TOP axioms TOP problems

TOP001-1.p Topology generated by a basis forms a topological space, part 1 include('Axioms/TOP001-0.ax') $cnf(lemma_1a_1, negated_conjecture)$ basis(cx, f) \neg subset_sets(union_of_members(top_of_basis(f)), cx) cnf(lemma_1a₂, negated_conjecture) **TOP001-2.p** Topology generated by a basis forms a topological space, part 1 element_of_set(u, union_of_members(vf)) \Rightarrow element_of_set(u, f_1(vf, u)) $cnf(union_of_members_1, axiom)$ element_of_set(u, union_of_members(vf)) \Rightarrow element_of_collection($f_1(vf, u), vf$) $cnf(union_of_members_2, axiom)$ $(\text{element_of_set}(u, uu_1) \text{ and element_of_collection}(uu_1, vf)) \Rightarrow \text{element_of_set}(u, union_of_members}(vf))$ cnf(union_of_mem $basis(x, vf) \Rightarrow equal_sets(union_of_members(vf), x)$ cnf(basis_for_topology₂₈, axiom) $(\text{element}_of_collection(u, top_of_basis(vf)) and element_of_set(x, u)) \Rightarrow \text{element}_of_set(x, f_{10}(vf, u, x))$ cnf(topology_generation) $(\text{element}_of_collection(u, \text{top}_of_basis(vf)) \text{ and } \text{element}_of_set(x, u)) \Rightarrow \text{element}_of_collection(f_{10}(vf, u, x), vf))$ cnf(topology $subset_sets(x, x)$ $cnf(set_theory_1, axiom)$ $(subset_sets(x, y) \text{ and } element_of_set(u, x)) \Rightarrow element_of_set(u, y)$ cnf(set_theory₂, axiom) equal_sets $(x, y) \Rightarrow$ subset_sets(x, y) $cnf(set_theory_3, axiom)$ $subset_sets(x, y)$ or $element_of_set(in_1st_set(x, y), x)$ $cnf(set_theory_4, axiom)$ element_of_set(in_1st_set(x, y), y) \Rightarrow subset_sets(x, y) cnf(set_theory₅, axiom) $cnf(lemma_1a_1, negated_conjecture)$ basis(cx, f)cnf(lemma_1a₂, negated_conjecture) \neg subset_sets(union_of_members(top_of_basis(f)), cx) TOP002-1.p Topology generated by a basis forms a topological space, part 2 include('Axioms/TOP001-0.ax') $cnf(lemma_1b_1, negated_conjecture)$ basis(cx, f) \neg element_of_collection(empty_set, top_of_basis(f)) cnf(lemma_1b₂, negated_conjecture) TOP002-2.p Topology generated by a basis forms a topological space, part 2 element_of_collection(u, top_of_basis(vf)) or element_of_set($f_{11}(vf, u), u$) $cnf(topology_generated_{40}, axiom)$ \neg element_of_set(x, empty_set) $cnf(set_theory_6, axiom)$ \neg element_of_collection(empty_set, top_of_basis(f)) cnf(lemma_1b₂, negated_conjecture) TOP003-1.p Topology generated by a basis forms a topological space, part 3 include('Axioms/TOP001-0.ax') $cnf(lemma_1c_1, negated_conjecture)$ basis(cx, f) \neg element_of_collection(cx, top_of_basis(f)) $cnf(lemma_1c_2, negated_conjecture)$ TOP003-2.p Topology generated by a basis forms a topological space, part 3 element_of_set(u, union_of_members(vf)) \Rightarrow element_of_set(u, f_1(vf, u)) $cnf(union_of_members_1, axiom)$ element_of_set(u, union_of_members(vf)) \Rightarrow element_of_collection($f_1(vf, u), vf$) cnf(union_of_members₂, axiom) $basis(x, vf) \Rightarrow equal_sets(union_of_members(vf), x)$ cnf(basis_for_topology₂₈, axiom) element_of_collection(u, top_of_basis(vf)) or element_of_set($f_{11}(vf, u), u$) $cnf(topology_generated_{40}, axiom)$ $\texttt{element_of_collection}(x,y) \ \Rightarrow \ \texttt{subset_sets}(x,\texttt{union_of_members}(y))$ cnf(set_theory₇, axiom) $(subset_sets(x, y) and element_of_set(u, x)) \Rightarrow element_of_set(u, y)$ $cnf(set_theory_8, axiom)$ $subset_sets(x, x)$ $cnf(set_theory_9, axiom)$ $(\text{equal_sets}(x, y) \text{ and } \text{subset_sets}(z, x)) \Rightarrow \text{subset_sets}(z, y)$ $cnf(set_theory_{10}, axiom)$ $(\text{equal_sets}(x, y) \text{ and subset_sets}(x, z)) \Rightarrow \text{subset_sets}(y, z)$ $cnf(set_theory_{11}, axiom)$ basis(cx, f) $cnf(lemma_1c_1, negated_conjecture)$ \neg element_of_collection(cx, top_of_basis(f)) cnf(lemma_1c₂, negated_conjecture)

