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Mathematics of Open Systems

• all of these are examples of syntax


• they are arrows of some prop


• but with relational semantics instead of functional semantics


• we want useful calculi: equational characterisations of semantic identity

think of it as a functor up-to an idempotent1, representing the
inclusion of the subset {0, 1} ✓ N.

Theorem 27. Let ◆1 : A↵RelN ! RelN be the obvious
prop morphism embedding N-affine relations into RelN and
◆2 : Rel2 ! RelN be the mapping arising from the inclusion
2 ✓ N, interpreting a relation over 2 as a relation over N. 2

For all c in SCCirc, the diagram below commutes.

SCCirc
E(�)

//

hh�ii

✏✏

ARC

J · KN⇠=
✏✏

A↵RelN
◆1
✏✏

Rel2 ◆2
// RelN

Proof. By induction on SCCirc.

As a consequence of Theorem 27 we obtain a sound and
complete axiomatisation for equivalence of stateless connec-
tors by means of the axioms of ARC.

Corollary 28. For any two stateless connectors c and d in
SCCirc,

hhcii = hhdii iff E(c) = E(d)

Remark 29. Theorem 26 in [14] states that the connectors in
SCCirc can denote exactly those relations in Rel2 that contain
the vector 0. ACirc2 can express more relations of Rel2, for
instance the not relation denoted by the following diagram:

* +

N

= {(0, 1), (1, 0)}

In fact, all relations in Rel2 can be expressed by ACirc2 since
every finite subset of Nk ⇥ Nl is an N-affine relation k ! l,
so in particular every subset containing only 0s and 1s is in
A↵RelN.

VI. CASE STUDY II: ELECTRIC CIRCUITS

Elementary electrical engineering focusses on open linear
circuit analysis. An example is illustrated below.
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Such circuits may include voltage ( ) and current sources

( ), resistors ( ), junctions (filled nodes) and open
terminals (unfilled nodes).

The section is structured as follows. We begin by making
these open circuits formal as combinatorial structures. We
then present open circuits as algebraic structures, and give

1It is possible to make this notion precise using the idempotent completion
(or Karoubi envelope) of ARC. For details, see [24]

2Note that ◆2 is not a functor since it does not preserve identities.

a compositional semantics in terms of K-affine relations. In
Subsection VI-A, we use the axiomatisation of Section IV to
give a sound and complete calculus for the analysis of open
linear circuits. We end in Subsection VI-B by showing how
to handle circuits with time-dependent currents and voltages,

which also feature inductors ( ) and capacitors ( ).
We can make closed (i.e. those without open terminals)

circuits precise as combinatorial structures by considering
them as multigraphs with a mixture of directed and undirected
edges. Directed edges are either voltage and current sources,
while undirected edges are resistors. Finally, every edge is
labelled by a non-negative real, denoting either voltage (in
volts), current (in amperes) or resistance (in ohms). Formally,
then, a closed circuit is

{X, V, C ,R , vs, vt : V ! X, cs, ct : C ! X,

rc : R ! P2(X), q : V + C +R ! R+}

where X,V,C,R are, correspondingly, finite sets of nodes,
voltage sources, current sources and resistors, vs, vt, cs, ct, rc
give the connectivity of the edges, and q the labels.

To consider open circuits, we consider a certain category
of cospans. First, the category CCirc of closed circuits and
their obvious choice of morphism has pushouts. Next, any
finite ordinal can be considered as a discrete closed circuit,
with the ordinal serving as its set of nodes. We therefore
consider the full subcategory OCirc of the category of
cospans Cospan(CCirc) with objects finite ordinals. Having
ordinals as objects reflects the numbering the left and right
open terminals, as we have done in the example diagram
above. It is straightforward to verify that OCirc is a prop.

We now give a straightforward algebraic characterisation of
OCirc. The prop ECirc has signature
(

, ,

)

k2R+

[
⇢

, , ,

�
(24)

where the parameter k ranges over the non-negative reals.
Arrows m ! n of ECirc represent open linear electrical
circuits with m open terminals on the left and n open terminals
on the right. The following are the equations:

= = =

= = =

= =

=

The equations, apart from the last, are those of special
Frobenius monoids [25]. The final equation reflects the fact

It follows that c9 is also in SF and thus c8 is the rewiring of
a circuit in SF. Since c8 was obtained by c2 by only using
rewriting steps allowed by the equational theory of IH, the
statement of the theorem follows.

6. Directing the Flow

In the classical presentation of signal flow graphs (see e.g. [23]),
wires are directed, signifying the direction of signal flow. Through-
out the previous sections, we have been referring to flow direction
only on an intuitive level. We now introduce directionality explic-
itly, claiming that it can be really treated as a derivative notion of
our theory of circuits. We then present some applications and ex-
amples supporting our statement.

In order to model classical signal flow graphs we first need to
introduce an alternative syntax, which we call the directed signal
flow calculus. We will need components that resemble those of
C�!irc , but which are explicitly oriented from left to right.

e :: = | | | | |

We also require some “pure” wiring: since signal flow is explicit,
we include two versions of the identity wire and four of the twist:

w :: = | | | | |

These basic components above are given a sorting (u, v) where
u, v 2 {⇣, ⌘}⇤; for instance:

: (⌘, ⌘⌘) and : (⇣⌘, ⌘⇣).

Classical signal flow graphs are obtained by composing compo-
nents e and w using the operations ; and �, for which we reuse the
sorting rules of Fig. 1, together with guarded feedback operations
Tr⌘(·) that take a circuit of sort (⌘1+m

,⌘1+n) and yield a circuit
of sort (⌘m

,⌘n). The associated sorting rule is thus:
c : (⌘1+n, ⌘1+m)

Tr⌘(c) : (⌘n, ⌘m)

This is represented graphically as follows:

7�!

The syntax for directed signal flow graphs is thus:

sf :: = e | w | sf ; sf | sf � sf | Tr⌘(sf)
Finally, we include top-level operations reminiscent of the rewiring
in §5: L⌘, L⇣, R⌘ and R

⇣, with sorting rules:
c : (⌘u, v)

L⌘(c) : (u, ⇣v)

c : (⇣u, v)

L⇣(c) : (u, ⌘v)

c : (u, ⌘v)

R⌘(c) : (⇣u, v)

c : (u, ⇣v)

R⇣(c) : (⌘u, v)

In the graphical rendering below we leave out the arrowheads on
wires where direction is arbitrary:

Circuits of the directed signal flow calculus are thus specified by
following grammar:

d :: = sf | L⌘
d | L⇣

d | R⌘
d | R⇣

d | d ;w | w ; d

Note that the composition at the top level is restricted to disallow
the introduction of unguarded feedback.

Rather than defining the operational semantics directly, we can
obtain the expected behaviour by first translating directed terms to
the signal flow calculus. Intuitively, the inductively defined transla-
tion E “erases directions” from the wires:

7! , 7! · · · 7! , 7! ,

sf1 ; sd2 7! E(sf1) ;E(sf2), sf1 � sf2 7! E(sd1)� E(sf2),

Tr⌘(sf) 7! Tr(E(sf)), L?(d) 7! L(E(d)) R?(d) 7! R(E(d)).
where ? 2 {⇣,⌘} and Tr, L and R are defined as in §2 and §5.

A key observation is that directed sort discipline prevents us
from writing problematic circuits where signal flow is incompat-
ible, like in the examples in §4. In fact, using Proposition 3 and
Lemma 1 we get:

Proposition 4. For any circuit d of the directed signal flow calcu-
lus, E(d) is deadlock and initialisation free.

Moreover, this syntactic restriction does not affect the expres-
siveness since, thanks to Theorem 5, rewirings of signal flow graphs
denote all the possible behaviours. Thus, informally speaking, all
circuits in Circ can be directed (modulo the theory of IH).

Proposition 5. For any circuit c of Circ, there exists a directed
circuit d such that E(d) IH

= c

Propositions 4 and 5 have two interesting consequences. First,
Proposition 4 and the full-abstraction result mean that we can use
the equational theory of IH to safely reason about classical signal
flow graphs and extensions—indeed, all the circuits in the directed
signal flow calculus. Roughly speaking, the procedure is: forget the
directions and then use IH

=. This confirms the intuition that, like for
electrical circuits, also for signal flow graphs directionality is not a
primitive notion as originally advocated in [23].

