A journey into Menger-type properties in locales

Oghenetega Ighedo

Department of Mathematical Sciences

University of South Africa (UNISA)

TALK GIVEN AT CHAPMAN UNIVERSITY BLAST 2022 (August 2022)

Menger locales

Almost Menger locales

Quasi-Menger locales

Weakly Menger locales

э

<ロ> <同> <同> < 同> < 同>

Menger locales

Almost Menger locales

Quasi-Menger locales

Weakly Menger locales

- Menger locales
- Almost Menger locales
- Quasi-Menger locales

Weakly Menger locales

- Menger locales
- Almost Menger locales
- Quasi-Menger locales
- Weakly Menger locales

э

The Menger property was introduced in

K. Menger

Einige Uberdeckungssatze der Punltmengenlehre

Sitzungsberichte Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik (Wiener Akademie, Wien) **133** (1924), 421-444,

where Menger defined the following basis covering property for metric spaces:

For each basis *B* for the topology of a metric space *X*, there is a sequence $(B_n)_{n \in \mathbb{N}}$ in *B* such that $\lim_{n \to \infty} diam(B_n)_{n \in \mathbb{N}} = 0$ and *X* is covered by $(B_n)_{n \in \mathbb{N}}$.

The Menger property was introduced in

K. Menger

Einige Uberdeckungssatze der Punltmengenlehre

Sitzungsberichte Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik (Wiener Akademie, Wien) **133** (1924), 421-444,

where Menger defined the following basis covering property for metric spaces:

For each basis \mathcal{B} for the topology of a metric space X, there is a sequence $(B_n)_{n\in\mathbb{N}}$ in \mathcal{B} such that $\lim_{n\to\infty} diam(B_n)_{n\in\mathbb{N}} = 0$ and X is covered by $(B_n)_{n\in\mathbb{N}}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

W. Hurewicz

Uber die Verallgemeinerung des Borelschen Theorems

Mathematische Zeitschrift 24 (1925), 401-425,

Let \mathcal{A} and \mathcal{B} be families of subsets of an infinite set X, for each sequence $(A_n)_{n \in \mathbb{N}}$ of elements of \mathcal{A} , there is a sequence $(B_n)_{n \in \mathbb{N}}$ of finite sets such that for each n, we have $B_n \subseteq A_n$, and $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$.

Definition

A topological space X is Menger, if for every sequence (\mathscr{U}_n) of open covers of X, we can select, for each n, a finite $\mathscr{V}_n \subseteq \mathscr{U}_n$ such that $\bigcup_{n \in \mathbb{N}} \mathscr{V}_n$ is a cover of X.

W. Hurewicz

Uber die Verallgemeinerung des Borelschen Theorems

Mathematische Zeitschrift 24 (1925), 401-425,

Let \mathcal{A} and \mathcal{B} be families of subsets of an infinite set X, for each sequence $(A_n)_{n \in \mathbb{N}}$ of elements of \mathcal{A} , there is a sequence $(B_n)_{n \in \mathbb{N}}$ of finite sets such that for each n, we have $B_n \subseteq A_n$, and $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$.

Definition

A topological space X is Menger, if for every sequence (\mathscr{U}_n) of open covers of X, we can select, for each n, a finite $\mathscr{V}_n \subseteq \mathscr{U}_n$ such that $\bigcup_{n \in \mathbb{N}} \mathscr{V}_n$ is a cover of X.

W. Hurewicz

Uber die Verallgemeinerung des Borelschen Theorems

Mathematische Zeitschrift 24 (1925), 401-425,

Let \mathcal{A} and \mathcal{B} be families of subsets of an infinite set X, for each sequence $(A_n)_{n \in \mathbb{N}}$ of elements of \mathcal{A} , there is a sequence $(B_n)_{n \in \mathbb{N}}$ of finite sets such that for each n, we have $B_n \subseteq A_n$, and $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$.

Definition

A topological space X is Menger, if for every sequence (\mathcal{U}_n) of open covers of X, we can select, for each *n*, a finite $\mathcal{V}_n \subseteq \mathcal{U}_n$ such that $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ is a cover of X.

- Combinatorics and Forcing Menger property characterizes filters whose Mathias forcing notion does not add dominating functions. (See – D. Chodounsky, D. Repovš, L. Zdomskyy: *Mathias forcing and combinatorial properties of filters*: J. Symbolic logic, 80 (2015), 1398 – 1410.)
 - Games there is a natural connection between the Menger property and an infinitely long game for two players. (See W. Hurewicz: Uber die Verallgemeinerung des Borelschen Theorems: Mathematische Zeitschrift, 24 (1925), 401-425.)
- Ramsey theory Ramsey theoretical results can be derived from game-theoretic statements, and selection hypotheses can be derived from Ramseyan partition relations. (See – Lj.D.R. Kočinac & M. Scheepers; *Combinatorics of open covers (VII)*: Groupability, Fundamenta Mathematicae 179 :

- Combinatorics and Forcing Menger property characterizes filters whose Mathias forcing notion does not add dominating functions. (See – D. Chodounsky, D. Repovš, L. Zdomskyy: *Mathias forcing and combinatorial properties of filters*: J. Symbolic logic, 80 (2015), 1398 – 1410.)
- Games there is a natural connection between the Menger property and an infinitely long game for two players. (See – W. Hurewicz: Uber die Verallgemeinerung des Borelschen Theorems: Mathematische Zeitschrift, 24 (1925), 401-425.)
- Ramsey theory Ramsey theoretical results can be derived from game-theoretic statements, and selection hypotheses can be derived from Ramseyan partition relations. (See – Lj.D.R. Kočinac & M. Scheepers; *Combinatorics of open* covers (VII): Groupability, Fundamenta Mathematicae 179 :

- Combinatorics and Forcing Menger property characterizes filters whose Mathias forcing notion does not add dominating functions. (See – D. Chodounsky, D. Repovš, L. Zdomskyy: *Mathias forcing and combinatorial properties of filters*: J. Symbolic logic, 80 (2015), 1398 – 1410.)
- Games there is a natural connection between the Menger property and an infinitely long game for two players. (See – W. Hurewicz: Uber die Verallgemeinerung des Borelschen Theorems: Mathematische Zeitschrift, 24 (1925), 401-425.)
- Ramsey theory Ramsey theoretical results can be derived from game-theoretic statements, and selection hypotheses can be derived from Ramseyan partition relations. (See – Lj.D.R. Kočinac & M. Scheepers; *Combinatorics of open covers (VII)*: Groupability, Fundamenta Mathematicae 179 : 2 (2003), 131–155.)

 $a \land \bigvee S = \bigvee \{a \land x \mid x \in S\}$

holds for all $a \in L$ and $S \subseteq L$.

- A frame homomorphism is a mapping h : L → M between frames which preserves arbitrary joins and finite meets.
- An element p of a frame L is called a point (or a prime) if it satisfies the property that p < 1 and (∀x, y ∈ L)(x ∧ y ≤ p ⇒ x ≤ p or y ≤ p).
- For any a ∈ L, the pseudocomplement of a is defined by a^{*} = a → 0 = \/{x ∈ L | x ∧ a = 0}.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

$a \land \bigvee S = \bigvee \{a \land x \mid x \in S\}$

holds for all $a \in L$ and $S \subseteq L$.

- A frame homomorphism is a mapping *h* : *L* → *M* between frames which preserves arbitrary joins and finite meets.
- An element ρ of a frame *L* is called a point (or a prime) if it satisfies the property that $\rho < 1$ and $(\forall x, y \in L)(x \land y \leq \rho \implies x \leq \rho$ or $y \leq p$).
- For any $a \in L$, the pseudocomplement of a is defined by $a^* = a \rightarrow 0 = \bigvee \{x \in L \mid x \land a = 0\}.$

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

 $a \land \bigvee S = \bigvee \{a \land x \mid x \in S\}$

holds for all $a \in L$ and $S \subseteq L$.

- A frame homomorphism is a mapping *h* : *L* → *M* between frames which preserves arbitrary joins and finite meets.
- An element p of a frame L is called a point (or a prime) if it satisfies the property that p < 1 and (∀x, y ∈ L)(x ∧ y ≤ p ⇒ x ≤ p or y ≤ p).

