                                                          cnf(goals<sub>17</sub>, negated_conjecture)
REL033+1.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 : (x_0; \top = x_0 \Rightarrow (x_0 \land x_1); x_2 = x_0 \land x_1; x_2)
                                                                                                                                                                                      fof(goals, conjecture)
REL033+2.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 \colon (x_0; \top = x_0 \Rightarrow ((x_0 \land x_1); x_2 \lor (x_0 \land x_1; x_2) = x_0 \land x_1; x_2 \text{ and } (x_0 \land x_1; x_2) \lor (x_0 \land x_1); x_2 = (x_0 \land x_1; x_2) \lor (x_0 \land x_
                                        fof(goals, conjecture)
(x_1); (x_2)
REL033+3.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 : (x_0; \top = x_0 \Rightarrow (x_0 \land x_1); x_2 = x_0 \land x_1; x_2)
                                                                                                                                                                                       fof(goals, conjecture)
REL033+4.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 \colon (x_0; \top = x_0 \Rightarrow ((x_0 \land x_1); x_2 \lor (x_0 \land x_1; x_2) = x_0 \land x_1; x_2 \text{ and } (x_0 \land x_1; x_2) \lor (x_0 \land x_1); x_2 = (x_0 \land x_1; x_2) \lor (x_0 \land x_
                                       fof(goals, conjecture)
REL033-1.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include('Axioms/REL001-0.ax')
                                                  cnf(goals_{14}, negated\_conjecture)
sk_1; T = sk_1
```

 $(sk_1 \wedge sk_2); sk_3 \neq sk_1 \wedge sk_2; sk_3$ cnf(goals₁₅, negated_conjecture)

REL033-2.p Sequential composition distributes in each argument of meet

If x is a vector then sequential composition distributes over meet.

include('Axioms/REL001-0.ax')

 $sk_1; T = sk_1$ $cnf(goals_{14}, negated_conjecture)$

 $(sk_1 \land sk_2); sk_3 \lor (sk_1 \land sk_2; sk_3) = sk_1 \land sk_2; sk_3 \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2); sk_3 \neq (sk_1 \land sk_2); sk_3 \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2); sk_3 \neq (sk_1 \land sk_2); sk_3 \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2; sk_3) \Rightarrow (sk_1 \land sk_2; sk_3; sk_3$

```
14
REL033-3.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
                                        cnf(goals<sub>17</sub>, negated_conjecture)
sk_1; T = sk_1
(sk_1 \wedge sk_2); sk_3 \neq sk_1 \wedge sk_2; sk_3
                                                                                     cnf(goals<sub>18</sub>, negated_conjecture)
REL033-4.p Sequential composition distributes in each argument of meet
If x is a vector then sequential composition distributes over meet.
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
                                        cnf(goals<sub>17</sub>, negated_conjecture)
sk_1; T = sk_1
(sk_1 \land sk_2); sk_3 \lor (sk_1 \land sk_2; sk_3) = sk_1 \land sk_2; sk_3 \Rightarrow (sk_1 \land sk_2; sk_3) \lor (sk_1 \land sk_2); sk_3 \neq (sk_1 \land sk_2); sk_3 \Rightarrow 
                                                                                                                                                                                                                                               cnf(goals<sub>18</sub>, negated_conje
REL034+1.p Propagation of vectors
Pre-assertion x to z can be propagated as post-assertion x \wedge to the left cofactor y.
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 : (x_0; \top = x_0 \implies x_1; (x_0 \land x_2) \lor (x_1 \land x_0^{\smile}); (x_0 \land x_2) = (x_1 \land x_0^{\smile}); (x_0 \land x_2))
                                                                                                                                                                                                                           fof(goals, conjecture)
REL034+2.p Propagation of vectors
Pre-assertion x to z can be propagated as post-assertion x \wedge to the left cofactor y.