TOP004-2.p Topology generated by a basis forms a topological space, part 4 (element_of_set(u, uu_1) and element_of_collection(uu_1, vf)) \Rightarrow element_of_set($u, union_of_members(vf)$) cnf(union_of_members(vf)) cnf(vf)) cnf($\mathbf{2}$

 $(basis(x, vf) and element_of_set(y, x) and element_of_collection(vb_1, vf) and element_of_collection(vb_2, vf) and element_of_set(y, x) and elem$ $cnf(basis_for_topology_{29}, axiom)$ element_of_set $(y, f_6(x, vf, y, vb_1, vb_2))$ $(basis(x, vf) and element_of_set(y, x) and element_of_collection(vb_1, vf) and element_of_collection(vb_2, vf) and element_of_set(y, x) and elem$ element_of_collection($f_6(x, vf, y, vb_1, vb_2), vf$) $cnf(basis_for_topology_{30}, axiom)$ $(basis(x, vf) and element_of_set(y, x) and element_of_collection(vb_1, vf) and element_of_collection(vb_2, vf) and element_of_set(y, x) and elem$ subset_sets($f_6(x, vf, y, vb_1, vb_2)$, intersection_of_sets(vb_1, vb_2)) $cnf(basis_for_topology_{31}, axiom)$ $(\text{element}_of_collection(u, \text{top}_of_basis(vf)) \text{ and } \text{element}_of_set(x, u)) \Rightarrow \text{element}_of_set(x, f_{10}(vf, u, x))$ cnf(topology_generation) $(\text{element}_of_collection(u, \text{top}_of_basis(vf)) \text{ and } \text{element}_of_set(x, u)) \Rightarrow \text{element}_of_collection(f_{10}(vf, u, x), vf))$ cnf(topology $(\text{element_of_collection}(u, \text{top_of_basis}(vf)) \text{ and element_of_set}(x, u)) \Rightarrow \text{subset_sets}(f_{10}(vf, u, x), u)$ cnf(topology_generated element_of_collection(u, top_of_basis(vf)) or element_of_set($f_{11}(vf, u), u$) $cnf(topology_generated_{40}, axiom)$ $(\text{element}_of_set(f_{11}(vf, u), uu_{11}) \text{ and } \text{element}_of_collection(uu_{11}, vf) \text{ and } \text{subset}_sets(uu_{11}, u)) \Rightarrow \text{element}_of_collection(u, top_of_v)$ $(\text{subset_sets}(x, y) \text{ and } \text{subset_sets}(y, z)) \Rightarrow \text{subset_sets}(x, z)$ $cnf(set_theory_{12}, axiom)$ $element_of_set(z, intersection_of_sets(x, y)) \Rightarrow element_of_set(z, x)$ $cnf(set_theory_{13}, axiom)$ element_of_set(z, intersection_of_sets(x, y)) \Rightarrow element_of_set(z, y) $cnf(set_theory_{14}, axiom)$ $(\text{element_of_set}(z, x) \text{ and element_of_set}(z, y)) \Rightarrow \text{element_of_set}(z, \text{intersection_of_set}(x, y))$ $cnf(set_theory_{15}, axiom)$ $(subset_sets(x, y) \text{ and } subset_sets(u, v)) \Rightarrow subset_sets(intersection_of_sets(x, u), intersection_of_sets(y, v))$ cnf(set_theory $(\text{equal_sets}(x, y) \text{ and } \text{element_of_set}(z, x)) \Rightarrow \text{element_of_set}(z, y)$ $cnf(set_theory_{17}, axiom)$ equal_sets(intersection_of_sets(x, y), intersection_of_sets(y, x)) $cnf(set_theory_{18}, axiom)$ basis(cx, f) $cnf(lemma_1d_1, negated_conjecture)$ $element_of_collection(u, top_of_basis(f))$ cnf(lemma_1d₂, negated_conjecture) $element_of_collection(v, top_of_basis(f))$ $cnf(lemma_1d_3, negated_conjecture)$ \neg element_of_collection(intersection_of_sets(u, v), top_of_basis(f)) $cnf(lemma_1d_4, negated_conjecture)$ **TOP005-1.p** Topology generated by a basis forms a topological space, part 5 include('Axioms/TOP001-0.ax') basis(cx, f) $cnf(lemma_1e_1, negated_conjecture)$ $subset_collections(g, top_of_basis(f))$ cnf(lemma_1e₂, negated_conjecture) \neg element_of_collection(union_of_members(q), top_of_basis(f)) cnf(lemma_1e_3, negated_conjecture) **TOP005-2.p** Topology generated by a basis forms a topological space, part 5 element_of_set(u, union_of_members(vf)) \Rightarrow element_of_set(u, f_1(vf, u)) $cnf(union_of_members_1, axiom)$ element_of_set(u, union_of_members(vf)) \Rightarrow element_of_collection($f_1(vf, u), vf$) $cnf(union_of_members_2, axiom)$ $(\text{element_of_collection}(u, \text{top_of_basis}(vf)) \text{ and element_of_set}(x, u)) \Rightarrow \text{element_of_set}(x, f_{10}(vf, u, x))$ cnf(topology_generation) $(\text{element_of_collection}(u, \text{top_of_basis}(vf)) \text{ and element_of_set}(x, u)) \Rightarrow \text{element_of_collection}(f_{10}(vf, u, x), vf))$ cnf(topology (element_of_collection(u, top_of_basis(vf)) and element_of_set(x, u)) \Rightarrow subset_sets(f_{10}(vf, u, x), u) cnf(topology_generated element_of_collection(u, top_of_basis(vf)) or element_of_set($f_{11}(vf, u), u$) $cnf(topology_generated_{40}, axiom)$ $(\text{element}_{of}_{set}(f_{11}(vf, u), uu_{11}) \text{ and } \text{element}_{of}_{collection}(uu_{11}, vf) \text{ and } \text{subset}_{sets}(uu_{11}, u)) \Rightarrow \text{element}_{of}_{collection}(u, \text{top}_{of})$ element_of_set $(u, x) \Rightarrow (subset_sets(x, y) \text{ or element_of_set}(u, y))$ $cnf(set_theory_{19}, axiom)$ $(subset_sets(x, y) and element_of_collection(y, z)) \Rightarrow subset_sets(x, union_of_members(z))$ $cnf(set_theory_{20}, axiom)$ $(subset_collections(x, y) and element_of_collection(u, x)) \Rightarrow element_of_collection(u, y)$ $cnf(set_theory_{21}, axiom)$ subset_collections $(q, top_of_basis(f))$ cnf(lemma_1e₂, negated_conjecture) \neg element_of_collection(union_of_members(g), top_of_basis(f)) cnf(lemma_1e_3, negated_conjecture) ${\bf TOP006\text{-}1.p}$ Topology generated by a basis forms a topological space include('Axioms/TOP001-0.ax')

basis(cx, ct) $cnf(problem_{110}, negated_conjecture)$ $cnf(problem_{111}, negated_conjecture)$ \neg topological_space(cx, top_of_basis(ct))