For any $a \in L$, the pseudocomplement of a is defined by $a^* = a \rightarrow 0 = \bigvee \{x \in L \mid x \land a = 0\}.$

 $a \land \bigvee S = \bigvee \{a \land x \mid x \in S\}$

holds for all $a \in L$ and $S \subseteq L$.

- A frame homomorphism is a mapping *h* : *L* → *M* between frames which preserves arbitrary joins and finite meets.
- An element p of a frame L is called a point (or a prime) if it satisfies the property that p < 1 and $(\forall x, y \in L)(x \land y \leq p \implies x \leq p \text{ or } y \leq p).$
- For any $a \in L$, the pseudocomplement of a is defined by $a^* = a \rightarrow 0 = \bigvee \{x \in L \mid x \land a = 0\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• A sublocale *S* of the locale *L* is a subset $S \subseteq L$ such that

- (i) for every $A \subseteq S$, $\bigwedge A$ is in *S* (in particular $1 = \bigwedge \emptyset \in S$), and
- (ii) for each $x \in L$ and $s \in S$, $x \to s \in S$.
- The lattice of sublocales of a frame L, ordered by inclusion, is a coframe denoted by S(L).

For any a in a locale L,

- o_L(a) = {a → x | x ∈ L} = {x ∈ L | a → x = x} is called an open sublocale of L.
- $c_L(a) = \uparrow a = \{x \in L \mid x \ge a\}$ is called a closed sublocale of *L*.
- A sublocate of L is called regular-closed (resp. regular-open) in case it is of the form c_L(a) (resp. σ_L(a)) with a regular, that is, a = a^{**}.

- A sublocale S of the locale L is a subset $S \subseteq L$ such that
 - (i) for every $A \subseteq S$, $\bigwedge A$ is in *S* (in particular $1 = \bigwedge \emptyset \in S$), and
 - (ii) for each $x \in L$ and $s \in S$, $x \to s \in S$.
- The lattice of sublocales of a frame L, ordered by inclusion, is a coframe denoted by S(L).
 - $o_L(a) = \{a \rightarrow x \mid x \in L\} = \{x \in L \mid a \rightarrow x = x\}$ is called an open sublocate of L.
 - $c_L(a) = \uparrow a = \{x \in L \mid x \ge a\}$ is called a closed sublocale of *L*.
 - A sublocate of L is called regular-closed (resp. regular-open) in case it is of the form c_L(a) (resp. o_L(a)) with a regular, that is, a = a^{**}.

- A sublocale S of the locale L is a subset $S \subseteq L$ such that
 - (i) for every $A \subseteq S$, $\bigwedge A$ is in *S* (in particular $1 = \bigwedge \emptyset \in S$), and
 - (ii) for each $x \in L$ and $s \in S$, $x \to s \in S$.
- The lattice of sublocales of a frame L, ordered by inclusion, is a coframe denoted by S(L).
- For any *a* in a locale *L*,
 - $\mathfrak{o}_L(a) = \{a \to x \mid x \in L\} = \{x \in L \mid a \to x = x\}$ is called an open sublocale of *L*.
 - c_L(a) =↑ a = {x ∈ L | x ≥ a} is called a closed sublocale of L.
 A sublocale of L is called regular-closed (resp. regular-open) in case it is of the form c_L(a) (resp. o_L(a)) with a regular, that is, a = a^{**}.

- A sublocale S of the locale L is a subset $S \subseteq L$ such that
 - (i) for every $A \subseteq S$, $\bigwedge A$ is in S (in particular $1 = \bigwedge \emptyset \in S$), and
 - (ii) for each $x \in L$ and $s \in S$, $x \to s \in S$.
- The lattice of sublocales of a frame L, ordered by inclusion, is a coframe denoted by S(L).
- For any a in a locale L,
 - $\mathfrak{o}_L(a) = \{a \to x \mid x \in L\} = \{x \in L \mid a \to x = x\}$ is called an open sublocale of *L*.
 - $\mathfrak{c}_L(a) = \uparrow a = \{x \in L \mid x \ge a\}$ is called a closed sublocale of *L*.
 - A sublocale of *L* is called regular-closed (resp. regular-open) in case it is of the form $c_L(a)$ (resp. $o_L(a)$) with *a* regular, that is, $a = a^{**}$.

- A sublocale S of the locale L is a subset $S \subseteq L$ such that
 - (i) for every $A \subseteq S$, $\bigwedge A$ is in S (in particular $1 = \bigwedge \emptyset \in S$), and
 - (ii) for each $x \in L$ and $s \in S$, $x \to s \in S$.
- The lattice of sublocales of a frame L, ordered by inclusion, is a coframe denoted by S(L).
- For any *a* in a locale *L*,
 - $\mathfrak{o}_L(a) = \{a \to x \mid x \in L\} = \{x \in L \mid a \to x = x\}$ is called an open sublocale of *L*.
 - $\mathfrak{c}_L(a) = \uparrow a = \{x \in L \mid x \ge a\}$ is called a closed sublocale of *L*.
 - A sublocale of *L* is called regular-closed (resp. regular-open) in case it is of the form c_L(a) (resp. o_L(a)) with a regular, that is, a = a^{**}.

-

- By a cover of *L* we mean a set $C \subseteq L$ such that $\bigvee C = 1$.
- There is a bijection between covers and open coverings given by $C \mapsto \mathscr{C}^{C} := \{o_{L}(c) \mid c \in C\} \text{ and } \mathscr{C} \mapsto C^{\mathscr{C}} := \{x \in L \mid o_{L}(x) \in \mathscr{C}\}.$

 A cover C of L is said to refine a cover D if for every c ∈ C there is a d ∈ D such that c ≤ d. In this case, C is called a refinement of D.

э

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

- By a cover of *L* we mean a set $C \subseteq L$ such that $\bigvee C = 1$.
- A collection 𝒞 of sublocales of *L* is a covering of *L* if \{*T* | *T* ∈ 𝒞} = *L*, where the join is calculated in 𝔅(*L*).
- There is a bijection between covers and open coverings given by $C \mapsto \mathscr{C}^{C} := \{ \mathfrak{o}_{L}(c) \mid c \in C \} \text{ and } \mathscr{C} \mapsto C^{\mathscr{C}} := \{ x \in L \mid \mathfrak{o}_{L}(x) \in \mathscr{C} \}.$

• A cover C of L is said to refine a cover D if for every $c \in C$ there is a $d \in D$ such that $c \leq d$. In this case, C is called a refinement of D.

- By a cover of *L* we mean a set $C \subseteq L$ such that $\bigvee C = 1$.
- A collection 𝒞 of sublocales of L is a covering of L if \{T | T ∈ 𝒞} = L, where the join is calculated in 𝔅(L).
 If every sublocale in a covering 𝒞 of L is open, then 𝒞 is an open covering of L.
- There is a bijection between covers and open coverings given by $C \mapsto \mathscr{C}^{C} := \{ \mathfrak{o}_{L}(c) \mid c \in C \} \text{ and } \mathscr{C} \mapsto C^{\mathscr{C}} := \{ x \in L \mid \mathfrak{o}_{L}(x) \in \mathscr{C} \}.$
- A cover C of L is said to refine a cover D if for every $c \in C$ there is a $d \in D$ such that $c \leq d$. In this case, C is called a refinement of D.

- By a cover of *L* we mean a set $C \subseteq L$ such that $\bigvee C = 1$.
- A collection 𝒞 of sublocales of *L* is a covering of *L* if \{*T* | *T* ∈ 𝒞} = *L*, where the join is calculated in 𝔅(*L*). If every sublocale in a covering 𝒞 of *L* is open, then 𝒞 is an open covering of *L*.
- There is a bijection between covers and open coverings given by $C \mapsto \mathscr{C}^C := \{ \mathfrak{o}_L(c) \mid c \in C \}$ and $\mathscr{C} \mapsto C^{\mathscr{C}} := \{ x \in L \mid \mathfrak{o}_L(x) \in \mathscr{C} \}.$

A cover C of L is said to refine a cover D if for every $c \in C$ there is a $d \in D$ such that $c \leq d$. In this case, C is called a refinement of D.