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 : (x_0; \top = x_0 \implies x_1; (x_0 \land x_2) \lor (x_1 \land x_0); (x_0 \land x_2) = (x_1 \land x_0); (x_0 \land x_2))
                                                                                                                                                                                                                           fof(goals, conjecture)
REL034-1.p Propagation of vectors
Pre-assertion x to z can be propagated as post-assertion x \wedge to the left cofactor y.
include('Axioms/REL001-0.ax')
                                       cnf(goals<sub>14</sub>, negated_conjecture)
sk_1; T = sk_1
sk_2; (sk_1 \wedge sk_3) \vee (sk_2 \wedge sk_1); (sk_1 \wedge sk_3) \neq (sk_2 \wedge sk_1); (sk_1 \wedge sk_3) cnf(goals<sub>15</sub>, negated_conjecture)
REL034-2.p Propagation of vectors
Pre-assertion x to z can be propagated as post-assertion x \wedge to the left cofactor y.
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
                                       cnf(goals_{17}, negated\_conjecture)
sk_1; T = sk_1
sk_2; (sk_1 \wedge sk_3) \vee (sk_2 \wedge sk_1^{\smile}); (sk_1 \wedge sk_3) \neq (sk_2 \wedge sk_1^{\smile}); (sk_1 \wedge sk_3)
                                                                                                                                                                          cnf(goals<sub>18</sub>, negated_conjecture)
REL035+1.p Propagation of vectors
Pre-assertion x to z can be propagated as post-assertion x \wedge to the left cofactor y.
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 : (x_0; \top = x_0 \implies (x_1 \land x_0); (x_0 \land x_2) = x_1; (x_0 \land x_2))
                                                                                                                                                                     fof(goals, conjecture)
REL035+2.p Propagation of vectors
Pre-assertion x to z can be propagated as post-assertion x \wedge to the left cofactor y.
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 \colon (x_0; \top = x_0 \ \Rightarrow \ (x_1 \land x_0^{\smile}); (x_0 \land x_2) = x_1; (x_0 \land x_2)) \qquad \text{fof(goals, conjecture)}
REL035-1.p Propagation of vectors
Pre-assertion x to z can be propagated as post-assertion x \wedge to the left cofactor y.
include('Axioms/REL001-0.ax')
                                      cnf(goals<sub>14</sub>, negated_conjecture)
```

 $sk_1; T = sk_1$

 $(sk_2 \wedge sk_1)$; $(sk_1 \wedge sk_3) \neq sk_2$; $(sk_1 \wedge sk_3)$ cnf(goals₁₅, negated_conjecture)

REL035-2.p Propagation of vectors

Pre-assertion x to z can be propagated as post-assertion $x \wedge$ to the left cofactor y.

include('Axioms/REL001-0.ax')

include('Axioms/REL001-1.ax')

 sk_1 ; $T = sk_1$ $cnf(goals_{17}, negated_conjecture)$

 $(sk_2 \wedge sk_1)$; $(sk_1 \wedge sk_3) \neq sk_2$; $(sk_1 \wedge sk_3)$ cnf(goals₁₈, negated_conjecture)

REL036+1.p Propagation of vectors

Post-assertion $x \wedge to y$ can be propagated as pre-assertion x to the right cofactor z. include('Axioms/REL001+0.ax')

```
\forall x_0, x_1, x_2 \colon (x_0; \top = x_0 \Rightarrow (x_1 \land x_0); x_2 \lor (x_1 \land x_0); (x_0 \land x_2) = (x_1 \land x_0); (x_0 \land x_2)) \qquad \text{fof(goals, conjecture)}
```

REL036+2.p Propagation of vectors

Post-assertion $x \land to y$ can be propagated as pre-assertion x to the right cofactor z.

include('Axioms/REL001+0.ax')

include('Axioms/REL001+1.ax')

 $\forall x_0, x_1, x_2 \colon (x_0; \top = x_0 \Rightarrow (x_1 \land x_0); x_2 \lor (x_1 \land x_0); (x_0 \land x_2) = (x_1 \land x_0); (x_0 \land x_2)) \qquad \text{fof(goals, conjecture)}$

REL036-1.p Propagation of vectors

Post-assertion $x \wedge to y$ can be propagated as pre-assertion x to the right cofactor z.