Second, Proposition 4, Proposition 5 and full-abstraction tell us
that the denotational semantics of any circuit of the signal flow cal-
culus can be properly realised by some directed circuit. We can
therefore use the “more liberal” signal flow calculus to specify
circuits and the “more restrictive” directed calculus to implement
them. One can then check that an implementation d adheres to a
specification c by mean of the graphical reasoning supported by
IH. Indeed E(d)

IH

= c, means that d implements, without deadlocks
or initialisation, the behaviour denoted by c. Note that while an im-
plementation is a directed circuit—typically featuring feedbacks—
we are being deliberately vague about what kind of circuit in Circ
constitutes a specification: in examples that we consider these are
typically generating functions that can be obtained in a standard
way (see e.g. [29]) from recurrence formulas. We illustrate these
ideas with the aid of the simple example below.

Example 4. Consider the circuits displayed below. The leftmost
serves as specification ( 1

1�x ) and the rightmost, a directed circuit,
as its implementation.

x

To prove that the implementation realises the specification, we
first throw away all the directions from the wires and then we
proceed with a graphical derivation in IH:

(14)

We annotated the key axioms of IH justifying each derivation step.
Note that the first and the second to last circuit, that we have just

signal flow graphs

electrical circuitsD ; ((S ; T ; T )⌦ I) ; E (†)

Fig. 6: A token ring network as a PNB expression

1.2 Explicit spatial distribution

Using transition systems as a model of concurrency has a long history (see e.g. [3]).
Indeed, the semantics of a Petri net is usually a transition system. Two reasons
are often cited by researchers and practitioners in support of working with Petri
nets, rather than, for example, products of automata. One is qualitative: the
graphical syntax results in vivid, intuitive and informative models of real con-
current and distributed systems. A more empirical, quantitative reason is that
transition systems have a monolithic statespace that does not contain inherent
information about concurrency. Instead, a state of a Petri net, i.e. a marking,
has structure from which one can extract useful information. This leads to prac-
tical techniques for mitigating state explosion when model checking, e.g. partial
order reduction [18] and symmetry-reduction [24], that would not be possible if
working with mere transitions systems.

Transition system
State graph ������� Petri net

Composition �������� PNB expression (‡)

A PNB expression can be understood as representing a collection of Petri
nets that synchronise with each other on shared transitions. Thus, while inherit-
ing the explicit concurrency of Petri nets, PNB expressions add explicit spatial
separation of state to individual component nets. Such a distribution can be
obtained directly from the description of the problem and thus reflect the actual
physical separation of a distributed system in terms of its components. Several
of the examples in this paper (e.g. §3.3,§3.2 and §3.1) demonstrate this principle.

On the other hand, in general, a given Petri net can be described by several
di↵erent PNB expressions, allowing a logical separation that may not necessarily
reflect a physical separation (e.g. the n-bit counter example §3.4. One would
usually not consider a counter to be distributed in this manner). Considering

9

Petri nets
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The two spans are pictured thus: 

x x \  
I 

x x / 
~x  e x  

Technically, r 1 and e are the unit and counit of the self-dual compact-closed 
structure on S p a n ( G r a p h ) .  It will become clear that their role in the context 
of this paper is to permit a feedback operation on distributed systems. 

The correspondence between constants and operations, and the geometric 
representations given above, result in the fact that  expressions in the algebra 
have corresponding circuit or system diagrams. We illustrate this by an example. 

2.3 E x a m p l e .  

Given spans S : X --+ X x X, C : X -+ I, the expression 

rjx; ( S |  ( C | 1 7 4  ( S |  ( C | 1 7 4  ( S |  ( C | 1 7 4  

has system diagram: 

Fq rq rq 
S S S 

\ 

j 
\ 

t l T t l t T l 
S |  C | 1 7 4  S Q 1  C | 1 7 4  S |  C | 1 7 4  e 

We have indicated the correspondence between parts of the expression and of 
the diagram using arrows. This diagram might be (with specific interpretation 
of the components S (server) and C (client)) a specification of a simple token 
ring. 
Remark.  

The reader may have noticed that  apart  from the fact that  wires are distin- 
guished as appearing on the left or right of components we have not indicated 
an orientation on the wires, by placing for example an arrowhead. The reason 
is that in this algebra no such orientation is possible, and this will be reflected 
later in discussing concurrent systems by the fact that  at this level of abstraction 
wires represent input /output ,  and not either input or output  channels. 

automata



Syntax Semantics

Relations
Linear Relations
Additive Relations
Affine Relations

Polyhedral Relations

Piecewise-Linear Relations

strict symmetric monoidal cats, usually props

Graphical Relational Algebras

• symmetric monoidal theories


• string diagrams as syntax


• diagrammatic reasoning


• graphical relational algebra

“Stateful” Relations



Plan

• String diagrams 

• Universal algebra with string diagrams


• Graphical linear algebra


• Graphical affine algebra and electrical circuits 



Presenting symmetric 
monoidal categories

• Monoidal signature 


• Γ = { γ : ( ar(γ), coar(γ) ) } 


• ar(γ) ∈ N        - arity of γ 


• coar(γ) ∈ N    - coarity of γ 


• Term syntax for arrows


• c,c’    ::=    γ   |   ε   |   id   |   σ   |    c;c   |    c⊗c 



Diagrammatic conventions

c,c’    ::=    γ   |  ε   |   id   |   σ   |    c;c’   |    c⊗c’ 

: (1, 2) : (1, 0) k : (1, 1) x : (1, 1) : (2, 1) : (0, 1)

: (2, 1) : (0, 1) k : (1, 1)

x

: (1, 1) : (1, 2) : (1, 0)

: (0, 0) : (1, 1) : (2, 2)

c : (n, z) d : (z,m)

c ; d : (n,m)

c : (n,m) d : (r, z)

c�d : (n+r,m+z)

Figure 1. Sort inference rules.
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0

Figure 2. Structural rules for operational semantics, with k, l ranging over k and u, v, w vectors of elements of k of the appropriate size.

boundary to the right: thus is a copier, duplicating the signal

arriving on the left; accepts any signal on the left and discards

it, producing nothing on the right; is an adder that takes

two signals on the left and emits their sum on the right, and

constantly emits the signal 0 on the right; k is an amplifier,

multiplying the signal on the left by the scalar k 2 k. Finally, x
is a delay, a synchronous one place buffer initialised with 0.

The terms of row (5) are those of row (4) “reflected about the
y-axis”. Their behaviour is symmetric—indeed, here it is helpful to
think of signals flowing from right to left.

In row (6), is a twist, swapping two signals, is the
empty circuit and is the identity wire: the signals on the left
and on the right ports are equal. Terms can be combined by two
binary operators: sequential ; and parallel � composition.

In the syntax specification we purposefully used a graphical
rendering of the components. Indeed, we will seldom write terms
in the traditional way and instead represent them as 2-dimensional
diagrams. We adopt the following common convention:

c ; c0 is drawn c c�...
...

... c� c
0 is drawn

c

c� ...

...
...

...

.

A computation of a circuit c, is a (possibly infinite) path
s0

v0��!
w0

s1
v1��!
w1

. . . in the transition system of c, starting from
its initial state s0. When c has sort (n, m), each vi and wi consist
of strings over k, say ki1 . . . kin and li1 . . . lim, respectively. The
trace of a computation s0

v0��!
w0

s1
v1��!
w1

. . . is then a pair of vec-

tors

 
↵1

.

.

.
↵n

!
,

 
�1

.

.

.
�m

!
where ↵j = k0jk1j . . . and �j = l0j l1j . . . .

Occasionally we will use the notation (�!↵ ,
�!
� ) for such a pair and,

to make the notation lighter, we will write ↵j = k0k1 . . . and
�j = l0l1 . . . . Moreover, with ↵j(i) and �j(i) we will denote the
i-th elements of ↵j and �j .

Note that in a computation of length z, all ↵j ,�j have length
z, while for an infinite computation all ↵j ,�j are infinite. In the
former case, we say that a trace is finite, in the latter that it is

infinite. We use ft(c) to denote the set of all finite traces of c and
it(c) for the set of all infinite ones.

Example 1. Consider the two circuits below.

-1 x
x

The first is a graphical representation of the term

c1 = ( ; (( -1 ; x)� )) ;

the second of the term

c2 = (( ; )� ) ; ( � ( ; ))

; ((( � x )� ) ; (( ; )� ))

Note that, according to our intuition, in the leftmost circuit the
signal flows from right to left, while the rightmost, the signal flows
from left to right – indeed, the terms ; and ;
serve as “bent identity wires” which allow us to form a feedback
loop. Let c1[k] and c2[k] represent the states of c1 and c2, with
k denoting the value at the register. The rules of Fig. 2 yield the
computation

ci[0]
1�!
1

ci[1]
0�!
1

ci[1]
0�!
1

ci[1] · · ·

for i 2 0, 1, which yields the trace (1000 . . . ), (1111 . . . ). In
fact, as we shall show via a sound and complete axiomatisation,
despite of the signal intuitively flowing in different directions, the
two circuits have the same observable behaviour.

