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Mathematics of Open Systems
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o all of these are examples of syntax

* they are arrows of some prop
e but with relational semantics instead of functional semantics

 we want useful calculi: equational characterisations of semantic identity



Graphical Relational Algebras

strict symmetric monoidal cats, usually props

Relations

* symmetric monoidal theories ] ]
Linear Relations
* string diagrams as syntax Additive Relations

Affine Relations

* diagrammatic reasoning
“Stateful” Relations

e graphical relational algebra Polyhedral Relations

Piecewise-Linear Relations



Plan

String diagrams
Universal algebra with string diagrams
Graphical linear algebra

Graphical affine algebra and electrical circuits



Presenting symmetric
monoidal categories

* Monoidal signature

e T={y:(ar(y), coar(y))}

e ar(y) e N - arity of y

e coar(y) e N - coarity ofy

 Term syntax for arrows

ecc == vy | e | id]| o] cc | cec



Diagrammatic conventions

ce = vy |e | id]| o| cc | cec
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Constructing diagrams

___________
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* Jo disambiguate terms one would need to introduce
additional “parentheses” boxes



Only connectivity matters

e |t also happens that “different” diagrams have the same
connectivity



Fundamental theorem

Theorem: Two diagrams obtained from terms c, ¢’ have the
same connectivity iff they are equated by the theory of
symmetric strict monoidal categories.

String diagram = class of diagrams obtained from a term,
up-to “only connectivity matters”

In particular: string diagrams are the arrows of the free
symmetric strict monoidal categoryon '

objects = natural numbers (“dangling wires”)

arrows = string diagrams



Plan

String diagrams
Universal algebra with string diagrams
Graphical linear algebra

Graphical affine algebra and electrical circuits



Symmetric monoidal theories

* A presentation of a symmetric monoidal theory is a pair (I, E) where
e [ is a monoidal signature

* E is a set of pairs of string diagrams

e Example: Commutative comonoids

* Any presentation yields a symmetric monoidal category

* arrows are string diagrams modulo “string diagram surgery” or
“diagrammatic reasoning”



Cartesian categories

(Fox 1976)

commutative comonoid structure

and everything commutes with the structure

nf
n _ n n
—f{——< “ile = —e
f_

Example: Set.



Classical terms vs string
diagrams

e consider the theory of magmas, one binary operation m

X,¥,Z = m(x,y) X,¥,Z = m(x,m(y,z))
— 1 .
e — /
1
X,y,Z = m(y,x) X,¥,Z = m(m(x,y),X))

< At

\/ mr—
_. — °




Lawvere theories

 |awvere theory = cartesian prop

* recipe for Lawvere-theories-as-props

1. add a cocommutative comonoid

structure i s
TeC -
2. make all generators commute with it "ile - —e

3. add your other equations (which may

e.g. Xxx1=e
make use of the comonoid structure)



Partial theories

e Partial theory = discrete cartesian restriction prop

* recipe for partial-as-locally-
ordered-props

e add a partial Frobenius
structure

* make all your generators
commute with

comultiplication

Partial Frobenius algebra,
the unit is missing!

e add your other equations
(which may make use of the
partial Frobenius structure)



Relational theories

(Bonchi, Pavlovic, S. 2017)

e recipe for Frobenius-theories- |
as-locally-ordered-props |

e add a Frobenius bimonoid
structure where monoid is
right adjoint to comonoid

* make all your generators
laxly commute with it

e add your other equations
(which may make use of the |
Frobenius structure) eg. idyg < e—e



Functorial semantics

* For Lawvere theories
* models = cartesian functors (to Set)
* homomorphisms = natural transformations

* For partial theories

* models = cartesian restriction functors (to Par) locally fl‘ll‘:itleel;lite:s entable
* homomorphisms = lax natural transformations categories

* For relational theories
* models = morphisms of cartesian bicategories (to Rel,) varieties =

. . definable categories
* homomorphisms = lax natural transformations

See Chad Nester’s thesis sometime in 2023!
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String diagrams
Universal algebra with string diagrams
Graphical linear algebra

Graphical affine algebra and electrical circuits



Lawvere theory of
commutative monoids
= matrices of natural
numbers Matn

(5 7)




Relational theory of linear relations

* Give a vector space k, LinRelk is the smc where
e objects are natural numbers

e arrows m to n are relations Rc km+n that are also k-
linear subspaces

e Graphical linear algebra = a presentation of the relational
theory of linear relations

* The free model is isomorphic to the symmetric monoidal
category LinRelq



GLA: a presentation of LinRelq

c. bialgebra

LI  c. comonoid

e.s. Frobenius

c. comonoid | i  CH-

c. bialgebra




Where do the generators go?