include('Axioms/REL001-0.ax')

 sk_1 ; $T = sk_1$ $cnf(goals_{14}, negated_conjecture)$

 $(sk_2 \wedge sk_1); sk_3 \vee (sk_2 \wedge sk_1); (sk_1 \wedge sk_3) \neq (sk_2 \wedge sk_1); (sk_1 \wedge sk_3)$ cnf(goals₁₅, negated_conjecture)

${\bf REL036\text{-}2.p}$ Propagation of vectors

Post-assertion $x \land to y$ can be propagated as pre-assertion x to the right cofactor z.

include('Axioms/REL001-0.ax')

include('Axioms/REL001-1.ax')

 $sk_1; T = sk_1$ $cnf(goals_{17}, negated_conjecture)$

 $(sk_2 \wedge sk_1^{\sim}); sk_3 \vee (sk_2 \wedge sk_1^{\sim}); (sk_1 \wedge sk_3) \neq (sk_2 \wedge sk_1^{\sim}); (sk_1 \wedge sk_3)$ cnf(goals₁₈, negated_conjecture)

REL037+1.p Propagation of vectors

Post-assertion $x \wedge to y$ can be propagated as pre-assertion x to the right cofactor z.

include('Axioms/REL001+0.ax')

 $\forall x_0, x_1, x_2 : (x_0; \top = x_0 \implies (x_1 \land x_0); (x_0 \land x_2) = (x_1 \land x_0); x_2)$ fof(goals, conjecture)

$\mathbf{REL037} + \mathbf{2.p}$ Propagation of vectors

Post-assertion $x \land to y$ can be propagated as pre-assertion x to the right cofactor z.

include('Axioms/REL001+0.ax')

include('Axioms/REL001+1.ax')

 $\forall x_0, x_1, x_2 : (x_0; \top = x_0 \implies (x_1 \land x_0); (x_0 \land x_2) = (x_1 \land x_0); x_2)$ fof(goals, conjecture)

REL037-1.p Propagation of vectors

Post-assertion $x \wedge to y$ can be propagated as pre-assertion x to the right cofactor z.

include('Axioms/REL001-0.ax')

 sk_1 ; $T = sk_1$ $cnf(goals_{14}, negated_conjecture)$

 $(sk_2 \wedge sk_1); (sk_1 \wedge sk_3) \neq (sk_2 \wedge sk_1); sk_3$ cnf(goals₁₅, negated_conjecture)

REL037-2.p Propagation of vectors

Post-assertion $x \wedge to y$ can be propagated as pre-assertion x to the right cofactor z.

include('Axioms/REL001-0.ax')

include('Axioms/REL001-1.ax')

 sk_1 ; $T = sk_1$ $cnf(goals_{17}, negated_conjecture)$

 $(sk_2 \wedge sk_1); (sk_1 \wedge sk_3) \neq (sk_2 \wedge sk_1); sk_3$ cnf(goals₁₈, negated_conjecture)

REL038+1.p Modular law

include('Axioms/REL001+0.ax')

 $\forall x_0, x_1, x_2 : (x_0; x_1 \land x_2) \lor (x_0; (x_1 \land x_0; x_2) \land x_2) = x_0; (x_1 \land x_0; x_2) \land x_2$ fof(goals, conjecture)

${\bf REL038\text{-}1.p}$ Modular law

include('Axioms/REL001-0.ax')

 $(sk_1; sk_2 \wedge sk_3) \vee (sk_1; (sk_2 \wedge sk_1^{\smile}; sk_3) \wedge sk_3) \neq sk_1; (sk_2 \wedge sk_1^{\smile}; sk_3) \wedge sk_3 \qquad cnf(goals_{14}, negated_conjecture)$

REL039+1.p Dedekind law

include('Axioms/REL001+0.ax')

 $\forall x_0, x_1, x_2 : (x_0; x_1 \land x_2) \lor (x_0 \land x_2; x_1); (x_1 \land x_0; x_2) = (x_0 \land x_2; x_1); (x_1 \land x_0; x_2)$ fof(goals, conjecture)

REL039-1.p Dedekind law

include('Axioms/REL001-0.ax')

 $(sk_1; sk_2 \land sk_3) \lor (sk_1 \land sk_3; sk_2); (sk_2 \land sk_1; sk_3) \neq (sk_1 \land sk_3; sk_2); (sk_2 \land sk_1; sk_3)$ cnf(goals₁₄, negated_conjecture)

$\mathbf{REL040+1.p}$ Partial functions distribute over meet under sequential comp'n

If x is partial function then $x_i(y \text{ meet } z) = x_i y \text{ meet } x_i z$.