A slightly more involved example is given below.

x
2

x -1

We leave the reader to write down a term that is represented by
the diagram above: call it c3 and let c3[k1, k2] represent the state
where the two registers, reading from from left to right, have values
k1 and k2. Then, the operational semantics allows us to derive the

: (1, 2) : (1, 0) k : (1, 1) x : (1, 1) : (2, 1) : (0, 1)

: (2, 1) : (0, 1) k : (1, 1)

x

: (1, 1) : (1, 2) : (1, 0)

: (0, 0) : (1, 1) : (2, 2)

c : (n, z) d : (z,m)

c ; d : (n,m)

c : (n,m) d : (r, z)

c�d : (n+r,m+z)

Figure 1. Sort inference rules.
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Figure 2. Structural rules for operational semantics, with k, l ranging over k and u, v, w vectors of elements of k of the appropriate size.

boundary to the right: thus is a copier, duplicating the signal

arriving on the left; accepts any signal on the left and discards

it, producing nothing on the right; is an adder that takes

two signals on the left and emits their sum on the right, and

constantly emits the signal 0 on the right; k is an amplifier,

multiplying the signal on the left by the scalar k 2 k. Finally, x
is a delay, a synchronous one place buffer initialised with 0.

The terms of row (5) are those of row (4) “reflected about the
y-axis”. Their behaviour is symmetric—indeed, here it is helpful to
think of signals flowing from right to left.

In row (6), is a twist, swapping two signals, is the
empty circuit and is the identity wire: the signals on the left
and on the right ports are equal. Terms can be combined by two
binary operators: sequential ; and parallel � composition.

In the syntax specification we purposefully used a graphical
rendering of the components. Indeed, we will seldom write terms
in the traditional way and instead represent them as 2-dimensional
diagrams. We adopt the following common convention:

c ; c0 is drawn c c�...
...

... c� c
0 is drawn

c

c� ...

...
...

...

.

A computation of a circuit c, is a (possibly infinite) path
s0

v0��!
w0

s1
v1��!
w1

. . . in the transition system of c, starting from
its initial state s0. When c has sort (n, m), each vi and wi consist
of strings over k, say ki1 . . . kin and li1 . . . lim, respectively. The
trace of a computation s0

v0��!
w0

s1
v1��!
w1

. . . is then a pair of vec-

tors

 
↵1

.

.

.
↵n

!
,

 
�1

.

.

.
�m

!
where ↵j = k0jk1j . . . and �j = l0j l1j . . . .

Occasionally we will use the notation (�!↵ ,
�!
� ) for such a pair and,

to make the notation lighter, we will write ↵j = k0k1 . . . and
�j = l0l1 . . . . Moreover, with ↵j(i) and �j(i) we will denote the
i-th elements of ↵j and �j .

Note that in a computation of length z, all ↵j ,�j have length
z, while for an infinite computation all ↵j ,�j are infinite. In the
former case, we say that a trace is finite, in the latter that it is

infinite. We use ft(c) to denote the set of all finite traces of c and
it(c) for the set of all infinite ones.

Example 1. Consider the two circuits below.

-1 x
x

The first is a graphical representation of the term

c1 = ( ; (( -1 ; x)� )) ;

the second of the term

c2 = (( ; )� ) ; ( � ( ; ))

; ((( � x )� ) ; (( ; )� ))

Note that, according to our intuition, in the leftmost circuit the
signal flows from right to left, while the rightmost, the signal flows
from left to right – indeed, the terms ; and ;
serve as “bent identity wires” which allow us to form a feedback
loop. Let c1[k] and c2[k] represent the states of c1 and c2, with
k denoting the value at the register. The rules of Fig. 2 yield the
computation

ci[0]
1�!
1

ci[1]
0�!
1

ci[1]
0�!
1

ci[1] · · ·

for i 2 0, 1, which yields the trace (1000 . . . ), (1111 . . . ). In
fact, as we shall show via a sound and complete axiomatisation,
despite of the signal intuitively flowing in different directions, the
two circuits have the same observable behaviour.

A slightly more involved example is given below.

x
2

x -1

We leave the reader to write down a term that is represented by
the diagram above: call it c3 and let c3[k1, k2] represent the state
where the two registers, reading from from left to right, have values
k1 and k2. Then, the operational semantics allows us to derive the

[3], [10], [19] [13] This paper

Theory Graphical Linear Algebra Graphical Affine Algebra

Syntax CircK CircN ACircK, Sec. II ACircN, Sec. II

Semantics LinRelK AddRel A↵RelK, Sec. III A↵RelN, Sec. III

Axioms IHK RC AIHK, Sec. IV ARC, Sec. IV

Embeds Signal Flow
Graphs Petri Nets

Electrical
circuits
Sec. VI

Stateless
connectors

Sec. V

Fig. 1. Overview on GLA and GAA, in the notation of this paper.

We write ACircR for the full language and CircR for the
fragment without (A stands for ‘affine’). As mentioned
in Section I, for different Rs, CircR is able to model linear dy-
namical systems [10], [20], phase-free quantum processes [5],
Petri nets [13], and more. The focus of this paper is exploring
the expressivity and the equational theories supported by the
extended language ACircR.

Symbols of ACircR are rendered pictorially, as we will
treat them formally as string diagrams [21] in due course
(Section II-B). This also explains the use of two binary
operations, sequential (c ; d) and parallel (c�d) composition:
they are those of monoidal categories.

The diagrammatic syntax is variable-free, but requires a
simple sorting discipline. A sort is a pair (k, l), with k, l 2 N;
intuitively, k and l are the number of dangling wires on each
side of a ACircR-diagram. We shall only consider terms that
are sortable, according to the following rules.

: (1, 0) : (1, 2) : (2, 1) : (0, 1)

: (0, 1) : (2, 1) : (0, 1) k : (1, 1)

: (1, 1) : (0, 0) : (2, 2)

c : (k1, k2) d : (k2, k3)

c ; d : (k1, k3)

c : (k1, l1) d : (k2, l2)

c�d : (k1+k2, l1+l2)

An easy induction confirms uniqueness of sorting: if c : (k, l)
and c : (k0, l0), then k = k

0 and l = l
0.

The semantics h · i
R

of ACircR is defined inductively by the
clauses in Fig. 2, where we write • for the unique R-vector
of length zero.

Intuitively, duplicates, discards and sums
values, whereas produces zero values, produces one
value, and k multiplies by k a given value. The mirror
images , have behaviour defined symmetrically with
respect to and . Finally, behaviours combine sequen-
tially, where values synchronise along the common boundary
of diagrams, or in parallel, where values are simply stacked.
Note that h · i

R
is defined in terms of relations rather than

functions; thus it is neutral with respect to flow directionality.
For further discussion on this point, see [11].

B. From Terms to String Diagrams

Our goal is to characterise semantic equivalence in ACircR

equationally, for different choices of R. In each case, these
equations contain the laws of symmetric monoidal categories
(SMCs). Thus it makes sense to move from raw terms, as
in (7), to string diagrams: this is the remit of the subsection.

First, we enhance our graphical notation by depicting

c : (k, l) as c
k l , c ; d as c d

k1 k3k2 and c�d as
c

d

k1

k2

l1

l2,

where the labelled wire k stands for a stack of k wires.
We often omit wire labels when it does not lead to confusion.

The laws of SMCs are given in Fig. 3 in the graphical
notation. They yield a structural equivalence on ACircR-terms,
which is preserved by the semantics. More precisely, writing
⌘ for the smallest congruence over ACircR-terms generated
by the equations in Fig. 3, we have that c ⌘ d implies
h c i

R
= h d i

R
. Because of this observation, henceforth we shall

consider the terms of ACircR as arrows of an SMC, which by
a mild abuse of notation we will also denote ACircR. In fact,
ACircR is a specific kind of SMC, known as a prop.

Definition 1. A prop is a symmetric strict monoidal category
with objects the natural numbers, with k � l defined by the
addition k + l. A prop morphism F : C ! D is a symmetric
monoidal functor from C to D that is identity on objects.

ACircR is defined as a prop with arrows k ! l sorted
terms c : (k, l) of the corresponding syntax modulo ⌘, with
sequential composition c ; d, monoidal product c � d, and
symmetries defined by the corresponding operations in (7) (see
[20, Definition 2.3] for the details of the free construction of
a prop from a syntax).