TOP007-1.p Property 1 of topological spaces

If (cx,ct) is a topological space, A is a subset of X, and every point in A has a neighborhood U that is a subset of A, then A is open in (cx,ct).

include('Axioms/TOP001-0.ax')

 $topological_space(cx, ct)$ $cnf(problem_{2112}, negated_conjecture)$ $subset_sets(a, cx)$ $cnf(problem_{2_{113}}, negated_conjecture)$ element_of_set $(y, a) \Rightarrow$ neighborhood $(f_{30}(y), y, cx, ct)$ $cnf(problem_{2114}, negated_conjecture)$ element_of_set $(y, a) \Rightarrow$ subset_sets $(f_{30}(y), a)$ $cnf(problem_{2_{115}}, negated_conjecture)$ $\neg \operatorname{open}(a, \operatorname{cx}, \operatorname{ct})$ $cnf(problem_{2_{116}}, negated_conjecture)$

TOP008-1.p The subspace topology gives rise to a topological space include('Axioms/TOP001-0.ax')

topological_space(cx, ct) cnf(problem_3₁₁₇, negated_conjecture) subset_sets(cy, cx) $cnf(problem_{3118}, negated_conjecture)$

 \neg topological_space(cy, subspace_topology(cx, ct, cy)) cnf(problem_3₁₁₉, negated_conjecture) **TOP009-1.p** If Y is open in X, and A is open in Y, then A is open in X include('Axioms/TOP001-0.ax') open(cy, cx, ct) $cnf(problem_{4120}, negated_conjecture)$ $open(a, cy, subspace_topology(cx, ct, cy))$ $cnf(problem_{4121}, negated_conjecture)$ $\neg \operatorname{open}(a, \operatorname{cx}, \operatorname{ct})$ $cnf(problem_{4_{122}}, negated_conjecture)$ **TOP010-1.p** A finer topology induces a finer subspace topology include('Axioms/TOP001-0.ax') $cnf(problem_5_{123}, negated_conjecture)$ $\operatorname{finer}(\operatorname{ct}_1,\operatorname{ct}_2,\operatorname{cx})$ $subset_sets(a, cx)$ $cnf(problem_{5124}, negated_conjecture)$ \neg finer(subspace_topology(cx, ct₁, a), subspace_topology(cx, ct₂, a), cx) $cnf(problem_{5125}, negated_conjecture)$ TOP011-1.p An alternative definition of top_of_basis include('Axioms/TOP001-0.ax') $element_of_set(cu, top_of_basis(f)) \text{ or subset_collections}(g, f)$ $cnf(problem_{-6_{126}}, negated_conjecture)$ $element_of_set(cu, top_of_basis(f))$ or $equal_sets(cu, union_of_members(g))$ $cnf(problem_{6_{127}}, negated_conjecture)$ $(\text{element_of_set}(\text{cu, top_of_basis}(f)) \text{ and subset_collections}(x, f)) \Rightarrow \neg \text{equal_sets}(\text{cu, union_of_members}(x))$ cnf(problem_6 TOP012-1.p Intersections and finite unions of closed sets are closed include('Axioms/TOP001-0.ax') $topological_space(cx, ct)$ cnf(problem_7₁₂₉, negated_conjecture) $(closed(empty_set, cx, ct) and closed(cx, cx, ct)) \Rightarrow (closed(cy_1, cx, ct) or subset_sets(union_of_members(f), cx))$ cnf(prob $(closed(empty_set, cx, ct) and closed(cx, cx, ct) and element_of_collection(v, f)) \Rightarrow (closed(cy_1, cx, ct) or closed(v, cx, ct))$ $(closed(empty_set, cx, ct) and closed(cx, cx, ct) and closed(intersection_of_members(f), cx, ct)) \Rightarrow closed(cy_1, cx, ct)$ cnf(1 $(closed(empty_set, cx, ct) and closed(cx, cx, ct)) \Rightarrow (closed(cy_2, cx, ct) or