- By a cover of *L* we mean a set $C \subseteq L$ such that $\bigvee C = 1$.
- A collection 𝒞 of sublocales of *L* is a covering of *L* if \{*T* | *T* ∈ 𝒞} = *L*, where the join is calculated in 𝔅(*L*). If every sublocale in a covering 𝒞 of *L* is open, then 𝒞 is an open covering of *L*.
- There is a bijection between covers and open coverings given by

 $C \mapsto \mathscr{C}^{C} := \{\mathfrak{o}_{L}(c) \mid c \in C\} \text{ and } \mathscr{C} \mapsto C^{\mathscr{C}} := \{x \in L \mid \mathfrak{o}_{L}(x) \in \mathscr{C}\}.$

 A cover C of L is said to refine a cover D if for every c ∈ C there is a d ∈ D such that c ≤ d. In this case, C is called a refinement of D.

A frame *L* is Menger if for every sequence (\mathscr{C}_n) of open coverings of *L*, there exists, for each *n*, a finite $\mathscr{D}_n \subseteq \mathscr{C}_n$ such that $\bigcup_{n \in \mathbb{N}} \mathscr{D}_n$ is a covering of *L*. In this case, we say the sequence (\mathscr{D}_n) is a Menger witness for (\mathscr{C}_n) .

Examples: every compact frame (in fact, every σ -compact one – meaning one that is a join of countably many compact sublocales) is Menger.

Proposition

A frame L is Menger iff for every sequence (C_n) of covers of L, there exists, for each n, a finite $D_n \subseteq C_n$ such that $\bigcup_{n \in \mathbb{N}} D_n$ is a cover of L.

Every Menger frame is Lindelöf.

A frame *L* is Menger if for every sequence (\mathscr{C}_n) of open coverings of *L*, there exists, for each *n*, a finite $\mathscr{D}_n \subseteq \mathscr{C}_n$ such that $\bigcup_{n \in \mathbb{N}} \mathscr{D}_n$ is a covering of *L*. In this case, we say the sequence (\mathscr{D}_n) is a Menger witness for (\mathscr{C}_n) .

Examples: every compact frame (in fact, every σ -compact one – meaning one that is a join of countably many compact sublocales) is Menger.

Proposition

A frame L is Menger iff for every sequence (C_n) of covers of L, there exists, for each n, a finite $D_n \subseteq C_n$ such that $\bigcup_{n \in \mathbb{N}} D_n$ is a cover of L.

every Menger frame is Lindelof

< 🗇 🕨 < 🖃 🕨

A frame *L* is Menger if for every sequence (\mathscr{C}_n) of open coverings of *L*, there exists, for each *n*, a finite $\mathscr{D}_n \subseteq \mathscr{C}_n$ such that $\bigcup_{n \in \mathbb{N}} \mathscr{D}_n$ is a covering of *L*. In this case, we say the sequence (\mathscr{D}_n) is a Menger witness for (\mathscr{C}_n) .

Examples: every compact frame (in fact, every σ -compact one – meaning one that is a join of countably many compact sublocales) is Menger.

Proposition

A frame *L* is Menger iff for every sequence (C_n) of covers of *L*, there exists, for each *n*, a finite $D_n \subseteq C_n$ such that $\bigcup_{n \in \mathbb{N}} D_n$ is a cover of *L*.

-

A frame *L* is Menger if for every sequence (\mathscr{C}_n) of open coverings of *L*, there exists, for each *n*, a finite $\mathscr{D}_n \subseteq \mathscr{C}_n$ such that $\bigcup_{n \in \mathbb{N}} \mathscr{D}_n$ is a covering of *L*. In this case, we say the sequence (\mathscr{D}_n) is a Menger witness for (\mathscr{C}_n) .

Examples: every compact frame (in fact, every σ -compact one – meaning one that is a join of countably many compact sublocales) is Menger.

Proposition

A frame *L* is Menger iff for every sequence (C_n) of covers of *L*, there exists, for each *n*, a finite $D_n \subseteq C_n$ such that $\bigcup_{n \in \mathbb{N}} D_n$ is a cover of *L*.

Every Menger frame is Lindelöf.

э

We give an example of a non-spatial compact locale.

This is recorded in Stone Spaces by P.T. Johnstone.

Example

Let $\alpha \mathbb{Q}$ denote the one-point compactification of \mathbb{Q} , and let A be the locale $\Omega(\alpha \mathbb{Q}) \times \Omega(\alpha \mathbb{Q})$. A is compact. But, since \mathbb{Q} is an open subspace of $\alpha \mathbb{Q}$, we have that $\Omega \mathbb{Q} \times \Omega \mathbb{Q}$ is an open sublocale of $\Omega(\alpha \mathbb{Q}) \times \Omega(\alpha \mathbb{Q})$; and since $\Omega \mathbb{Q} \times \Omega \mathbb{Q}$ is not spatial, it follows that A is not spatial.

Every subframe of a Menger frame is Menger. Thus, a localic image of a Menger frame is Menger.

Since every cover of a subframe is a cover of the ambient frame.

э

We give an example of a non-spatial compact locale.

This is recorded in Stone Spaces by P.T. Johnstone. Example

Let $\alpha \mathbb{Q}$ denote the one-point compactification of \mathbb{Q} , and let A be the locale $\Omega(\alpha \mathbb{Q}) \times \Omega(\alpha \mathbb{Q})$. A is compact. But, since \mathbb{Q} is an open subspace of $\alpha \mathbb{Q}$, we have that $\Omega \mathbb{Q} \times \Omega \mathbb{Q}$ is an open sublocale of $\Omega(\alpha \mathbb{Q}) \times \Omega(\alpha \mathbb{Q})$; and since $\Omega \mathbb{Q} \times \Omega \mathbb{Q}$ is not spatial, it follows that A is not spatial.

Every subframe of a Menger frame is Menger. Thus, a localic image of a Menger frame is Menger.

Since every cover of a subframe is a cover of the ambient frame.

(a)

We give an example of a non-spatial compact locale.

This is recorded in Stone Spaces by P.T. Johnstone.

Example

Let $\alpha \mathbb{Q}$ denote the one-point compactification of \mathbb{Q} , and let A be the locale $\Omega(\alpha \mathbb{Q}) \times \Omega(\alpha \mathbb{Q})$. A is compact. But, since \mathbb{Q} is an open subspace of $\alpha \mathbb{Q}$, we have that $\Omega \mathbb{Q} \times \Omega \mathbb{Q}$ is an open sublocale of $\Omega(\alpha \mathbb{Q}) \times \Omega(\alpha \mathbb{Q})$; and since $\Omega \mathbb{Q} \times \Omega \mathbb{Q}$ is not spatial, it follows that A is not spatial.

Every subframe of a Menger frame is Menger. Thus, a localic image of a Menger frame is Menger.

Since every cover of a subframe is a cover of the ambient frame.

We give an example of a non-spatial compact locale.

This is recorded in Stone Spaces by P.T. Johnstone.

Example

Let $\alpha \mathbb{Q}$ denote the one-point compactification of \mathbb{Q} , and let A be the locale $\Omega(\alpha \mathbb{Q}) \times \Omega(\alpha \mathbb{Q})$. A is compact. But, since \mathbb{Q} is an open subspace of $\alpha \mathbb{Q}$, we have that $\Omega \mathbb{Q} \times \Omega \mathbb{Q}$ is an open sublocale of $\Omega(\alpha \mathbb{Q}) \times \Omega(\alpha \mathbb{Q})$; and since $\Omega \mathbb{Q} \times \Omega \mathbb{Q}$ is not spatial, it follows that A is not spatial.

Every subframe of a Menger frame is Menger. Thus, a localic image of a Menger frame is Menger.

Since every cover of a subframe is a cover of the ambient frame.

We give an example of a non-spatial compact locale.

This is recorded in Stone Spaces by P.T. Johnstone.