For uniformity, we shall also consider the semantic domains
of our calculus as props, based on the definition below.

Definition 2 (RelR). Given a semiring R, let RelR be the prop
with arrows k ! l relations R from R

k to R
l, i.e. R ✓ R

k⇥R
l.

Given R : k1 ! k2 and S : k2 ! k3, their composition
R ; S : k1 ! k3 is

{(x, z) : x 2 R
k1 , z 2 R

k3 and there exists y 2 R
k2

such that (x,y) 2 R and (y, z) 2 S}.
(8)

Given R : k1 ! l1 and S : k2 ! l2 their monoidal product
is obtained by taking their cartesian product, i.e. R � S :
k1 + k2 ! l1 + l2 is the relation

��
( x1
x2 ) , (

y1
y2 )

�
: x1 2 R

k1 , x2 2 R
k2 , y1 2 R

l1 ,

y2 2 R
l2 such that (x1,y1) 2 R and (x2,y2) 2 S

 
.

(9)

Identities and symmetries are defined in the obvious way.

Now the definition of semantics in Fig. 2 yields a morphism
of props h� i

R
: ACircR ! RelR. Functoriality here means

that the interpretation is compositional with respect to the
operations ; and �.
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Fig. 1. Overview on GLA and GAA, in the notation of this paper.

We write ACircR for the full language and CircR for the
fragment without (A stands for ‘affine’). As mentioned
in Section I, for different Rs, CircR is able to model linear dy-
namical systems [10], [20], phase-free quantum processes [5],
Petri nets [13], and more. The focus of this paper is exploring
the expressivity and the equational theories supported by the
extended language ACircR.

Symbols of ACircR are rendered pictorially, as we will
treat them formally as string diagrams [21] in due course
(Section II-B). This also explains the use of two binary
operations, sequential (c ; d) and parallel (c�d) composition:
they are those of monoidal categories.

The diagrammatic syntax is variable-free, but requires a
simple sorting discipline. A sort is a pair (k, l), with k, l 2 N;
intuitively, k and l are the number of dangling wires on each
side of a ACircR-diagram. We shall only consider terms that
are sortable, according to the following rules.

: (1, 0) : (1, 2) : (2, 1) : (0, 1)

: (0, 1) : (2, 1) : (0, 1) k : (1, 1)

: (1, 1) : (0, 0) : (2, 2)

c : (k1, k2) d : (k2, k3)

c ; d : (k1, k3)

c : (k1, l1) d : (k2, l2)

c�d : (k1+k2, l1+l2)

An easy induction confirms uniqueness of sorting: if c : (k, l)
and c : (k0, l0), then k = k

0 and l = l
0.

The semantics h · i
R

of ACircR is defined inductively by the
clauses in Fig. 2, where we write • for the unique R-vector
of length zero.

Intuitively, duplicates, discards and sums
values, whereas produces zero values, produces one
value, and k multiplies by k a given value. The mirror
images , have behaviour defined symmetrically with
respect to and . Finally, behaviours combine sequen-
tially, where values synchronise along the common boundary
of diagrams, or in parallel, where values are simply stacked.
Note that h · i

R
is defined in terms of relations rather than

functions; thus it is neutral with respect to flow directionality.
For further discussion on this point, see [11].

B. From Terms to String Diagrams

Our goal is to characterise semantic equivalence in ACircR

equationally, for different choices of R. In each case, these
equations contain the laws of symmetric monoidal categories
(SMCs). Thus it makes sense to move from raw terms, as
in (7), to string diagrams: this is the remit of the subsection.

First, we enhance our graphical notation by depicting

c : (k, l) as c
k l , c ; d as c d

k1 k3k2 and c�d as
c

d

k1

k2

l1

l2,

where the labelled wire k stands for a stack of k wires.
We often omit wire labels when it does not lead to confusion.

The laws of SMCs are given in Fig. 3 in the graphical
notation. They yield a structural equivalence on ACircR-terms,
which is preserved by the semantics. More precisely, writing
⌘ for the smallest congruence over ACircR-terms generated
by the equations in Fig. 3, we have that c ⌘ d implies
h c i

R
= h d i

R
. Because of this observation, henceforth we shall

consider the terms of ACircR as arrows of an SMC, which by
a mild abuse of notation we will also denote ACircR. In fact,
ACircR is a specific kind of SMC, known as a prop.

Definition 1. A prop is a symmetric strict monoidal category
with objects the natural numbers, with k � l defined by the
addition k + l. A prop morphism F : C ! D is a symmetric
monoidal functor from C to D that is identity on objects.

ACircR is defined as a prop with arrows k ! l sorted
terms c : (k, l) of the corresponding syntax modulo ⌘, with
sequential composition c ; d, monoidal product c � d, and
symmetries defined by the corresponding operations in (7) (see
[20, Definition 2.3] for the details of the free construction of
a prop from a syntax).

For uniformity, we shall also consider the semantic domains
of our calculus as props, based on the definition below.

Definition 2 (RelR). Given a semiring R, let RelR be the prop
with arrows k ! l relations R from R

k to R
l, i.e. R ✓ R

k⇥R
l.

Given R : k1 ! k2 and S : k2 ! k3, their composition
R ; S : k1 ! k3 is

{(x, z) : x 2 R
k1 , z 2 R

k3 and there exists y 2 R
k2

such that (x,y) 2 R and (y, z) 2 S}.
(8)

Given R : k1 ! l1 and S : k2 ! l2 their monoidal product
is obtained by taking their cartesian product, i.e. R � S :
k1 + k2 ! l1 + l2 is the relation

��
( x1
x2 ) , (

y1
y2 )

�
: x1 2 R

k1 , x2 2 R
k2 , y1 2 R

l1 ,

y2 2 R
l2 such that (x1,y1) 2 R and (x2,y2) 2 S

 
.

(9)

Identities and symmetries are defined in the obvious way.

Now the definition of semantics in Fig. 2 yields a morphism
of props h� i

R
: ACircR ! RelR. Functoriality here means

that the interpretation is compositional with respect to the
operations ; and �.
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We write ACircR for the full language and CircR for the
fragment without (A stands for ‘affine’). As mentioned
in Section I, for different Rs, CircR is able to model linear dy-
namical systems [10], [20], phase-free quantum processes [5],
Petri nets [13], and more. The focus of this paper is exploring
the expressivity and the equational theories supported by the
extended language ACircR.

Symbols of ACircR are rendered pictorially, as we will
treat them formally as string diagrams [21] in due course
(Section II-B). This also explains the use of two binary
operations, sequential (c ; d) and parallel (c�d) composition:
they are those of monoidal categories.

The diagrammatic syntax is variable-free, but requires a
simple sorting discipline. A sort is a pair (k, l), with k, l 2 N;
intuitively, k and l are the number of dangling wires on each
side of a ACircR-diagram. We shall only consider terms that
are sortable, according to the following rules.

: (1, 0) : (1, 2) : (2, 1) : (0, 1)

: (0, 1) : (2, 1) : (0, 1) k : (1, 1)

: (1, 1) : (0, 0) : (2, 2)

c : (k1, k2) d : (k2, k3)

c ; d : (k1, k3)

c : (k1, l1) d : (k2, l2)

c�d : (k1+k2, l1+l2)

An easy induction confirms uniqueness of sorting: if c : (k, l)
and c : (k0, l0), then k = k

0 and l = l
0.

The semantics h · i
R

of ACircR is defined inductively by the
clauses in Fig. 2, where we write • for the unique R-vector
of length zero.

Intuitively, duplicates, discards and sums
values, whereas produces zero values, produces one
value, and k multiplies by k a given value. The mirror
images , have behaviour defined symmetrically with
respect to and . Finally, behaviours combine sequen-
tially, where values synchronise along the common boundary
of diagrams, or in parallel, where values are simply stacked.
Note that h · i

R
is defined in terms of relations rather than

functions; thus it is neutral with respect to flow directionality.
For further discussion on this point, see [11].

B. From Terms to String Diagrams

Our goal is to characterise semantic equivalence in ACircR

equationally, for different choices of R. In each case, these
equations contain the laws of symmetric monoidal categories
(SMCs). Thus it makes sense to move from raw terms, as
in (7), to string diagrams: this is the remit of the subsection.

First, we enhance our graphical notation by depicting

c : (k, l) as c
k l , c ; d as c d

k1 k3k2 and c�d as
c

d

k1

k2

l1

l2,

where the labelled wire k stands for a stack of k wires.
We often omit wire labels when it does not lead to confusion.