subset_sets(union_of_members(f), cx))$ cnf(prob $(closed(empty_set, cx, ct) and closed(cx, cx, ct) and element_of_collection(v, f)) \Rightarrow (closed(cy_2, cx, ct) or closed(v, cx, ct))$ $(closed(empty_set, cx, ct) and closed(cx, cx, ct) and closed(intersection_of_members(f), cx, ct)) \Rightarrow closed(cy_2, cx, ct)$ cnf(I $(closed(empty_set, cx, ct) and closed(cx, cx, ct) and closed(union_of_sets(cy_1, cy_2), cx, ct)) \Rightarrow subset_sets(union_of_members(j))$ $(closed(empty_set, cx, ct) and closed(cx, cx, ct) and closed(union_of_sets(cy_1, cy_2), cx, ct) and element_of_collection(v, f)) \Rightarrow$ cnf(problem_7₁₃₇, negated_conjecture) closed(v, cx, ct) $(closed(empty_set, cx, ct) and closed(cx, cx, ct) and closed(union_of_sets(cy_1, cy_2), cx, ct)) \Rightarrow \neg closed(intersection_of_member)$ TOP013-1.p Properties of interior and closure The interior of A is a subset of A, which is a subset of the closure of A. include('Axioms/TOP001-0.ax') cnf(problem_8₁₃₉, negated_conjecture) $topological_space(cx, ct)$ $subset_sets(a, cx)$ $cnf(problem_{8_{140}}, negated_conjecture)$ subset_sets(interior(a, cx, ct), a) $\Rightarrow \neg$ subset_sets(a, closure(a, cx, ct)) $cnf(problem_{8_{141}}, negated_conjecture)$ TOP014-1.p Properties of open & interior and closed & closure If A is open, the interior of A is A, and if A is closed, the closure of A is A. include('Axioms/TOP001-0.ax') $cnf(problem_{-}9_{142}, negated_conjecture)$ $topological_space(cx, ct)$ cnf(problem_9₁₄₃, negated_conjecture) $subset_sets(a, cx)$ open(a, cx, ct) or equal_sets(a, interior(a, cx, ct)) or closed(a, cx, ct) or equal_sets(a, closure(a, cx, ct)) $cnf(problem_{-}9_{144}, ne)$ $(closed(a, cx, ct) and equal_sets(a, closure(a, cx, ct))) \Rightarrow (open(a, cx, ct) or equal_sets(a, interior(a, cx, ct)))$ cnf(problem_9 $(open(a, cx, ct) and equal_sets(a, interior(a, cx, ct))) \Rightarrow (closed(a, cx, ct) or equal_sets(a, closure(a, cx, ct)))$ cnf(problem_9 (open(a, cx, ct)) and $equal_sets(a, interior(a, cx, ct))$ and $closed(a, cx, ct)) \Rightarrow \neg equal_sets(a, closure(a, cx, ct))$ cnf(problem TOP015-1.p The interior and the boundary of a set are disjoint include('Axioms/TOP001-0.ax') $cnf(problem_10_{148}, negated_conjecture)$ topological_space(cx, ct) $cnf(problem_{10_{149}}, negated_conjecture)$ $subset_sets(a, cx)$ \neg equal_sets(intersection_of_sets(interior(a, cx, ct), boundary(a, cx, ct)), empty_set) $cnf(problem_10_{150}, negated_conjecture)$ TOP016-1.p The union of the interior and the boundary is the closure include('Axioms/TOP001-0.ax') topological_space(cx, ct) cnf(problem_11₁₅₁, negated_conjecture) $cnf(problem_11_{152}, negated_conjecture)$ $subset_sets(a, cx)$ \neg equal_sets(union_of_sets(interior(a, cx, ct), boundary(a, cx, ct)), closure(a, cx, ct)) $cnf(problem_{11_{153}}, negated_conjecture)$ **TOP017-1.p** If the boundary of A is empty, A is both open and closed include('Axioms/TOP001-0.ax')