Example

Let $\alpha \mathbb{Q}$ denote the one-point compactification of \mathbb{Q} , and let A be the locale $\Omega(\alpha \mathbb{Q}) \times \Omega(\alpha \mathbb{Q})$. A is compact. But, since \mathbb{Q} is an open subspace of $\alpha \mathbb{Q}$, we have that $\Omega \mathbb{Q} \times \Omega \mathbb{Q}$ is an open sublocale of $\Omega(\alpha \mathbb{Q}) \times \Omega(\alpha \mathbb{Q})$; and since $\Omega \mathbb{Q} \times \Omega \mathbb{Q}$ is not spatial, it follows that A is not spatial.

Every subframe of a Menger frame is Menger. Thus, a localic image of a Menger frame is Menger.

Since every cover of a subframe is a cover of the ambient frame.

A topological space X is Menger iff $\Omega(X)$ is Menger.

Corollary

A topological space X is Menger iff its sobrification is Menger.

Oghenetega Ighedo (Unisa)

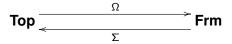
< ロ > < 同 > < 回 > < 回 >

A topological space X is Menger iff $\Omega(X)$ is Menger.

Corollary

A topological space X is Menger iff its sobrification is Menger.

< ロ > < 同 > < 回 > < 回 > < 回 > <



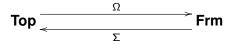
We recall that L is spatial if and only if the frame homomorphism $\eta_L \colon L o \Omega(\Sigma L)$ is one-one.

Example

Let L be a frame with no points, such as the smallest dense sublocale of $\Omega(\mathbb{R})$. Let \tilde{L} be the frame obtained from L by adjoining a new top element $\mathbf{1}_{\tilde{L}} > \mathbf{1}_{L}$. Then \tilde{L} is not spatial and $Pt(\tilde{L}) = \{\mathbf{1}_{L}\}$. From the latter, it is not hard to see that $\eta_{\tilde{I}}$ is codense.

Proposition

A frame whose spatial reflection is a codense sublocale is Menger iff its spectrum is Menger.



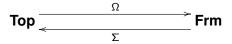
We recall that *L* is spatial if and only if the frame homomorphism $\eta_L \colon L \to \Omega(\Sigma L)$ is one-one.

Example

Let L be a frame with no points, such as the smallest dense sublocale of $\Omega(\mathbb{R})$. Let \tilde{L} be the frame obtained from L by adjoining a new top element $1_{\tilde{L}} > 1_{L}$. Then \tilde{L} is not spatial and $Pt(\tilde{L}) = \{1_L\}$. From the latter, it is not hard to see that η_T is codense.

Proposition

A frame whose spatial reflection is a codense sublocale is Menger iff its spectrum is Menger.



We recall that L is spatial if and only if the frame homomorphism

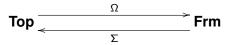
 $\eta_L \colon L \to \Omega(\Sigma L)$ is one-one.

Example

Let *L* be a frame with no points, such as the smallest dense sublocale of $\Omega(\mathbb{R})$. Let \tilde{L} be the frame obtained from *L* by adjoining a new top element $1_{\tilde{L}} > 1_L$. Then \tilde{L} is not spatial and $Pt(\tilde{L}) = \{1_L\}$. From the latter, it is not hard to see that $\eta_{\tilde{l}}$ is codense.

Proposition

A frame whose spatial reflection is a codense sublocale is Menger iff ts spectrum is Menger.



We recall that L is spatial if and only if the frame homomorphism

 $\eta_L \colon L \to \Omega(\Sigma L)$ is one-one.

Example

Let *L* be a frame with no points, such as the smallest dense sublocale of $\Omega(\mathbb{R})$. Let \tilde{L} be the frame obtained from *L* by adjoining a new top element $1_{\tilde{L}} > 1_L$. Then \tilde{L} is not spatial and $Pt(\tilde{L}) = \{1_L\}$. From the latter, it is not hard to see that $\eta_{\tilde{l}}$ is codense.

Proposition

A frame whose spatial reflection is a codense sublocale is Menger iff its spectrum is Menger.

Oghenetega Ighedo (Unisa)

The following are equivalent for a frame L.

- (a) L is Menger.
- (b) For every sequence (C_n) of directed covers of L, there exists, for each n, an element c_n ∈ C_n such that {c_n | n ∈ N} is a cover of L.
- (c) For every sequence (\mathcal{U}_n) of directed open coverings of L, there exists, for each n, a sublocale $U_n \in \mathcal{U}_n$ such that $\{U_n \mid n \in \mathbb{N}\}$ is a covering of L.

Propositio

The join of finitely many Menger sublocales of a frame is Menger.

The following are equivalent for a frame L.

- (a) L is Menger.
- (b) For every sequence (C_n) of directed covers of L, there exists, for each n, an element c_n ∈ C_n such that {c_n | n ∈ N} is a cover of L.
- (c) For every sequence (𝔄_n) of directed open coverings of L, there exists, for each n, a sublocale U_n ∈ 𝔄_n such that {U_n | n ∈ ℕ} is a covering of L.

Proposition

The join of finitely many Menger sublocales of a frame is Menger.

< ロ > < 同 > < 回 > < 回 >

(DJ) if its right adjoint preserves directed joins;
 (DC) if its right adjoint sends directed covers to directed covers; and

(CC) if its right adjoint sends covers to covers.

Then

 $(DJ) \Rightarrow (CC) \Rightarrow (DJ); (CC) \Rightarrow (DC) \Rightarrow (CC);$

and

 $(DJ) \implies (DC) \implies (DJ).$

A cover *B* of a frame *L* is called a strong refinement of a cover *C* if for every $b \in B$ there is a $c \in C$ such that $b \prec c$.

A frame L is called cover regular if every cover of L has a strong refinement.

Oghenetega Ighedo (Unisa)

- (DJ) if its right adjoint preserves directed joins;
- (DC) if its right adjoint sends directed covers to directed covers; and
- (CC) if its right adjoint sends covers to covers.

$(DJ) \Rightarrow (CC) \Rightarrow (DJ); (CC) \Rightarrow (DC) \Rightarrow (CC)$

and

$(DJ) \implies (DC) \implies (DJ).$

A cover *B* of a frame *L* is called a strong refinement of a cover *C* if for every $b \in B$ there is a $c \in C$ such that $b \prec c$.

A frame L is called cover regular if every cover of L has a strong refinement.

- (DJ) if its right adjoint preserves directed joins;
- (DC) if its right adjoint sends directed covers to directed covers; and
- (CC) if its right adjoint sends covers to covers.

Then

$$(\mathsf{DJ}) \not\Longrightarrow (\mathsf{CC}) \not\Longrightarrow (\mathsf{DJ}); \quad (\mathsf{CC}) \implies (\mathsf{DC}) \not\Longrightarrow (\mathsf{CC});$$

and

$$(DJ) \implies (DC) \implies (DJ).$$

A cover *B* of a frame *L* is called a strong refinement of a cover *C* if for every $b \in B$ there is a $c \in C$ such that $b \prec c$.

A frame L is called cover regular if every cover of L has a strong refinement.

Oghenetega Ighedo (Unisa)

- (DJ) if its right adjoint preserves directed joins;
- (DC) if its right adjoint sends directed covers to directed covers; and
- (CC) if its right adjoint sends covers to covers.

Then

$$(\mathsf{DJ}) \implies (\mathsf{CC}) \implies (\mathsf{DJ}); \quad (\mathsf{CC}) \implies (\mathsf{DC}) \implies (\mathsf{CC});$$

and

$$(DJ) \implies (DC) \implies (DJ).$$

A cover *B* of a frame *L* is called a strong refinement of a cover *C* if for every $b \in B$ there is a $c \in C$ such that $b \prec c$.

A frame L is called cover regular if every cover of L has a strong

イロト イポト イラト イラト

- (DJ) if its right adjoint preserves directed joins;
- (DC) if its right adjoint sends directed covers to directed covers; and
- (CC) if its right adjoint sends covers to covers.

Then

$$(\mathsf{DJ}) \implies (\mathsf{CC}) \implies (\mathsf{DJ}); \quad (\mathsf{CC}) \implies (\mathsf{DC}) \implies (\mathsf{CC});$$

and

$$(\mathsf{DJ}) \implies (\mathsf{DC}) \implies (\mathsf{DJ}).$$

A cover *B* of a frame *L* is called a strong refinement of a cover *C* if for every $b \in B$ there is a $c \in C$ such that $b \prec c$.