The laws of SMCs are given in Fig. 3 in the graphical
notation. They yield a structural equivalence on ACircR-terms,
which is preserved by the semantics. More precisely, writing
⌘ for the smallest congruence over ACircR-terms generated
by the equations in Fig. 3, we have that c ⌘ d implies
h c i

R
= h d i

R
. Because of this observation, henceforth we shall

consider the terms of ACircR as arrows of an SMC, which by
a mild abuse of notation we will also denote ACircR. In fact,
ACircR is a specific kind of SMC, known as a prop.

Definition 1. A prop is a symmetric strict monoidal category
with objects the natural numbers, with k � l defined by the
addition k + l. A prop morphism F : C ! D is a symmetric
monoidal functor from C to D that is identity on objects.

ACircR is defined as a prop with arrows k ! l sorted
terms c : (k, l) of the corresponding syntax modulo ⌘, with
sequential composition c ; d, monoidal product c � d, and
symmetries defined by the corresponding operations in (7) (see
[20, Definition 2.3] for the details of the free construction of
a prop from a syntax).

For uniformity, we shall also consider the semantic domains
of our calculus as props, based on the definition below.

Definition 2 (RelR). Given a semiring R, let RelR be the prop
with arrows k ! l relations R from R

k to R
l, i.e. R ✓ R

k⇥R
l.

Given R : k1 ! k2 and S : k2 ! k3, their composition
R ; S : k1 ! k3 is

{(x, z) : x 2 R
k1 , z 2 R

k3 and there exists y 2 R
k2

such that (x,y) 2 R and (y, z) 2 S}.
(8)

Given R : k1 ! l1 and S : k2 ! l2 their monoidal product
is obtained by taking their cartesian product, i.e. R � S :
k1 + k2 ! l1 + l2 is the relation

��
( x1
x2 ) , (

y1
y2 )

�
: x1 2 R

k1 , x2 2 R
k2 , y1 2 R

l1 ,

y2 2 R
l2 such that (x1,y1) 2 R and (x2,y2) 2 S

 
.

(9)

Identities and symmetries are defined in the obvious way.

Now the definition of semantics in Fig. 2 yields a morphism
of props h� i

R
: ACircR ! RelR. Functoriality here means

that the interpretation is compositional with respect to the
operations ; and �.
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Constructing diagrams

• To disambiguate terms one would need to introduce 
additional “parentheses” boxes

m
m

m

m
m

m

((m ⊗ id) ; m) ⊗ m (m ⊗ id ⊗ m) ; (m ⊗ id)



Only connectivity matters

• It also happens that “different” diagrams have the same 
connectivity 

m m

m m ; id 



Fundamental theorem
Theorem: Two diagrams obtained from terms c, c’ have the 
same connectivity iff they are equated by the theory of 
symmetric strict monoidal categories.


String diagram = class of diagrams obtained from a term, 
up-to “only connectivity matters”


In particular: string diagrams are the arrows of the free 
symmetric strict monoidal category on Γ 


objects = natural numbers (“dangling wires”)


arrows = string diagrams



Plan

• String diagrams


• Universal algebra with string diagrams 

• Graphical linear algebra


• Graphical affine algebra and electrical circuits 



Symmetric monoidal theories
• A presentation of a symmetric monoidal theory is a pair (Γ, E) where


• Γ is a monoidal signature


• E is a set of pairs of string diagrams


• Example: Commutative comonoids


• Any presentation yields a symmetric monoidal category 


• arrows are string diagrams modulo “string diagram surgery” or 
“diagrammatic reasoning” 

=

=

=



Cartesian categories
(Fox 1976)

commutative comonoid structure

= = =

and everything commutes with the structure

Specification algebraic theory
Syntax trees

Category Lawvere category (finite product category)
Models product preserving functors

Homomorphisms natural transformations

Thus commutative monoids are exactly the product preserving functors from the
Lawvere category of commutative monoids, abelian groups the product preserving
functors from the Lawvere category of abelian groups, etc. Moreover, the usual
notion of homomorphism between models is given by natural transformations between
models-as-functors.

In applications, classical algebraic theories are often not the right fit. Some-
times this is because an underlying data type is not classical, e.g. qubits, that
cannot be copied. Other times it’s because one needs to be explicit about the ac-
tual copying and discarding being carried out as (co)algebraic operations, instead
of relying on an implicit cartesian structure. That is, we require a resource sen-
sitive syntax. In practice, this means replacing algebraic theories with symmetric
monoidal theories (SMTs), trees with string diagrams, cartesian product with sym-
metric monoidal product (Lawvere categories with props), and product preserving
functors with monoidal functors. This suggests an updated table:

Specification symmetric monoidal theory (SMT)
Syntax string diagrams

Category prop
Models symmetric monoidal functors

Homomorphisms monoidal natural transformations

Props are symmetric strict monoidal categories with objects the natural numbers,
such that m � n = m + n. Of course, any Lawvere category is an example of a
prop, since the cartesian structure induces a canonical symmetry. Arrows of (freely
generated) props seem, therefore, to o↵er an attractive solution to the quest for
resource sensitive syntax. Given that the underlying monoidal product is not assumed
to be cartesian, props give the possibility of considering bona fide operations with co-
arities other than one, e.g. the structure (comultiplication and counit) of a comonoid.
In fact, comonoids are the bridge between the classical and the resource-sensitive.

Indeed, given an algebraic theory, we can consider it as a symmetric monoidal
theory by encoding the cartesian structure. This amounts to introducing a com-
mutative comonoid (copying) and equations making all other operations comonoid
homomorphisms.

f
n

f

f

n
= f

n
=

n
(1)

This means that, as props, the following are actually isomorphic:

Lawvere category LCM of commutative monoids CM

2

cartesian categories are those sym. mon. cats. where every object has 

Example: Set×



Classical terms vs string 
diagrams

• consider the theory of magmas, one binary operation m

x,y,z  ⊢ m(x,y)

x,y,z  ⊢ m(y,x)

x,y,z  ⊢ m(x,m(y,z))

x,y,z  ⊢ m(m(x,y),x))

m

m

m
m

m
m



Lawvere theories
• Lawvere theory = cartesian prop


• recipe for Lawvere-theories-as-props


1. add a cocommutative comonoid 
structure


2. make all generators commute with it


3. add your other equations (which may 
make use of the comonoid structure)

=

=

=

Specification algebraic theory
Syntax trees

Category Lawvere category (finite product category)
Models product preserving functors

Homomorphisms natural transformations

Thus commutative monoids are exactly the product preserving functors from the
Lawvere category of commutative monoids, abelian groups the product preserving
functors from the Lawvere category of abelian groups, etc. Moreover, the usual
notion of homomorphism between models is given by natural transformations between
models-as-functors.

In applications, classical algebraic theories are often not the right fit. Some-
times this is because an underlying data type is not classical, e.g. qubits, that
cannot be copied. Other times it’s because one needs to be explicit about the ac-
tual copying and discarding being carried out as (co)algebraic operations, instead
of relying on an implicit cartesian structure. That is, we require a resource sen-
sitive syntax. In practice, this means replacing algebraic theories with symmetric
monoidal theories (SMTs), trees with string diagrams, cartesian product with sym-
metric monoidal product (Lawvere categories with props), and product preserving
functors with monoidal functors. This suggests an updated table:

Specification symmetric monoidal theory (SMT)
Syntax string diagrams

Category prop
Models symmetric monoidal functors

Homomorphisms monoidal natural transformations

Props are symmetric strict monoidal categories with objects the natural numbers,
such that m � n = m + n. Of course, any Lawvere category is an example of a
prop, since the cartesian structure induces a canonical symmetry. Arrows of (freely
generated) props seem, therefore, to o↵er an attractive solution to the quest for
resource sensitive syntax. Given that the underlying monoidal product is not assumed
to be cartesian, props give the possibility of considering bona fide operations with co-
arities other than one, e.g. the structure (comultiplication and counit) of a comonoid.
In fact, comonoids are the bridge between the classical and the resource-sensitive.

Indeed, given an algebraic theory, we can consider it as a symmetric monoidal
theory by encoding the cartesian structure. This amounts to introducing a com-
mutative comonoid (copying) and equations making all other operations comonoid
homomorphisms.
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This means that, as props, the following are actually isomorphic:

Lawvere category LCM of commutative monoids CM

2

Specification algebraic theory
Syntax trees

Category Lawvere category (finite product category)
Models product preserving functors

Homomorphisms natural transformations

Thus commutative monoids are exactly the product preserving functors from the
Lawvere category of commutative monoids, abelian groups the product preserving
functors from the Lawvere category of abelian groups, etc. Moreover, the usual
notion of homomorphism between models is given by natural transformations between
models-as-functors.