include('Axioms/REL001+0.ax')

 $\forall x_0, x_1, x_2 : (x_0^{\smile}; x_0 \lor 1 = 1 \implies x_0; (x_1 \land x_2) = x_0; x_1 \land x_0; x_2)$ fof(goals, conjecture)

```
REL040+2.p Partial functions distribute over meet under sequential comp'n
If x is partial function then x;(y \text{ meet } z) = x;y \text{ meet } x;z.
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 : (x_0^{\smile}; x_0 \lor 1 = 1 \implies (x_0; (x_1 \land x_2) \lor (x_0; x_1 \land x_0; x_2) = x_0; x_1 \land x_0; x_2 \text{ and } (x_0; x_1 \land x_0; x_2) \lor x_0; (x_1 \land x_2) = x_0 \lor x_
x_0;(x_1 \wedge x_2)))
                                                                                        fof(goals, conjecture)
REL040+3.p Partial functions distribute over meet under sequential comp'n
If x is partial function then x_i(y \text{ meet } z) = x_i y \text{ meet } x_i z.
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 : (x_0^{\smile}; x_0 \vee 1 = 1 \implies x_0; (x_1 \wedge x_2) = x_0; x_1 \wedge x_0; x_2)
                                                                                                                                                                                                                                                                                                                                      fof(goals, conjecture)
REL040+4.p Partial functions distribute over meet under sequential comp'n
If x is partial function then x_i(y \text{ meet } z) = x_i y \text{ meet } x_i z.
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 : (x_0^{\smile}; x_0 \lor 1 = 1 \implies (x_0; (x_1 \land x_2) \lor (x_0; x_1 \land x_0; x_2) = x_0; x_1 \land x_0; x_2 \text{ and } (x_0; x_1 \land x_0; x_2) \lor x_0; (x_1 \land x_2) = x_0 \lor x_
x_0;(x_1 \wedge x_2)))
                                                                                         fof(goals, conjecture)
REL040-1.p Partial functions distribute over meet under sequential comp'n
If x is partial function then x_i(y \text{ meet } z) = x_i y \text{ meet } x_i z.
include('Axioms/REL001-0.ax')
                                                                                         cnf(goals_{14}, negated\_conjecture)
sk_1^{\smile}; sk_1 \vee 1 = 1
sk_1; (sk_2 \wedge sk_3) \neq sk_1; sk_2 \wedge sk_1; sk_3 cnf(goals<sub>15</sub>, negated_conjecture)
REL040-2.p Partial functions distribute over meet under sequential comp'n
If x is partial function then x_i(y \text{ meet } z) = x_i y \text{ meet } x_i z.
include('Axioms/REL001-0.ax')
sk_1^{\smile}; sk_1 \vee 1 = 1
                                                                                                 cnf(goals_{14}, negated\_conjecture)
sk_1; (sk_2 \wedge sk_3) \vee (sk_1; sk_2 \wedge sk_1; sk_3) = sk_1; sk_2 \wedge sk_1; sk_3 \ \Rightarrow \ (sk_1; sk_2 \wedge sk_1; sk_3) \vee sk_1; (sk_2 \wedge sk_3) \neq sk_1; (sk_2 \wedge sk_3) \neq sk_1; (sk_2 \wedge sk_3) \neq sk_2; (sk_2 \wedge sk_3) \vee sk_3; (sk_2 \wedge sk_3) \neq 
sk_3)
                                          cnf(goals_{15}, negated\_conjecture)
REL040-3.p Partial functions distribute over meet under sequential comp'n
If x is partial function then x_i(y \text{ meet } z) = x_i y \text{ meet } x_i z.