3

 $\begin{array}{lll} \mbox{topological_space(cx,ct)} & \mbox{cnf}(\mbox{problem_12}_{154},\mbox{negated_conjecture}) \\ \mbox{subset_sets}(a,cx) & \mbox{cnf}(\mbox{problem_12}_{155},\mbox{negated_conjecture}) \\ \mbox{equal_sets}(\mbox{boundary}(a,cx,ct),\mbox{empty_set}) \mbox{ or open}(a,cx,ct) & \mbox{cnf}(\mbox{problem_12}_{156},\mbox{negated_conjecture}) \\ \mbox{equal_sets}(\mbox{boundary}(a,cx,ct),\mbox{empty_set}) \mbox{ or closed}(a,cx,ct) & \mbox{cnf}(\mbox{problem_12}_{157},\mbox{negated_conjecture}) \\ \mbox{(equal_sets}(\mbox{boundary}(a,cx,ct),\mbox{empty_set}) \mbox{ or closed}(a,cx,ct)) & \Rightarrow \neg \mbox{closed}(a,cx,ct) & \mbox{cnf}(\mbox{problem_12}_{158},\mbox{negated_conjecture}) \\ \mbox{(equal_sets}(\mbox{boundary}(a,cx,ct),\mbox{empty_set}) \mbox{ and }\mbox{open}(a,cx,ct)) & \Rightarrow \neg \mbox{closed}(a,cx,ct) & \mbox{cnf}(\mbox{problem_12}_{158},\mbox{negated_conjecture}) \\ \mbox{(equal_sets}(\mbox{boundary}(a,cx,ct),\mbox{empty_set}) \mbox{ and }\mbox{open}(a,cx,ct)) & \Rightarrow \neg \mbox{closed}(a,cx,ct) & \mbox{cnf}(\mbox{problem_12}_{158},\mbox{negated_conjecture}) \\ \mbox{(equal_sets}(\mbox{boundary}(a,cx,ct),\mbox{empty_set}) \mbox{ and }\mbox{open}(a,cx,ct)) & \Rightarrow \neg \mbox{closed}(a,cx,ct) & \mbox{cnf}(\mbox{problem_12}_{158},\mbox{negated_conjecture}) \\ \mbox{(equal_sets}(\mbox{boundary}(a,cx,ct),\mbox{empty_set}) \mbox{ and }\mbox{open}(a,cx,ct)) & \Rightarrow \neg \mbox{closed}(a,cx,ct) & \mbox{cnf}(\mbox{problem_12}_{158},\mbox{negated_conjecture}) \\ \mbox{(equal_sets}(\mbox{boundary}(a,cx,ct),\mbox{empty_set}) \mbox{empty_set}) & \mbox{cnf}(\mbox{empty_set}) & \mbox{cnf}(\mbox{empty_set}) & \mbox{cnf}(\mbox{empty_set}) & \mbox{cnf}(\mbox{empty_set}) & \mbox{empty_set}) \\ \mbox{(equal_sets}(\mbox{empty_set}) \mbox{empty_set}) & \mbox{empty_set}) & \mbox{empty_set}) & \mbox{empty_set}) & \mbox{cnf}(\mbox{empty_set}) & \mbox{empty_set}) & \mbox{empty_set})$

TOP018-1.p Propoerty of limits points and connected sets

If limit points are added to a connected set, the result is connected.

include('Axioms/TOP001-0.ax')

 $\texttt{connected_set}(a, \texttt{cx}, \texttt{ct}) \qquad \texttt{cnf}(\texttt{problem_13}_{159}, \texttt{negated_conjecture})$

 $element_of_set(y,b) \Rightarrow limit_point(y,a,cx,ct) \qquad cnf(problem_13_{160},negated_conjecture)$