In applications, classical algebraic theories are often not the right fit. Some-
times this is because an underlying data type is not classical, e.g. qubits, that
cannot be copied. Other times it’s because one needs to be explicit about the ac-
tual copying and discarding being carried out as (co)algebraic operations, instead
of relying on an implicit cartesian structure. That is, we require a resource sen-
sitive syntax. In practice, this means replacing algebraic theories with symmetric
monoidal theories (SMTs), trees with string diagrams, cartesian product with sym-
metric monoidal product (Lawvere categories with props), and product preserving
functors with monoidal functors. This suggests an updated table:

Specification symmetric monoidal theory (SMT)
Syntax string diagrams

Category prop
Models symmetric monoidal functors

Homomorphisms monoidal natural transformations

Props are symmetric strict monoidal categories with objects the natural numbers,
such that m � n = m + n. Of course, any Lawvere category is an example of a
prop, since the cartesian structure induces a canonical symmetry. Arrows of (freely
generated) props seem, therefore, to o↵er an attractive solution to the quest for
resource sensitive syntax. Given that the underlying monoidal product is not assumed
to be cartesian, props give the possibility of considering bona fide operations with co-
arities other than one, e.g. the structure (comultiplication and counit) of a comonoid.
In fact, comonoids are the bridge between the classical and the resource-sensitive.

Indeed, given an algebraic theory, we can consider it as a symmetric monoidal
theory by encoding the cartesian structure. This amounts to introducing a com-
mutative comonoid (copying) and equations making all other operations comonoid
homomorphisms.

f
n

=
n

(1)

This means that, as props, the following are actually isomorphic:

Lawvere category LCM of commutative monoids CM

2

e.g.

=

x⋅x-1 = e



Partial theories
• Partial theory = discrete cartesian restriction prop

• recipe for partial-as-locally-
ordered-props


• add a partial Frobenius 
structure


• make all your generators 
commute with 
comultiplication


• add your other equations 
(which may make use of the 
partial Frobenius structure)
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Remark 3.8. A lax transformation of CR functors may be equivalently speci�ed as a family of maps
U� : �� ! ⌧� indexed by the objects � of X s.t. for every 5 : � ! ⌫ we have � 5 #U⌫  U� #⌧5 .
We do not need to ask that each U� is total, since if � and ⌧ preserve the cartesian restriction
structure, then they are automatically total. In particular the diagram on the left gives the inequality
on the right, which gives that U� is total:

�� ⌧�

�� ⌧�

�Y�

U�

⌧Y�

U�


FA
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 �A
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3.3 Discrete Cartesian Restriction Categories
Restriction products do not quite capture all the properties of Par needed for partial universal
algebra. In particular, we require CR categories with the following extra structure:
De�nition 3.9. A CR category is said to be discrete (DCR category [CGH12]) if for each object

� there is an arrow `� : � ⌦ � ! � that is partial inverse to X�. That is, X� # `� = X� = 1� and
`� #X� = `�.
We give a novel presentation of DCR categories, inspired by the work of [Gil14]. Central to our

presentation is the notion of a commutative special Frobenius algebra in which the monoid does
not have a unit, which we call a partial Frobenius algebra. More precisely:
De�nition 3.10. A partial Frobenius algebra (�, X�, `�, Y�) in a symmetric monoidal category

consists of a commutative comonoid (�, X�, Y�) and a commutative semigroup (�, `�) s.t. (�, X�, `�)
is a semi-Frobenius algebra. Diagramatically, this is the comonoid structure we have already seen

together `�, which we depict as in our string diagrams, subject to the following equations:

= = (MCA)

= = = (SFROB)

Note that there is some redundancy in the equational presentation above, as discussed in [Car91].
We now extend the characterisation of CR categories given in Theorem 3.6 to DCR categories:

Theorem 3.11. A DCR category is the same thing as a symmetric monoidal category where every
object � is equipped with a coherent partial Frobenius algebra structure (�, X�, Y�, `�) s.t. the
comultiplication is natural. That is, for any 5 : � ! ⌫ we have 5 #X⌫ = X� #(5 ⌦ 5 ).

DCR categories are intimately connected to categories with �nite limits [CGH12]. In particular:
Proposition 3.12. If C is a category with �nite limits, Par(C) is a DCR category.
De�nition 3.13 (the 2-category DCRC). It follows that for any CR functor � : X ! Y between

DCR categories, we have �`� = `��. CR functors therefore give the notion of morphism between
DCR categories. We consider the strict 2-category of DCR categories, restriction functors, and lax
transformations, which we call DCRC .

4 PARTIAL LAWVERE THEORIES
In this section we develop a Lawvere-style approach to partial algebraic theories, where operations
may be partial. Ordinary Lawvere theories are determined by the free cartesian category on a single
object F op; we are thus interested in the analogue of F op in the world of DCR categories.
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Observation 2.18 ([Lac04]). As props, F � CM.

Remark 2.19. In fact, arrows of CM can be intuitively understood as “pictures of functions”. For

example, the function 5 : 2 ! 2 where 5 (1) = 5 (2) = 1 is drawn

Example 2.20. The theory of commutative comonoids plays an important role for us. The data is:

(CCMG)

= = = (CCM)

Let CC be the prop induced from the monoidal theory ((CCMG),(CCM)).

Given that (CCMG) and (CCM) are mirrored (CMG) and (CM), Observation 2.18 gives:

Observation 2.21. As props, F op � CC.

While we have specialised our discussion of string diagrams as the syntax of props, it is well-
known that they can be used as a sound calculus in any symmetric (strict) monoidal category.
Roughly speaking, objects are represented by wires, and morphisms by boxes.

2.3 Fox’s theorem
Equational and monoidal theories are linked by Fox’s theorem ([Fox76]), recalled here – this will
be explained in S2.6. Cartesian categories are categories with �nite products, and cartesian functors
preserve them. Fox showed that cartesian categories are exactly those that have a certain algebraic
structure.
A commutative comonoid on an object - of a symmetric monoidal category X is a triple

(- , X- , Y- ) s.t. X- : - ! - ⌦ - and Y- : - ! � , depicted as and respectively, and these
satisfy (CCM). If all objects are so equipped, then the structures are coherent if for all objects - ,. :

-⌦.
-⌦.

-⌦.

-

.

-

-

.

.

= -⌦.
-

.

= (coherent)

Further, we say that the X and Y are natural if for any arrow 5 : - ! . of X, we have:

5-
.

. 5

5
-

.

.

= 5- = (natural)

Theorem 2.22 ([Fox76]). A cartesian category is the same thing as a symmetric monoidal category
where every object is equipped with a (coherent) and (natural) commutative comonoid structure.

In light of Observation 2.21, we know that a commutative comonoid structure on- is equivalently
a cartesian functor X : F op ! X where X[1] = - . The action of X on objects is determined by its

action on 1, and the generators give arrowsX( ) = X- : - ! - ⌦- andX(- ) = Y- : - ! �

of X which satisfy (CCM). Thus we may specialize Theorem 2.22, to props as follows:
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Partial Frobenius algebra, 
the unit is missing!



Relational theories
• recipe for Frobenius-theories-

as-locally-ordered-props


• add a Frobenius bimonoid 
structure where monoid is 
right adjoint to comonoid


• make all your generators 
laxly commute with it


• add your other equations 
(which may make use of the 
Frobenius structure)

(Bonchi, Pavlovic, S. 2017)

Specification lax product theory
Syntax string diagrams

Category lax product 2-prop
Models lax product structure preserving functors

Homomorphisms monoidal lax natural transformations

Note that both the SMT of bialgebras and Hopf algebras are lax product theories
(each equation is replaced by two inequations). And we now obtain a satisfactory
“resource sensitive” generalisation of Lawvere’s functorial semantics to Rel-models.
For example, the models of the SMT of bialgebras, given by lax product structure
preserving functors to Rel⇥, are exactly commutative monoids. This may appear
surprising, since we are mapping to Rel⇥, one could expect that r may map to an ar-
bitrary relation. Instead, the fact that we need to preserve lax products means, since
r is functional in the specification, it maps to a function in the model. Moreover,
the categories of models (where morphisms between models are given by monoidal
natural transformations) coincide: both are the category of commutative monoids
and homomorphisms. Thus the mismatch of (2) is avoided.