~C
- p—

1(e,0)}

Linear algebra = how these four relations and their opposites interact



c. bialgebra

NI c. comonoid |

: ; —(P HHP) = (p# 0)
.S, Frobenius e e aman s X T ol (o] oT=Tp [T ES
| = (p # 0)

P11« BE C. monoid

c. bialgebra

e Colour

e black and white satisfy exactly the same equations in the equational
theory

e SO every proof is in fact a proof of two theorems: invert the colours!
* Left-Right

e every fact is still a fact when viewed in the mirror



Basic concepts, diagrammatically

transpose

* combine colour
and mirror image
symmetries

kernel (nullspace)

cokernel (left
nullspace)

Image
(columnspace)

coimage
(rowspace)

L L

Fact. Given a linear subspace R:0->k in
LinRel, its orthogonal complement R+

IS its colour inverted diagram

(5)1=em=0 ()

Corollary. The “fundamental theorem of
linear algera”

kerA = im(A")+
kerA' = im(A)*"




Diagrammatic reasoning in action

Fact. A is injective iff —A—A_

Theorem. A is injective iff ker A =0

= | = —E— -
—~»—o - {A»CElo | - Er.}—.

L

:
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Fun Stuff - Rediscovering Fraction Arithmetic

|
Q|3
|
©
O

sp = qr

OG- = oI—-GE-GH- - .
=




Fun Stuff - Dividing by Zero

e LinRelg[1,1]

e projective arithmetic with two
additional elements

e the unique 0-dimensional
subspace L ={(0,0)}

e The unique 2-dimensional
subspace T ={(x,y) | x,y e Q}

/s

0

/s

p/q

(sp+ar)/
gs
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Graphical Affine Algebra

(Bonchi, Piedeleu, S., Zanasi 2019)

Definition. Given a field k, a k-affine relation k | is a set
Rckkxk! which is either empty, or s.t. there is a k-linear

relation C and a vector (a,b) s.t. R=(a,b) + C

* Proposition: affine relations are closed under composition

o AffRelk = sub prop of Relk where arrows are affine
relations



Diagrammatic syntax for k-affine
relations

— = {(e. 1))

—C
_ p—

-




Equational characterisation

GAA = GLA +

Theorem. GAA = AffRelk



Case study: non passive
electrical circuits

work with the diagrammatic language for AffRelrix
introduce a syntactic prop of electrical circuits
develop diagrammatic reasoning techniques

* the impedance calculus

prove classical “theorems” of electrical circuit theory



The prop of electrical circuits

 ECirc, free on the following signature

U {—0 ’ —.7 *— .—}

R Vv | L C
{ W= > '@'7 '@‘7 YL —"—}
R.L.CER, VIR

R
e -W- resistor

V
e (9 voltage source
I
e (9> current source
L

e _m Inductor

C
e |- capacitor



Circuits as GAA diagrams over R|[X]

7 : ECirc = GAA
7(1)=2




Impedance calculus

* Extend the signature of ECirc with impedance boxes
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Corollary

(1) Resistors, inductors and capacitors are “directionless’:

By
IS

X
IS

=0

(11) Reversing the direction of voltage and current sources flips polarities:

1A

V g Vv V I
O =0 = O S




Proposition
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Proof of (i)
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Measuring closed circuits
{@,@5,2}, > \f}

m,neN, c:m+1—n+1 in GAA

e (- :(s %) voltmeter
° _@ : (o, 00) gaMmMmeter
e > :(es,e) controlled voltage source

* & :(se.s) controlled current source

-



Compilation to GAA
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Theorems 1

* Relativity of potentials. Adding the same voltage
difference to open wires does not change behaviour.

|-

3

 Conservation of current. The sum of incoming current is
equal to the sum of outgoing current.

IS




Theorems 2

* Independent measurement theorem.

sosl
s =
o B L
o - L
goss
e Superposition theorem.
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— et
= *ﬁ; 0'-2& C —
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Thevenin’s theorem

e |f Cis aone port circuit of resistors and independent
sources then one of the following is true

- e =0
R e A

* - ¢ - denotes the empty relation
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Span vs Cospan

* every linear relation can be written in span form, or in
cospan form

e span form = choose a basis ™(C D)

 cospan form = choose a set of equations M A& FE}1

x+y=0

X+y=0 2y-z=0 . 2y-z=0 i  '- a[t, -1, 0] b[O 1, 2] a[1, -1, 0]+b[0,1,2]
2 S DH

y Y

;7 @ z b

—@

e e e <-§+ <-§+ TAEs

Cospans Spans