 $\neg \operatorname{connected_set}(\operatorname{union_of_sets}(a, b), \operatorname{cx}, \operatorname{ct}) \qquad \operatorname{cnf}(\operatorname{problem_13}_{161}, \operatorname{negated_conjecture})$

 ${\bf TOP019}\mbox{--}1.{\bf p}$ The closure of a connected set is connected

include('Axioms/TOP001-0.ax')

connected_set(a, cx, ct) cnf(problem_14_{162}, negated_conjecture)

 \neg connected_set(closure(a, cx, ct), cx, ct) cnf(problem_14_{163}, negated_conjecture)

${\bf TOP020{+}1.p}$ Property of a Hausdorff topological space

In a Hausdorff topological space, the diagonal of the space is closed in the product of the space with itself.

 $\forall x, a: (\forall y: ((a_member_of(y, coerce_to_class(x)) \text{ and } \neg a_member_of(y, a)) \Rightarrow \exists g: (a_member_of(y, g) \text{ and } open_in(g, x) \text{ and } d closed_in(a, x)) \qquad \text{fof(closed_subset_thm, axiom)}$

 $\forall x: (a_hausdorff_top_space(x) \Rightarrow \forall a, b: ((a_member_of(a, coerce_to_class(x)) and a_member_of(b, coerce_to_class(x)) and a \neq b) \Rightarrow \exists g_1, g_2: (open_in(g_1, x) and open_in(g_2, x) and a_member_of(a, g_1) and a_member_of(b, g_2) and disjoint(g_1, g_2)))) for \forall a, x, b, y: ((open_in(a, x) and open_in(b, y)) \Rightarrow open_in(the_product_of(a, b), the_product_top_space_of(x, y))) for(product \forall s, t, x: (a_member_of(x, coerce_to_class(the_product_top_space_of(s, t))) \Rightarrow \exists a, b: (a_member_of(a, coerce_to_class(s)) and a_member_of(a, coerce_to_class(s)) and a_member_of(a, coerce_to_class(s)) = for(product_top_space_of(s, t)))$

 $\forall x, s, t: (a_member_of(x, the_product_of(s, t)) \iff \exists a, b: (a_member_of(a, s) \text{ and } a_member_of(b, t) \text{ and } x = the_ordered_pair \forall a, b: (disjoint(a, b) \iff \neg \exists y: (a_member_of(y, a) \text{ and } a_member_of(y, b))) for(disjoint_defn, axiom) \\ \forall a, b, c, d: (the_ordered_pair(a, b) = the_ordered_pair(c, d) \Rightarrow (a = c \text{ and } b = d)) for(ordered_pair, axiom)$

 $\forall x, s: (a_member_of(x, coerce_to_class(the_diagonal_top(s))) \iff \exists a: (a_member_of(a, coerce_to_class(s)) and x = the_ordered_pair(a, a))) for(diagonal_top, axiom)$

 $\forall s: (a_hausdorff_top_space(s) \Rightarrow closed_in(coerce_to_class(the_diagonal_top(s)), the_product_top_space_of(s, s))) \qquad fof(challed a) = for(challed a) = for(cha$

TOP021+1.p Locally compact tological space

 $\forall a, x, a_1: a_continuous_function_from_onto(the_projection_function(a, x, a_1), the_product_top_space_over(x, a_1), apply(x, a)) \\ \forall a, x, a_1, x_1: a_open_function_from_onto(the_projection_function(a, x, a_1), the_product_top_space_over(x_1, a_1), apply(x_1, a)) \\ \forall f, a, b: ((a_open_function_from_onto(f, a, b) and a_continuous_function_from_onto(f, a, b) and a_locally_compact_top_space(b)) \\ fof(kelley_p_147e, axiom) \\ \end{cases}$

 $\forall x_1, a_1$: (a locally_compact_top_space(the_product_top_space_over(x_1, a_1)) $\Rightarrow \forall a$: a locally_compact_top_space(apply(x_1, a)))

TOP022+1.p Homotopy groups