Yet lax product theories are not quite expressive enough for our purposes. We
have seen that, using the lax product structure, we can express equationally when
a relation is a function. But we cannot, for instance, say when a relation is a “co-
function”, that is, the opposite relation of a function. This capability is very useful
in examples, for example for the calculus of fractions in the SMT of Interacting Hopf
Algebras [4].

1.4 Frobenius theories

A Frobenius theory—a concept introduced in this paper—is a lax product theory that
includes additionally a “black” commutative monoid right adjoint to the comonoid.

≤ ≤ 

≤ ≤ id0

Moreover, the monoid-comonoid pair satisfies the Frobenius equations and the special
law – i.e. an additional inequation relating the multiplication and comultiplication.

5

Specification lax product theory
Syntax string diagrams

Category lax product 2-prop
Models lax product structure preserving functors

Homomorphisms monoidal lax natural transformations

Note that both the SMT of bialgebras and Hopf algebras are lax product theories
(each equation is replaced by two inequations). And we now obtain a satisfactory
“resource sensitive” generalisation of Lawvere’s functorial semantics to Rel-models.
For example, the models of the SMT of bialgebras, given by lax product structure
preserving functors to Rel⇥, are exactly commutative monoids. This may appear
surprising, since we are mapping to Rel⇥, one could expect that r may map to an ar-
bitrary relation. Instead, the fact that we need to preserve lax products means, since
r is functional in the specification, it maps to a function in the model. Moreover,
the categories of models (where morphisms between models are given by monoidal
natural transformations) coincide: both are the category of commutative monoids
and homomorphisms. Thus the mismatch of (2) is avoided.

Yet lax product theories are not quite expressive enough for our purposes. We
have seen that, using the lax product structure, we can express equationally when
a relation is a function. But we cannot, for instance, say when a relation is a “co-
function”, that is, the opposite relation of a function. This capability is very useful
in examples, for example for the calculus of fractions in the SMT of Interacting Hopf
Algebras [4].

1.4 Frobenius theories

A Frobenius theory—a concept introduced in this paper—is a lax product theory that
includes additionally a “black” commutative monoid right adjoint to the comonoid.

Moreover, the monoid-comonoid pair satisfies the Frobenius equations and the special
law – i.e. an additional inequation relating the multiplication and comultiplication.

= =

≤ 

5

Specification algebraic theory
Syntax trees

Category Lawvere category (finite product category)
Models product preserving functors

Homomorphisms natural transformations

Thus commutative monoids are exactly the product preserving functors from the
Lawvere category of commutative monoids, abelian groups the product preserving
functors from the Lawvere category of abelian groups, etc. Moreover, the usual
notion of homomorphism between models is given by natural transformations between
models-as-functors.

In applications, classical algebraic theories are often not the right fit. Some-
times this is because an underlying data type is not classical, e.g. qubits, that
cannot be copied. Other times it’s because one needs to be explicit about the ac-
tual copying and discarding being carried out as (co)algebraic operations, instead
of relying on an implicit cartesian structure. That is, we require a resource sen-
sitive syntax. In practice, this means replacing algebraic theories with symmetric
monoidal theories (SMTs), trees with string diagrams, cartesian product with sym-
metric monoidal product (Lawvere categories with props), and product preserving
functors with monoidal functors. This suggests an updated table:

Specification symmetric monoidal theory (SMT)
Syntax string diagrams

Category prop
Models symmetric monoidal functors

Homomorphisms monoidal natural transformations

Props are symmetric strict monoidal categories with objects the natural numbers,
such that m � n = m + n. Of course, any Lawvere category is an example of a
prop, since the cartesian structure induces a canonical symmetry. Arrows of (freely
generated) props seem, therefore, to o↵er an attractive solution to the quest for
resource sensitive syntax. Given that the underlying monoidal product is not assumed
to be cartesian, props give the possibility of considering bona fide operations with co-
arities other than one, e.g. the structure (comultiplication and counit) of a comonoid.
In fact, comonoids are the bridge between the classical and the resource-sensitive.

Indeed, given an algebraic theory, we can consider it as a symmetric monoidal
theory by encoding the cartesian structure. This amounts to introducing a com-
mutative comonoid (copying) and equations making all other operations comonoid
homomorphisms.

f
n

f

f

n
= f

n
=

n
(1)

This means that, as props, the following are actually isomorphic:

Lawvere category LCM of commutative monoids CM

2

Since a cartesian bifunctor is obliged to preserve lax products, it is forced to
map the Frobenius structure of FT into the unique Frobenius structure of C that
determines the lax product. When C = Rel, this means that any cartesian bifunctor
F : FT ! Rel maps

7! {( x, (x, x) ) s.t. x 2 F1} 7! {(x, •) s.t. x 2 F1}
7! {( (x, x), x ) s.t. x 2 F1} 7! {(•, x) s.t. x 2 F1}

where • is the unique element of the singleton set {•} = 1 = (F1)0. Therefore, a
model F is determined by the object F1 and the arrows Fo for all o 2 ⌃. The impli-
cations of using lax natural transformations as model homomorphisms are explained
in the next section.

5 Examples of Frobenius Theories

In this section, we consider some examples of simple Frobenius theories and their
models. We usually interpret the theory in the cartesian bicategory of relations Rel.

The theory of sets. We first answer the obvious question: what is the category of
models for the empty Frobenius theory (?,?)? The answer is at first sight surprising:
this is just Set the category of sets and functions. Indeed, a Cartesian bifunctor
F : F?,? ! Rel is uniquely determined by the object F1, which is just a set.

A morphisms of models ↵ : F ) G is determined by ↵1 : F1 ! G1 which is a
relation satisfying the requirement that the following four squares laxly-commute.

F1

�

✏✏

↵1
// G1

�

✏✏

F2
↵1�↵1

//



G2

F1

!

✏✏

↵1
// G1

!

✏✏

F0
id0

//



G0

F2

r

✏✏

↵1�↵1
// G1

r

✏✏

F1 ↵1
//



G1

F0

?

✏✏

id0
// G0

?

✏✏

F1 ↵1
//



G1

The inequalities in the two rightmost squares hold for any relations. Instead the
inclusion in the two leftmost squares holds if and only if the relation is a map, and
maps in Rel coincide with functions.

Remark 5.1. Requiring morphisms of models to be strict natural transformations
rather than just lax (as in Definition 4.17) would mean to force the four above in-
equalities to be equalities. In this case, a morphisms of model would be both a map
and a comap, namely an isomorphism.

The theory of non-empty sets. Let us now consider the Frobenius theory
having empty signature and the following inequation.

 (50)

25

e.g. id0
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• For Lawvere theories 


• models = cartesian functors (to Set×)


• homomorphisms = natural transformations 


• For partial theories 


• models = cartesian restriction functors (to Par×)


• homomorphisms = lax natural transformations


• For relational theories


• models = morphisms of cartesian bicategories (to Rel×)


• homomorphisms = lax natural transformations

Functorial semantics

varieties =  
locally finitely presentable 

categories

varieties =  
definable categories

See Chad Nester’s thesis sometime in 2023!



Plan

• String diagrams


• Universal algebra with string diagrams


• Graphical linear algebra 

• Graphical affine algebra and electrical circuits 



Lawvere theory of 
commutative monoids 
= matrices of natural 

numbers MatN
0 :=

k+1 :=
k

✓
2 0
3 1

◆
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CmCmop

=

= = = id0
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Sugar:

m

n
m+n=

m

0
=

m

m=

= m+0

m

k+1
=

k

m

k

m

k

m

m+k

m+k+1

=

=

=

=

Lemma

Proof



Relational theory of linear relations

• Give a vector space k, LinRelk is the smc where 


• objects are natural numbers


• arrows m to n are relations R⊆ km+n that are also k-
linear subspaces


• Graphical linear algebra = a presentation of the relational 
theory of linear relations


• The free model is isomorphic to the symmetric monoidal 
category LinRelQ



GLA: a presentation of LinRelQ

=

=

=

= id0
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Where do the generators go?

Linear algebra = how these four relations and their opposites interact

2 String Diagrammatic Electrical Circuit Theory

symmetries—e.g. the independent measurement principle (Theorem 5) vs the Superposition Theorem
(Theorem 6); the principle of relativity of potentials (Proposition 7) vs the principle of conservation
of currents (Proposition 8). On the other, we show that the compositional framework—with its use of
diagrammatic reasoning and the algebra of cartesian and abelian categories of relations—leads to elegant
and rigorous proofs.