A frame *L* is called cover regular if every cover of *L* has a strong refinement.

Oghenetega Ighedo (Unisa)

- Let $h: L \to M$ be a frame homomorphism.
- (a) If h is weakly perfect and L is Menger, then M is Menger.
- (b) If h is dense and weakly perfect, L is cover regular, and M is Menger, then L is Menger.

Corollary

If L is compact and M is Menger, then $L \oplus M$ is Menger.

It is shown in

Completely regular proper reflection of locales over a given locale Proc. Amer. Math. Soc. **141** (2013), 403–408,

that if L is compact, then the coproduct injection $M o L \oplus M$ is a

• • • • • • • • • • • • •

- Let $h: L \to M$ be a frame homomorphism.
- (a) If h is weakly perfect and L is Menger, then M is Menger.
- (b) If h is dense and weakly perfect, L is cover regular, and M is Menger, then L is Menger.

Corollary

If L is compact and M is Menger, then $L \oplus M$ is Menger.

It is shown in

Completely regular proper reflection of locales over a given locale Proc. Amer. Math. Soc. 141 (2013), 403–408,

hat if L is compact, then the coproduct injection $M o L \oplus M$ is a

< D > < P > < P >

- Let $h: L \to M$ be a frame homomorphism.
- (a) If h is weakly perfect and L is Menger, then M is Menger.
- (b) If h is dense and weakly perfect, L is cover regular, and M is Menger, then L is Menger.

Corollary

If L is compact and M is Menger, then $L \oplus M$ is Menger.

It is shown in

Wei He, Maokang Luo

Completely regular proper reflection of locales over a given locale

Proc. Amer. Math. Soc. 141 (2013), 403-408,

that if *L* is compact, then the coproduct injection $M \rightarrow L \oplus M$ is a proper map.

Oghenetega Ighedo (Unisa)

Definition

A frame *L* is projectively Menger if every subframe of *L* with a countable base is Menger.

Rephrasing, we say, L is projectively Menger in case whenever $h: M \rightarrow L$ is a one-one frame homomorphism and M has a countable base, then M is Menger.

Lemma

Every frame with a countable base is Lindelöf.

< ロ > < 同 > < 回 > < 回 >

Definition

A frame *L* is projectively Menger if every subframe of *L* with a countable base is Menger.

Rephrasing, we say, *L* is projectively Menger in case whenever $h: M \rightarrow L$ is a one-one frame homomorphism and *M* has a countable base, then *M* is Menger.

Every frame with a countable base is Lindelöf.

A B > A B > A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition

A frame *L* is projectively Menger if every subframe of *L* with a countable base is Menger.

Rephrasing, we say, *L* is projectively Menger in case whenever $h: M \rightarrow L$ is a one-one frame homomorphism and *M* has a countable base, then *M* is Menger.

Lemma

Every frame with a countable base is Lindelöf.

< D > < P > < E > < E</p>

The following are equivalent for a frame L.

- (a) L is projectively Menger.
- (b) Every Lindelöf subframe of L is Menger.
- (c) For every sequence (C_n) of countable covers of L, there exists, for each n, a finite $D_n \subseteq C_n$ such that $\bigcup_{n \in \mathbb{N}} D_n$ is a cover of L.
- (d) For every sequence (C_n) of increasing countable covers of L, there exists, for each n, an element $c_n \in C_n$ such that $\{c_n \mid n \in \mathbb{N}\}$ is a cover of L.
- (e) For every sequence (𝔅_n) of countable open coverings of L, there exists, for each n, a finite 𝔅_n ⊆ 𝔅_n such that ⋃_{n∈ℕ}𝔅_n is a covering of L.

Corollary

A frame is Menger if and only if it is Lindelöf and projectively Menge

The following are equivalent for a frame L.

- (a) L is projectively Menger.
- (b) Every Lindelöf subframe of L is Menger.
- (c) For every sequence (C_n) of countable covers of L, there exists, for each n, a finite $D_n \subseteq C_n$ such that $\bigcup_{n \in \mathbb{N}} D_n$ is a cover of L.
- (d) For every sequence (C_n) of increasing countable covers of L, there exists, for each n, an element $c_n \in C_n$ such that $\{c_n \mid n \in \mathbb{N}\}$ is a cover of L.
- (e) For every sequence (𝔅_n) of countable open coverings of L, there exists, for each n, a finite 𝔅_n ⊆ 𝔅_n such that ⋃_{n∈ℕ}𝔅_n is a covering of L.

Corollary

A frame is Menger if and only if it is Lindelöf and projectively Menger.

A space *X* is called almost Menger if for every sequence (\mathscr{C}_n) of open covers of *X*, there exists, for each *n*, a finite $\mathscr{D}_n \subseteq \mathscr{C}_n$ such that $\bigcup \{\overline{D} \mid D \in \bigcup_{n \in \mathbb{N}} \mathscr{D}_n\} = X.$

Definition

A frame *L* is almost Menger if for every sequence (\mathscr{C}_n) of open coverings of *L*, there exists, for each *n*, a finite $\mathscr{D}_n \subseteq \mathscr{C}_n$ such that $\bigvee \{\overline{D} \mid D \in \bigcup_{n \in \mathbb{N}} \mathscr{D}_n\} = L$. In this case, we say the sequence (\mathscr{D}_n) is an *almost Menger witness* for the sequence (\mathscr{C}_n).

< ロ > < 同 > < 回 > < 回 >

A space *X* is called almost Menger if for every sequence (\mathscr{C}_n) of open covers of *X*, there exists, for each *n*, a finite $\mathscr{D}_n \subseteq \mathscr{C}_n$ such that $\bigcup \{\overline{D} \mid D \in \bigcup_{n \in \mathbb{N}} \mathscr{D}_n\} = X.$

Lj. D. R. Kočinac

Star-Menger and related spaces II

Filomat 13 (1999), 129-140.

Definition

A frame *L* is almost Menger if for every sequence (\mathscr{C}_n) of open coverings of *L*, there exists, for each *n*, a finite $\mathscr{D}_n \subseteq \mathscr{C}_n$ such that $\bigvee \{\overline{D} \mid D \in \bigcup_{n \in \mathbb{N}} \mathscr{D}_n\} = L$. In this case, we say the sequence (\mathscr{D}_n) is an *almost Menger witness* for the sequence (\mathscr{C}_n).

▲ 同 ▶ → (三)→

A space *X* is called almost Menger if for every sequence (\mathscr{C}_n) of open covers of *X*, there exists, for each *n*, a finite $\mathscr{D}_n \subseteq \mathscr{C}_n$ such that $\bigcup \{\overline{D} \mid D \in \bigcup_{n \in \mathbb{N}} \mathscr{D}_n\} = X.$

Lj. D. R. Kočinac Star-Menger and related spaces II Filomat **13** (1999), 129–140.

Definition

A frame *L* is almost Menger if for every sequence (\mathscr{C}_n) of open coverings of *L*, there exists, for each *n*, a finite $\mathscr{D}_n \subseteq \mathscr{C}_n$ such that $\bigvee \{\overline{D} \mid D \in \bigcup_{n \in \mathbb{N}} \mathscr{D}_n\} = L$. In this case, we say the sequence (\mathscr{D}_n) is an *almost Menger witness* for the sequence (\mathscr{C}_n) .

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Theorem

- Let X be a topological space.
 - (a) If X is almost Menger, then $\Omega(X)$ is almost Menger.
 - (b) If X is sober T_D -space, then $\Omega(X)$ is almost Menger iff X is almost Menger.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- A frame L is almost Menger iff for every sequence (𝒞_n) of directed open coverings of L, there exists, for each n, a sublocale C_n ∈ 𝒞_n such that \\{ (C_n | n ∈ ℕ} = L.
- A localic image of an almost Menger frame is almost Menger.
- A frame L is almost Menger iff for every sequence (C_n) of covers of L, there exists, for each n, a finite D_n ⊆ C_n such that every element a of L is expressible as a = Λ_αt_α where each t_α ≥ d^{*}_α for some d_α ∈ U_{n∈N}D_n.