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
sk_1^{\smile}; sk_1 \vee 1 = 1
                                                                                               cnf(goals<sub>17</sub>, negated_conjecture)
sk_1; (sk_2 \wedge sk_3) \neq sk_1; sk_2 \wedge sk_1; sk_3
                                                                                                                                                                                               cnf(goals_{18}, negated\_conjecture)
REL040-4.p Partial functions distribute over meet under sequential comp'n
If x is partial function then x;(y \text{ meet } z) = x;y \text{ meet } x;z.
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
sk_1^{\smile}; sk_1 \lor 1 = 1
                                                                                                   cnf(goals<sub>17</sub>, negated_conjecture)
sk_1; (sk_2 \wedge sk_3) \vee (sk_1; sk_2 \wedge sk_1; sk_3) = sk_1; sk_2 \wedge sk_1; sk_3 \ \Rightarrow \ (sk_1; sk_2 \wedge sk_1; sk_3) \vee sk_1; (sk_2 \wedge sk_3) \neq sk_1; (sk_2 \wedge sk_3) \neq sk_1; (sk_2 \wedge sk_3) \neq sk_2; (sk_2 \wedge sk_3) \neq sk_3; (sk_2 \wedge sk_3) \neq 
                                          cnf(goals<sub>18</sub>, negated_conjecture)
REL041+1.p Equivalence of different definitions of partial functions
x is a partial function if x \wedge x is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0.
These definitions are equivalent.
include('Axioms/REL001+0.ax')
\forall x_0: (x_0 \ ; x_0 \lor 1 = 1 \Rightarrow \forall x_1: x_0; x_1 \land x_0; x_1' = 0)
                                                                                                                                                                                                                                                                      fof(goals, conjecture)
REL041+2.p Equivalence of different definitions of partial functions
x is a partial function if x \land x is a subidentity ([SS93]). x is a partial function if for all y x; y meet x; overliney = 0.
These definitions are equivalent.
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
```

REL041-1.p Equivalence of different definitions of partial functions

 $\forall x_0: (x_0 : x_0 \lor 1 = 1 \Rightarrow \forall x_1: x_0; x_1 \land x_0; x_1' = 0)$ fof(goals, conjecture)

x is a partial function if $x \land x$ is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0. These definitions are equivalent.

include('Axioms/REL001-0.ax')

```
sk_1^{\smile}; sk_1 \lor 1 = 1 cnf(goals_{14}, negated\_conjecture) sk_1; sk_2 \land sk_1; sk_2^{\prime} \neq 0 cnf(goals_{15}, negated\_conjecture)
```

REL041-2.p Equivalence of different definitions of partial functions

x is a partial function if $x \wedge x$ is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0. These definitions are equivalent.

include('Axioms/REL001-0.ax')

include('Axioms/REL001-1.ax')

 $sk_1^{\sim}; sk_1 \vee 1 = 1$ $cnf(goals_{17}, negated_conjecture)$

 $sk_1; sk_2 \wedge sk_1; sk'_2 \neq 0$ $cnf(goals_{18}, negated_conjecture)$

REL042+1.p Equivalence of different definitions of partial functions

x is a partial function if $x \wedge x$ is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0. These definitions are equivalent.

include('Axioms/REL001+0.ax')

 $\forall x_0: (\forall x_1: x_0; x_1 \land x_0; x_1' = 0 \Rightarrow x_0^{\smile}; x_0 \lor 1 = 1)$ fof(goals, conjecture)

REL042+2.p Equivalence of different definitions of partial functions

x is a partial function if $x \land x$ is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0. These definitions are equivalent.

include('Axioms/REL001+0.ax')

include('Axioms/REL001+1.ax')

 $\forall x_0: (\forall x_1: x_0; x_1 \land x_0; x_1' = 0 \Rightarrow x_0^{\smile}; x_0 \lor 1 = 1)$ fof(goals, conjecture)

REL042-1.p Equivalence of different definitions of partial functions

x is a partial function if $x \wedge x$ is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0. These definitions are equivalent.

include('Axioms/REL001-0.ax')

 $\operatorname{sk}_1; a \wedge \operatorname{sk}_1; a' = 0$ $\operatorname{cnf}(\operatorname{goals}_{14}, \operatorname{negated_conjecture})$

 $sk_1^{\smile}; sk_1 \lor 1 \neq 1$ $cnf(goals_{15}, negated_conjecture)$

${\bf REL042\text{-}2.p}$ Equivalence of different definitions of partial functions

x is a partial function if $x \wedge x$ is a subidentity ([SS93]). x is a partial function if for all y x;y meet x;overliney = 0. These definitions are equivalent.

include('Axioms/REL001-0.ax')

include('Axioms/REL001-1.ax')

 $sk_1; a \wedge sk_1; a' = 0$ $cnf(goals_{17}, negated_conjecture)$

 $sk_1^{\smile}; sk_1 \vee 1 \neq 1$ cnf(goals₁₈, negated_conjecture)

REL043+1.p Shunting rule

include('Axioms/REL001+0.ax')

 $\forall x_0, x_1, x_2 : (x_0; x_1 \lor x_2 = x_2 \Rightarrow x_2'; x_1 \lor x_0' = x_0')$ fof(goals, conjecture)

$\mathbf{REL043} + \mathbf{2.p}$ Shunting rule

include('Axioms/REL001+0.ax')

include('Axioms/REL001+1.ax')

 $\forall x_0, x_1, x_2 : (x_0; x_1) \lor x_2 = x_2 \implies x_2'; x_1 \lor x_0' = x_0')$ fof(goals, conjecture)

REL043-1.p Shunting rule

include('Axioms/REL001-0.ax')

 $sk_1; sk_2 \lor sk_3 = sk_3$ $cnf(goals_{14}, negated_conjecture)$ $sk_3'; sk_2 \lor sk_1' \neq sk_1'$ $cnf(goals_{15}, negated_conjecture)$

REL043-2.p Shunting rule

include('Axioms/REL001-0.ax')

include('Axioms/REL001-1.ax')

 $sk_1; sk_2 \lor sk_3 = sk_3$ $cnf(goals_{17}, negated_conjecture)$ $sk_3'; sk_2 \lor sk_1' \neq sk_1'$ $cnf(goals_{18}, negated_conjecture)$

REL044+1.p Shunting rule

include('Axioms/REL001+0.ax')

 $\forall x_0, x_1, x_2 : (x'_0; x_1 \lor x'_2 = x'_2 \Rightarrow x_2; x_1 \lor x_0 = x_0)$ fof(goals, conjecture)

REL044+2.p Shunting rule

include('Axioms/REL001+0.ax')

```
include('Axioms/REL001+1.ax')
\forall x_0, x_1, x_2 : (x'_0; x_1 \lor x'_2 = x'_2 \implies x_2; x_1 \lor x_0 = x_0)
                                                                fof(goals, conjecture)
REL044-1.p Shunting rule
include('Axioms/REL001-0.ax')
sk'_1; sk_2 \lor sk'_3 = sk'_3
                           cnf(goals<sub>14</sub>, negated_conjecture)
sk_3; sk_2 \lor sk_1 \neq sk_1
                           cnf(goals<sub>15</sub>, negated_conjecture)
REL044-2.p Shunting rule
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
sk'_1; sk_2 \vee sk'_3 = sk'_3
                         cnf(goals_{17}, negated\_conjecture)
sk_3; sk_2 \lor sk_1 \neq sk_1
                           cnf(goals<sub>18</sub>, negated_conjecture)
REL045+1.p An unfold law
include('Axioms/REL001+0.ax')
\forall x_0: x_0 \lor (x_0; x_0); x_0 = (x_0; x_0); x_0
                                              fof(goals, conjecture)
REL045+2.p An unfold law
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0: x_0 \lor (x_0; x_0); x_0 = (x_0; x_0); x_0
                                              fof(goals, conjecture)
REL045-1.p An unfold law
include('Axioms/REL001-0.ax')
sk_1 \vee (sk_1; sk_1); sk_1 \neq (sk_1; sk_1); sk_1
                                               cnf(goals_{14}, negated\_conjecture)
REL045-2.p An unfold law
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
sk_1 \lor (sk_1; sk_1); sk_1 \neq (sk_1; sk_1); sk_1
                                               cnf(goals<sub>17</sub>, negated_conjecture)
REL046+1.p Meet splitting
Meet can be split into 2 inequations iff the meet is on the right hand side of an inequation.