Corollary

A frame L is almost Menger iff for every sequence (C_n) of directed covers of L, we can select, for each n, an element $c_n \in G_n$ such that any $a \in L$ is expressible as $a = \bigwedge_{n \in \mathbb{N}} t_n$ for some elements $t_n \in L$ with each $t_n \ge c_n^*$.

- A frame L is almost Menger iff for every sequence (𝒞_n) of directed open coverings of L, there exists, for each n, a sublocale C_n ∈ 𝒞_n such that \\{ C_n | n ∈ ℕ} = L.
- A localic image of an almost Menger frame is almost Menger.
- A frame L is almost Menger iff for every sequence (C_n) of covers of L, there exists, for each n, a finite D_n ⊆ C_n such that every element a of L is expressible as a = Λ_αt_α where each t_α ≥ d^{*}_α for some d_α ∈ U_{n∈N}D_n.

Corollary

A frame L is almost Menger iff for every sequence (C_n) of directed covers of L, we can select, for each n, an element $c_n \in G_n$ such that any $a \in L$ is expressible as $a = \bigwedge_{n \in \mathbb{N}} t_n$ for some elements $t_n \in L$ with each $t_n \ge c_n^*$.

- A frame L is almost Menger iff for every sequence (𝒞_n) of directed open coverings of L, there exists, for each n, a sublocale C_n ∈ 𝒞_n such that \\{ C_n | n ∈ ℕ} = L.
- A localic image of an almost Menger frame is almost Menger.
- A frame L is almost Menger iff for every sequence (C_n) of covers of L, there exists, for each n, a finite D_n ⊆ C_n such that every element a of L is expressible as a = ∧_αt_α where each t_α ≥ d^{*}_α for some d_α ∈ ∪_{n∈ℕ}D_n.

Corollary

A frame L is almost Menger iff for every sequence (C_n) of directed covers of L, we can select, for each n, an element $c_n \in G_n$ such that any $a \in L$ is expressible as $a = \bigwedge_{n \in \mathbb{N}} t_n$ for some elements $t_n \in L$ with each $t_n \geq c_n^*$.

- A frame L is almost Menger iff for every sequence (𝒞_n) of directed open coverings of L, there exists, for each n, a sublocale C_n ∈ 𝒞_n such that \/{ C_n | n ∈ ℕ} = L.
- A localic image of an almost Menger frame is almost Menger.
- A frame L is almost Menger iff for every sequence (C_n) of covers of L, there exists, for each n, a finite D_n ⊆ C_n such that every element a of L is expressible as a = ∧_αt_α where each t_α ≥ d^{*}_α for some d_α ∈ ⋃_{n∈ℕ}D_n.

Corollary

A frame L is almost Menger iff for every sequence (C_n) of directed covers of L, we can select, for each n, an element $c_n \in C_n$ such that any $a \in L$ is expressible as $a = \bigwedge_{n \in \mathbb{N}} t_n$ for some elements $t_n \in L$ with each $t_n \ge c_n^*$.

 Regular-closed subspaces of almost Menger spaces need not be almost Menger.

Clopen subspaces inherit the almost Menger property.

Definition

An element *a* of a frame *L* is co-linear in case $a \vee \bigwedge_{i \in I} x_i = \bigwedge_{i \in I} (a \vee x_i)$ for all families $\{x_i\}_{i \in I}$ of elements of *L*.

Example

Let *a* be a co-linear element of *L* and let $\kappa_a: L \to \uparrow a$ be the map given by $\kappa_a(x) = a \lor x$. Then κ_a is an onto, weakly perfect (actually, perfect) frame homomorphism preserving meets (since *a* is co-linear). Note though that κ_a is not an isomorphism if $a \neq 0$.

э

- Regular-closed subspaces of almost Menger spaces need not be almost Menger.
- Clopen subspaces inherit the almost Menger property.

Definition

An element *a* of a frame *L* is co-linear in case $a \vee \bigwedge_{i \in I} x_i = \bigwedge_{i \in I} (a \vee x_i)$ for all families $\{x_i\}_{i \in I}$ of elements of *L*.

Example

Let *a* be a co-linear element of *L* and let $\kappa_a \colon L \to \uparrow a$ be the map given by $\kappa_a(x) = a \lor x$. Then κ_a is an onto, weakly perfect (actually, perfect) frame homomorphism preserving meets (since *a* is co-linear). Note though that κ_a is not an isomorphism if $a \neq 0$.

э

- Regular-closed subspaces of almost Menger spaces need not be almost Menger.
- Clopen subspaces inherit the almost Menger property.

Definition

An element *a* of a frame *L* is co-linear in case $a \vee \bigwedge_{i \in I} x_i = \bigwedge_{i \in I} (a \vee x_i)$ for all families $\{x_i\}_{i \in I}$ of elements of *L*.

Example

Let *a* be a co-linear element of *L* and let $\kappa_a \colon L \to \uparrow a$ be the map given by $\kappa_a(x) = a \lor x$. Then κ_a is an onto, weakly perfect (actually, perfect) frame homomorphism preserving meets (since *a* is co-linear). Note though that κ_a is not an isomorphism if $a \neq 0$.

- Regular-closed subspaces of almost Menger spaces need not be almost Menger.
- Clopen subspaces inherit the almost Menger property.

Definition

An element *a* of a frame *L* is co-linear in case $a \vee \bigwedge_{i \in I} x_i = \bigwedge_{i \in I} (a \vee x_i)$ for all families $\{x_i\}_{i \in I}$ of elements of *L*.

Example

Let *a* be a co-linear element of *L* and let $\kappa_a \colon L \to \uparrow a$ be the map given by $\kappa_a(x) = a \lor x$. Then κ_a is an onto, weakly perfect (actually, perfect) frame homomorphism preserving meets (since *a* is co-linear). Note though that κ_a is not an isomorphism if $a \neq 0$.

э

We recall the following remark from

J. Gutiérrez García, I. Mozo Carollo, J. Picado Normal semicontinuity and the Dedekind completion of pointfree function rings Algebra Universalis **75** (2016), 301–330

if h: $L \to M$ is a perfect frame homomorphism, then $h_*(a^*) \le h_*(a)^*$ for every $a \in M$.

Proposition

Let $h: L \rightarrow M$ be a meet-preserving perfect onto frame homomorphism. If L is an almost Menger frame, then so is M.

Corollary

If L is almost Menger, then $\epsilon_L(a)$ is almost Menger for every co-linear $a \in L$. In particular, every closed sublocale of an almost Menger frame which is also a coframe is almost Menger. We recall the following remark from

J. Gutiérrez García, I. Mozo Carollo, J. Picado Normal semicontinuity and the Dedekind completion of pointfree function rings Algebra Universalis **75** (2016), 301–330

if $h: L \to M$ is a perfect frame homomorphism, then $h_*(a^*) \le h_*(a)^*$ for every $a \in M$.

Proposition

Let $h: L \rightarrow M$ be a meet-preserving perfect onto frame homomorphism. If L is an almost Menger frame, then so is M.

Corollary

If L is almost Menger, then $c_L(a)$ is almost Menger for every co-linear $a \in L$. In particular, every closed sublocale of an almost Menger frame which is also a coframe is almost Menger.

We recall the following remark from

J. Gutiérrez García, I. Mozo Carollo, J. Picado Normal semicontinuity and the Dedekind completion of pointfree function rings Algebra Universalis **75** (2016), 301–330

if $h: L \to M$ is a perfect frame homomorphism, then $h_*(a^*) \le h_*(a)^*$ for every $a \in M$.

Proposition

Let $h: L \rightarrow M$ be a meet-preserving perfect onto frame homomorphism. If L is an almost Menger frame, then so is M.

If L is almost Menger, then $\mathfrak{c}_L(a)$ is almost Menger for every co-linear $a \in L$. In particular, every closed sublocale of an almost Menger frame which is also a coframe is almost Menger.

We recall the following remark from

J. Gutiérrez García, I. Mozo Carollo, J. Picado Normal semicontinuity and the Dedekind completion of pointfree function rings Algebra Universalis **75** (2016), 301–330

if $h: L \to M$ is a perfect frame homomorphism, then $h_*(a^*) \le h_*(a)^*$ for every $a \in M$.

Proposition

Let $h: L \rightarrow M$ be a meet-preserving perfect onto frame homomorphism. If L is an almost Menger frame, then so is M.

Corollary

If L is almost Menger, then $c_L(a)$ is almost Menger for every co-linear $a \in L$. In particular, every closed sublocale of an almost Menger frame which is also a coframe is almost Menger.

In

G. Di Maio, Lj.D.R. Kočinac A note on quasi-Menger and similar spaces Topology. Appl. **179** (2015) 148–155a

A topological space X is called quasi-Menger if for every closed set $F \subseteq X$ and every sequence (\mathscr{V}_n) of covers of F by sets open in X, there exists, for each n, a finite $\mathscr{U}_n \subseteq \mathscr{V}_n$ such that $F \subseteq \overline{\bigcup_{n \in \mathcal{W}}} \bigcup \mathscr{U}_n$.

Definition

A frame *L* is quasi-Menger (resp. regularly quasi-Menger) if for every closed (resp. regular-closed) sublocale *F* of *L* and each sequence (\mathscr{V}_n) with \mathscr{V}_n consisting of open sublocales of *L* which cover *F*, there exists, for each *n*, a finite $\mathscr{U}_n \subseteq \mathscr{V}_n$ such that $F \subseteq \sqrt{v_n} \sqrt{\mathscr{U}_n}$.

< ロ > < 同 > < 回 > < 回 >

In

G. Di Maio, Lj.D.R. Kočinac A note on quasi-Menger and similar spaces Topology. Appl. **179** (2015) 148–155a

A topological space *X* is called quasi-Menger if for every closed set $F \subseteq X$ and every sequence (\mathscr{V}_n) of covers of *F* by sets open in *X*, there exists, for each *n*, a finite $\mathscr{U}_n \subseteq \mathscr{V}_n$ such that $F \subseteq \bigcup_{n \in \mathbb{N}} \bigcup \mathscr{U}_n$.

Definition

A frame *L* is quasi-Menger (resp. regularly quasi-Menger) if for every closed (resp. regular-closed) sublocale *F* of *L* and each sequence (\mathcal{V}_n) with \mathcal{V}_n consisting of open sublocales of *L* which cover *F*, there exists, for each *n*, a finite $\mathcal{U}_n \subseteq \mathcal{V}_n$ such that $F \subseteq \overline{V}_{n \in \mathbb{N}} \setminus \mathcal{U}_n$.

In

G. Di Maio, Lj.D.R. Kočinac A note on quasi-Menger and similar spaces Topology. Appl. **179** (2015) 148–155a

A topological space *X* is called quasi-Menger if for every closed set $F \subseteq X$ and every sequence (\mathscr{V}_n) of covers of *F* by sets open in *X*, there exists, for each *n*, a finite $\mathscr{U}_n \subseteq \mathscr{V}_n$ such that $F \subseteq \bigcup_{n \in \mathbb{N}} \bigcup \mathscr{U}_n$.

Definition

A frame *L* is quasi-Menger (resp. regularly quasi-Menger) if for every closed (resp. regular-closed) sublocale *F* of *L* and each sequence (\mathcal{V}_n) with \mathcal{V}_n consisting of open sublocales of *L* which cover *F*, there exists, for each *n*, a finite $\mathcal{U}_n \subseteq \mathcal{V}_n$ such that $F \subseteq \overline{\bigvee_{n \in \mathbb{N}} \bigvee \mathcal{U}_n}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

A frame L is qM (resp. rqM) iff for every $a \in L$ (resp. regular $a \in L$) and every sequence (V_n) of subsets of L with $a \lor \bigvee V_n = 1$ for each n, there is a finite $U_n \subseteq V_n$ such that $(\bigvee_{n \in \mathbb{N}} u_n)^* \leq a$, where $u_n = \bigvee U_n$.

Corollary

A subframe of a qM frame is qM. Hence, a localic image of a qM frame is qM.

Theorem A space X is qM iff $\Omega(X)$ is qM.

Proposition

A normal frame is gM iff it is rgM.

A frame L is qM (resp. rqM) iff for every $a \in L$ (resp. regular $a \in L$) and every sequence (V_n) of subsets of L with $a \lor \bigvee V_n = 1$ for each n, there is a finite $U_n \subseteq V_n$ such that $(\bigvee_{n \in \mathbb{N}} u_n)^* \leq a$, where $u_n = \bigvee U_n$.

Corollary

A subframe of a qM frame is qM. Hence, a localic image of a qM frame is qM.

Theorem $A \text{ space } X \text{ is } qM \text{ iff } \Omega(X) \text{ is } qM.$

Proposition

A normal frame is qM iff it is rqM.

A frame L is qM (resp. rqM) iff for every $a \in L$ (resp. regular $a \in L$) and every sequence (V_n) of subsets of L with $a \lor \bigvee V_n = 1$ for each n, there is a finite $U_n \subseteq V_n$ such that $(\bigvee_{n \in \mathbb{N}} u_n)^* \leq a$, where $u_n = \bigvee U_n$.

Corollary

A subframe of a qM frame is qM. Hence, a localic image of a qM frame is qM.

Theorem A space X is qM iff $\Omega(X)$ is qM.

Proposition

A normal frame is gM iff it is rgM.

A frame L is qM (resp. rqM) iff for every $a \in L$ (resp. regular $a \in L$) and every sequence (V_n) of subsets of L with $a \lor \bigvee V_n = 1$ for each n, there is a finite $U_n \subseteq V_n$ such that $(\bigvee_{n \in \mathbb{N}} u_n)^* \leq a$, where $u_n = \bigvee U_n$.

Corollary

A subframe of a qM frame is qM. Hence, a localic image of a qM frame is qM.

Theorem

A space X is qM iff $\Omega(X)$ is qM.

Proposition

A normal frame is qM iff it is rqM.

A topological space *X* is called weakly Menger if for every sequence (\mathscr{V}_n) of open covers of *X*, there exists, for each *n*, a finite $\mathscr{U}_n \subseteq \mathscr{V}_n$ such that $\bigcup_{n \in \mathbb{N}} \bigcup \mathscr{U}_n$ is dense in *X*.

Pixley-Roy spaces over subsets of the reals

Topology Appl. 29 (1988) 93-106,

these spaces are called "weakly Hurewicz".

Definition

A frame *L* is weakly Menger (abbreviated wM) if for every sequence (\mathscr{C}_n) of open coverings of *L*, there exists, for each *n*, a finite $\mathscr{D}_n \subseteq \mathscr{C}_n$ such that $\bigvee \{T \mid T \in \bigcup_{n \in \mathbb{N}} \mathscr{D}_n\}$ is a dense sublocale of *L*. We shall say the sequence (\mathscr{D}_n) is a *weakly Menger witness* (abbreviated wM-witness) for the sequence (\mathscr{C}_n) .

э

A topological space *X* is called weakly Menger if for every sequence (\mathscr{V}_n) of open covers of *X*, there exists, for each *n*, a finite $\mathscr{U}_n \subseteq \mathscr{V}_n$ such that $\bigcup_{n \in \mathbb{N}} \bigcup \mathscr{U}_n$ is dense in *X*.

P. Daniels

Pixley-Roy spaces over subsets of the reals

Topology Appl. 29 (1988) 93-106,

these spaces are called "weakly Hurewicz".

Definition

A frame *L* is weakly Menger (abbreviated wM) if for every sequence (\mathscr{C}_n) of open coverings of *L*, there exists, for each *n*, a finite $\mathscr{D}_n \subseteq \mathscr{C}_n$ such that $\bigvee \{T \mid T \in \bigcup_{n \in \mathbb{N}} \mathscr{D}_n\}$ is a dense sublocale of *L*. We shall say the sequence (\mathscr{D}_n) is a *weakly Menger witness* (abbreviated wM-witness) for the sequence (\mathscr{C}_n) .

A topological space *X* is called weakly Menger if for every sequence (\mathscr{V}_n) of open covers of *X*, there exists, for each *n*, a finite $\mathscr{U}_n \subseteq \mathscr{V}_n$ such that $\bigcup_{n \in \mathbb{N}} \bigcup \mathscr{U}_n$ is dense in *X*.