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 : (x_0 \lor (x_1 \land x_2) = x_1 \land x_2 \implies (x_0 \lor x_1 = x_1 \text{ and } x_0 \lor x_2 = x_2))
                                                                                            fof(goals, conjecture)
REL046-1.p Meet splitting
Meet can be split into 2 inequations iff the meet is on the right hand side of an inequation.
include('Axioms/REL001-0.ax')
sk_1 \lor (sk_2 \land sk_3) = sk_2 \land sk_3
                                      cnf(goals<sub>14</sub>, negated_conjecture)
sk_1 \lor sk_2 = sk_2 \implies sk_1 \lor sk_3 \neq sk_3
                                             cnf(goals<sub>15</sub>, negated_conjecture)
REL047+1.p Meet splitting
Meet can be split into 2 inequations iff the meet is on the right hand side of an inequation.
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 : ((x_0 \lor x_1 = x_1 \text{ and } x_0 \lor x_2 = x_2) \implies x_0 \lor (x_1 \land x_2) = x_1 \land x_2)
                                                                                           fof(goals, conjecture)
REL047-1.p Meet splitting
Meet can be split into 2 inequations iff the meet is on the right hand side of an inequation.
include('Axioms/REL001-0.ax')
                      cnf(goals<sub>14</sub>, negated_conjecture)
sk_1 \vee sk_2 = sk_2
sk_1 \vee sk_3 = sk_3
                    cnf(goals_{15}, negated\_conjecture)
                                     cnf(goals_{16}, negated\_conjecture)
sk_1 \lor (sk_2 \land sk_3) \neq sk_2 \land sk_3
REL048+1.p Join splitting
Join can be split into 2 inequations iff the join is on the left hand side of an inequation.
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 : ((x_0 \lor x_1) \lor x_2 = x_2 \implies (x_0 \lor x_2 = x_2 \text{ and } x_1 \lor x_2 = x_2))
                                                                                      fof(goals, conjecture)
REL048-1.p Join splitting
Join can be split into 2 inequations iff the join is on the left hand side of an inequation.
include('Axioms/REL001-0.ax')
(sk_1 \lor sk_2) \lor sk_3 = sk_3 cnf(goals_{14}, negated\_conjecture)
sk_1 \lor sk_3 = sk_3 \Rightarrow sk_2 \lor sk_3 \neq sk_3 cnf(goals<sub>15</sub>, negated_conjecture)
REL049+1.p Join splitting
```

```
Join can be split into 2 inequations iff the join is on the left hand side of an inequation.
include('Axioms/REL001+0.ax')
\forall x_0, x_1, x_2 : ((x_0 \lor x_1 = x_1 \text{ and } x_2 \lor x_1 = x_1) \Rightarrow (x_0 \lor x_2) \lor x_1 = x_1)
                                                                                                fof(goals, conjecture)
REL049-1.p Join splitting
Join can be split into 2 inequations iff the join is on the left hand side of an inequation.