P. Daniels

Pixley-Roy spaces over subsets of the reals

Topology Appl. 29 (1988) 93-106,

these spaces are called "weakly Hurewicz".

Definition

A frame *L* is weakly Menger (abbreviated wM) if for every sequence (\mathscr{C}_n) of open coverings of *L*, there exists, for each *n*, a finite $\mathscr{D}_n \subseteq \mathscr{C}_n$ such that $\bigvee \{T \mid T \in \bigcup_{n \in \mathbb{N}} \mathscr{D}_n\}$ is a dense sublocale of *L*. We shall say the sequence (\mathscr{D}_n) is a *weakly Menger witness* (abbreviated wM-witness) for the sequence (\mathscr{C}_n) .

э.

The following are equivalent for a frame L.

- L is wM.
- Por every sequence (𝔅_n) of directed open coverings of L, there exists, for each n, some C_n ∈ 𝔅_n such that ∨_{n∈ℕ}C_n is a dense sublocale of L.
- Sor every sequence (C_n) of covers of L, there exists, for each n, a finite D_n ⊆ C_n such that \\D is a dense element in L, where D = U_{n∈ℕ}D_n.
- Solution For every sequence (C_n) of directed covers of L, there exists, for each n, some c_n ∈ C_n such that ∨_{n∈N}c_n is a dense element in L.

Corollary

A subframe of a wM frame is wM. Hence, a localic image of a wM frame is wM.

The following are equivalent for a frame L.

- L is wM.
- Por every sequence (𝔅_n) of directed open coverings of L, there exists, for each n, some C_n ∈ 𝔅_n such that ∨_{n∈ℕ}C_n is a dense sublocale of L.
- Sor every sequence (C_n) of covers of L, there exists, for each n, a finite D_n ⊆ C_n such that \\D is a dense element in L, where D = U_{n∈ℕ}D_n.
- Solution For every sequence (C_n) of directed covers of L, there exists, for each n, some c_n ∈ C_n such that ∨_{n∈N}c_n is a dense element in L.

Corollary

A subframe of a wM frame is wM. Hence, a localic image of a wM frame is wM.

Oghenetega Ighedo (Unisa)

A space X is wM iff $\Omega(X)$ is wM.

Abbreviate by M the Menger property. We then have the non-reversible implications:

$M \implies aM \implies wM$ and $M \implies qM \implies wM$.

In the case of Boolean frames all these implications are equivalences.

To see this, observe that if *L* is Boolean and wM, then it is Menger because the only dense element in a Boolean frame is the top.

э

◆□ > ◆□ > ◆豆 > ◆豆 >

A space X is wM iff $\Omega(X)$ is wM.

Remark

Abbreviate by M the Menger property. We then have the non-reversible implications:

 $M \implies aM \implies wM \quad \text{ and } \quad M \implies qM \implies wM.$

In the case of Boolean frames all these implications are equivalences.

To see this, observe that if *L* is Boolean and wM, then it is Menger because the only dense element in a Boolean frame is the top.

< ロ > < 同 > < 回 > < 回 >

A space X is wM iff $\Omega(X)$ is wM.

Remark

Abbreviate by M the Menger property. We then have the non-reversible implications:

 $M \implies aM \implies wM \quad \text{ and } \quad M \implies qM \implies wM.$

In the case of Boolean frames all these implications are equivalences.

To see this, observe that if L is Boolean and wM, then it is Menger because the only dense element in a Boolean frame is the top.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definition

We say an open covering \mathscr{U} of a frame *L* is a κ -covering if $L \notin \mathscr{U}$ and for every compact sublocale *K* of *L*, there exists some $U \in \mathscr{U}$ such that $K \subseteq U$.

Let L_s denote the *semiregularization* of *L*.

Theorem

The following are equivalent for a frame L.

L is wM.

■ L_s is wM.

Every sequence of κ-coverings of L has a wM-witness.

Whenever h: M → L is a dense homomorphism, then M is wM.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definition

We say an open covering \mathscr{U} of a frame *L* is a κ -covering if $L \notin \mathscr{U}$ and for every compact sublocale *K* of *L*, there exists some $U \in \mathscr{U}$ such that $K \subseteq U$.

Let L_s denote the *semiregularization* of L.

Theorem

The following are equivalent for a frame L

L is wM.

L_s is wM.

Every sequence of κ-coverings of L has a wM-witness.

 \square Whenever h: $M \rightarrow L$ is a dense homomorphism, then M is wM

< ロ > < 同 > < 回 > < 回 >

Definition

We say an open covering \mathscr{U} of a frame *L* is a κ -covering if $L \notin \mathscr{U}$ and for every compact sublocale *K* of *L*, there exists some $U \in \mathscr{U}$ such that $K \subseteq U$.

Let L_s denote the *semiregularization* of L.

Theorem

The following are equivalent for a frame L.

- 1 L is wM.
- 2 L_s is wM.
- Solution \mathbf{S} Every sequence of κ -coverings of L has a wM-witness.
- **9** Whenever h: $M \rightarrow L$ is a dense homomorphism, then M is wM.

< ロ > < 同 > < 回 > < 回 > .

Corollary

Let L be a frame.

- (a) The closure of any wM sublocale of L is wM.
- (b) If the smallest dense sublocale of L is wM, then L is wM.

Corollary

Let $(L_i \mid i \in I)$ be a family of frames, and $(X_j \mid j \in J)$ a family of topological spaces.

- (a) If the coproduct $\bigoplus_{i \in I} L_i$ is wM, then each L_i is wM.
- (b) If the product $\prod_{i \in J} X_i$ is wM, then each X_i is wM.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Corollary

Let L be a frame.

- (a) The closure of any wM sublocale of L is wM.
- (b) If the smallest dense sublocale of L is wM, then L is wM.

Corollary

Let $(L_i | i \in I)$ be a family of frames, and $(X_j | j \in J)$ a family of topological spaces.

- (a) If the coproduct $\bigoplus_{i \in I} L_i$ is wM, then each L_i is wM.
- (b) If the product $\prod_{i \in J} X_i$ is wM, then each X_i is wM.

< ロ > < 同 > < 回 > < 回 > .

Remark

Even though the localic product $\prod_{j \in J} \Omega(X_j)$ is not necessarily isomorphic to the locale $\Omega(\prod_{j \in J} X_j)$, we are able to deduce as a corollary of the localic result that if the product of topological spaces is weakly Menger, then so is each factor.

< ロ > < 同 > < 回 > < 回 > .

On infinite variants of De Morgan law in locale theory

J. Pure Appl. Algebra 225 (2021) article 106460,

Arietta calls a frame infinitely extremally disconnected if $(\bigvee_{i \in I} a_i)^{**} = \bigvee_{i \in I} a_i^{**}$ for all families $\{a_i \mid i \in I\}$ of elements of the frame.

Proposition

An infinitely extremally disconnected frame is wM iff its smallest dense sublocale is wM.

(日)

On infinite variants of De Morgan law in locale theory

J. Pure Appl. Algebra 225 (2021) article 106460,

Arietta calls a frame infinitely extremally disconnected if $(\bigvee_{i \in I} a_i)^{**} = \bigvee_{i \in I} a_i^{**}$ for all families $\{a_i \mid i \in I\}$ of elements of the frame.

Proposition

An infinitely extremally disconnected frame is wM iff its smallest dense sublocale is wM.

< ロ > < 同 > < 三 > < 三 >

Menger-type properties in biframes.

э

◆□ > ◆□ > ◆豆 > ◆豆 >

Menger-type properties in biframes.

A. Emre Eysen & Selma Ozcag Weaker forms of the Menger property in bitopological spaces Quaestiones Mathematicae **7** (2018) 877 – 888.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Menger-type properties in biframes.

A. Emre Eysen & Selma Ozcag Weaker forms of the Menger property in bitopological spaces Quaestiones Mathematicae **7** (2018) 877 – 888.

> A. Emre Eysen & Selma Ozcag Almost Menger property in bitopological spaces Ukrainian Mathematical J. **68** (2016) 950 – 958.

< ロ > < 同 > < 回 > < 回 > .

THANK YOU FOR YOUR ATTENTION.

Oghenetega Ighedo (Unisa)

э

<ロ> <同> <同> < 同> < 同> - < 同> - <