include('Axioms/REL001-0.ax')
sk_1 \lor sk_2 = sk_2
                         cnf(goals<sub>14</sub>, negated_conjecture)
sk_3 \vee sk_2 = sk_2
                         cnf(goals<sub>15</sub>, negated_conjecture)
(sk_1 \lor sk_3) \lor sk_2 \neq sk_2
                                  cnf(goals<sub>16</sub>, negated_conjecture)
REL050+1.p The complement of x;TOP is left ideal
include('Axioms/REL001+0.ax')
\forall x_0: (x_0; \top)' = (x_0; \top)'; \top
                                       fof(goals, conjecture)
\mathbf{REL050} + \mathbf{2.p} The complement of x;TOP is left ideal
include('Axioms/REL001+0.ax')
\forall x_0 : ((x_0; \top)' \lor (x_0; \top)'; \top = (x_0; \top)'; \top \text{ and } (x_0; \top)'; \top \lor (x_0; \top)' = (x_0; \top)')
                                                                                                         fof(goals, conjecture)
REL050+3.p The complement of x:TOP is left ideal
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0: (x_0; \top)' = (x_0; \top)'; \top
                                       fof(goals, conjecture)
REL050+4.p The complement of x;TOP is left ideal
include('Axioms/REL001+0.ax')
include('Axioms/REL001+1.ax')
\forall x_0 : ((x_0; \top)' \lor (x_0; \top)'; \top = (x_0; \top)'; \top \text{ and } (x_0; \top)'; \top \lor (x_0; \top)' = (x_0; \top)')
                                                                                                        fof(goals, conjecture)
REL050-1.p The complement of x;TOP is left ideal
include('Axioms/REL001-0.ax')
                                   cnf(goals_{14}, negated\_conjecture)
(sk_1; \top)' \neq (sk_1; \top)'; \top
REL050-2.p The complement of x;TOP is left ideal
include('Axioms/REL001-0.ax')
(sk_1;\top)' \vee (sk_1;\top)';\top = (sk_1;\top)';\top \implies (sk_1;\top)';\top \vee (sk_1;\top)' \neq (sk_1;\top)'
                                                                                                      cnf(goals<sub>14</sub>, negated_conjecture)
REL050-3.p The complement of x;TOP is left ideal
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
(\operatorname{sk}_1; \top)' \neq (\operatorname{sk}_1; \top)'; \top
                                  cnf(goals<sub>17</sub>, negated_conjecture)
REL050-4.p The complement of x;TOP is left ideal
include('Axioms/REL001-0.ax')
include('Axioms/REL001-1.ax')
(sk_1;\top)'\vee(sk_1;\top)';\top=(sk_1;\top)';\top \ \Rightarrow \ (sk_1;\top)';\top\vee(sk_1;\top)'\neq(sk_1;\top)'
                                                                                                      cnf(goals<sub>17</sub>, negated_conjecture)
REL051+1.p Dense linear ordering
                  fof(f_{01}, axiom)
\forall a: o(a,a)
\forall a, b : ((a \neq b \text{ and } o(a, b)) \Rightarrow \neg o(b, a))
                                                        fof(f_{02}, axiom)
\forall a, b, c : ((o(a, b) \text{ and } o(b, c)) \Rightarrow o(a, c))
                                                        fof(f_{03}, axiom)
                                                                                    fof(f_{04}, axiom)
\forall a, b : ((a \neq b \text{ and } o(a, b)) \Rightarrow (o(a, f(a, b)) \text{ and } o(f(a, b), b)))
\forall a, b : (f(a, b) \neq a \text{ and } f(a, b) \neq b)
                                                 fof(f_{05}, axiom)
\forall a, b : (o(a, b) \text{ or } o(b, a))
                                   fof(f_{06}, axiom)
REL052+1.p Non-discrete dense ordering
\forall a: o(a,a)
                  fof(f_{01}, axiom)
\forall a, b : ((a \neq b \text{ and } o(a, b)) \Rightarrow \neg o(b, a))
                                                        fof(f_{02}, axiom)
\forall a, b, c : ((o(a, b) \text{ and } o(b, c)) \Rightarrow o(a, c))
                                                         fof(f_{03}, axiom)
\forall a, b : ((a \neq b \text{ and } o(a, b)) \Rightarrow (o(a, f(a, b)) \text{ and } o(f(a, b), b)))
                                                                                    fof(f_{04}, axiom)
\forall a, b : (f(a, b) \neq a \text{ and } f(a, b) \neq b)
                                                 fof(f_{05}, axiom)
\exists a, b : (o(a, b) \text{ and } a \neq b)
                                    fof(f_{06}, axiom)
REL053+1.p Relation Algebra
```

include('Axioms/REL001+0.ax')

REL053-1.p Relation Algebra

include('Axioms/REL001-0.ax')