2 Graphical Affine Algebra and Electrical Circuits

We begin with the basics of Graphical Linear Algebra (GLA) with its equational theory of Interacting
Hopf Algebras (IH) [4]. Fix a field k. GLA is a string diagrammatic syntax, which organises itself as the
arrows of the free prop GLAk over the following monoidal signature:

{ , , k , , , (1)
, , k , , } (2)

where k 2 k is a scalar. Intuitively the black structure can be thought of as copying, the white as adding.
This is borne out by the intended semantics, which we describe next.

The prop of linear relations LinRelk has as arrows m ! n relations R ✓ km ⇥ kn, which are k-vector
spaces; i.e. closed under k-linear combinations. In other words, arrows m ! n are linear subspaces
of km ⇥ kn considered as a k-vector space. Composition is standard relational composition, R ; S =
{(u,w) | 9v. (u,v) 2 R ^ (v,w) 2 S}. It is simple to show linear relations are closed under composition.

The semantics of GLA is a prop morphism [�]k : GLAk ! LinRelk. Since GLAk is free, it is enough
to describe its action on the generators. We do so below for the generators in 1; the corresponding
generators in 2 are sent to the opposite relations. In each case the variables range over k.

[ ]k =
��

x,(x
x)
� 

, [ ]k = {(x, •)}, [ k ]k = {(x, kx)},

[ ]k =
��

(x
y),x+y

� 
, [ ]k = {(•, 0)}

The associated theory IH characterises linear relations. We give a brief overview below:
• both monoids ( , ) ( , ) and comonoids ( , ), ( , ) are commutative;

• monoids and comonoids of the opposite colour satisfy the equations of commutative bialgebras;

• monoids and comonoids of the same colour satisfy the extra special Frobenius equations;

• to pass between black and white cups and caps is to compose with �1. We shall often draw the
�1 scalar as .

• All non-zero scalars are invertible, with the inverse of k given by k for k 6= 0.
Graphical Affine Algebra was introduced in [3], extending the expressivity of GLA to affine relations.

Let us recall the main concepts. A translation v +V of a linear subspace V by a vector v is the set
v +V = {v + w | w 2 V }. An affine subspace W is either empty, or it is the translation v +V for some
vector v and subspace V . Note that the empty set is an affine subspace, but it is not a linear subspace.

The prop of affine relations A↵Relk has as affine subspaces of km ⇥kn as arrows m ! n. It is the case
that the composition of two affine relations yields an affine relation, and can be shown using the notion
of homogenisation [3, Proposition 6], but we will not delve into the details here.

On the syntactic side, we extend the signature (1), (2) with a single generator

(3)
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• Colour 

• black and white satisfy exactly the same equations in the equational 
theory


• so every proof is in fact a proof of two theorems: invert the colours!


• Left-Right 

• every fact is still a fact when viewed in the mirror

=

=

=

= id0
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Basic concepts, diagrammatically

• transpose 


• combine colour 
and mirror image 
symmetries


• kernel (nullspace)


• cokernel (left 
nullspace)


• image 
(columnspace)


• coimage 
(rowspace)

Am n

A

A

A

A

A mn

Fact. Given a linear subspace R:0->k in 
LinRel, its orthogonal complement R⊥ 
is its colour inverted diagram

Corollary. The “fundamental theorem of 
linear algera”

✓
x
y

◆
| x+ 2y = 0

<latexit sha1_base64="/t12kBlyngMLRbm3q2iKzHuNcTc="></latexit>

✓
x
2x

◆

<latexit sha1_base64="Jb3o4lb8PmjsLy7SnrHWyErKBLs="></latexit>

kerA = im(AT )?
<latexit sha1_base64="3VHOMTv8TqIVI9qoTyCw+igiQXc="></latexit>

kerAT = im(A)?
<latexit sha1_base64="ODdHJ28dBX/ZDZQFCWhNgzq/dgk="></latexit>



Diagrammatic reasoning in action

Theorem. A is injective iff ker A = 0 

⇒ ⇐ A A =
A

A

=
A

A

= A

=

=

A = A A

=

Fact. A is injective iff A A =



Fun Stuff - Rediscovering Fraction Arithmetic

p q

r s
=

p q

r s

s s

q q

sp sq

qr qs

sp

qr
sq

=

=

= sp+qr sq

p q r s = p r sq

= rp sq

p q r s=

⇔
sp = qr

p qp

q
<latexit sha1_base64="IEhLr66L8NU5iwRwwTuwLNcm5pw=">AAACF3icbVC7TsMwFHV4lvIqMLJYVEhMVVKQYKxgYSwSfUhpVDmO01q1nWA7iCjKZzCwwKewIVZGvoQVp81AW450paNz7tW99/gxo0rb9re1srq2vrFZ2apu7+zu7dcODrsqSiQmHRyxSPZ9pAijgnQ01Yz0Y0kQ9xnp+ZObwu89EqloJO51GhOPo5GgIcVIG8kdhBLhLM6zh3xYq9sNewq4TJyS1EGJ9rD2MwginHAiNGZIKdexY+1lSGqKGcmrg0SRGOEJGhHXUIE4UV42PTmHp0YJYBhJU0LDqfp3IkNcqZT7ppMjPVaLXiH+57mJDq+8jIo40UTg2aIwYVBHsPgfBlQSrFlqCMKSmlshHiOTgjYpzW1RmiOZymDuk+wpLZJyFnNZJt1mwzlvNO8u6q3rMrMKOAYn4Aw44BK0wC1ogw7AIALP4BW8WS/Wu/Vhfc5aV6xy5gjMwfr6BX0yod4=</latexit>
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Fun Stuff - Dividing by Zero
• LinRelQ[1,1] 


• projective arithmetic with two 
additional elements


• the unique 0-dimensional 
subspace ⊥ = { (0,0) }


• The unique 2-dimensional 
subspace ⊤ = { (x,y) | x,y ∈ Q }

+ 0 r/s ∞ ⊤ ⊥

0 0 r/s ∞ ⊤ ⊥

p/q – (sp+qr)/
qs

∞ ⊤ ⊥

∞ – – ∞ ∞ ∞

⊤ – – – ⊤ ∞

⊥ – – – – ⊥

× 0 r/s ∞ ⊤ ⊥

0 0 0 ⊥ 0 ⊥

p/q 0 pr/qs ∞ ⊤ ⊥

∞ ⊤ ∞ ∞ ⊤ ∞

⊤ ⊤ ⊤ ∞ ⊤ ∞

⊥ 0 ⊥ ⊥ 0 ⊥

0 =

def

def

def

∞ =

⊤ =

⊥ =



Plan

• String diagrams


• Universal algebra with string diagrams


• Graphical linear algebra


• Graphical affine algebra and electrical circuits 



Graphical Affine Algebra

Definition. Given a field k, a k-affine relation k l is a set 
R⊆kk×kl which is either empty, or s.t. there is a k-linear 
relation C and a vector (a,b) s.t. R = (a,b) + C

(Bonchi, Piedeleu, S., Zanasi 2019)

• Proposition: affine relations are closed under composition


• AffRelk = sub prop of Relk where arrows are affine 
relations



Diagrammatic syntax for k-affine 
relations

2 String Diagrammatic Electrical Circuit Theory
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symmetries—e.g. the independent measurement principle (Theorem 5) vs the Superposition Theorem
(Theorem 6); the principle of relativity of potentials (Proposition 7) vs the principle of conservation
of currents (Proposition 8). On the other, we show that the compositional framework—with its use of
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obtaining a richer string diagrammatic syntax as the arrows of the free prop GAA. Abusing notation,
the semantics [�]k : GAA ! A↵Relk is defined the same way as for GLA on the shared generators, and
[ ]k = {(•, 1)}. To characterise A↵Relk we add the following equations:

(dup)
=

(del)
=

(empty)
=

Instead of relying purely on equational reasoning, it is often convenient to work with inequations,
which can lead to shorter calculations, and allow us to identify some interesting, higher-level categorical
structures. Instead of working with ordinary props, one works with ordered props, that is props enriched
over the category of posets. Similarly any equational theory can be presented as an inequational theory
in the obvious way, by replacing an equation by two inequations.

Indeed, LinRelk and A↵Relk can be considered as ordered props by using set-theoretical inclusion of
relations as the homset order. On the syntactic side, it suffices [2] to add a single inequation:



The ordered setting also lends itself to higher level reasoning schema. In particular, LinRelk is an abelian
bicategory of relations and A↵Relk is a cartesian bicategory of relations, concepts developed in [5].

2.1 The prop of electrical circuits and its semantics

We recall the string diagrammatic development of electrical circuits from [3], with minor modifications
to suit our development in subsequent sections. The prop ECirc is free on the following signature:

(
R

, +–
V

,
I

,
L

,
C

)

R,L,C2R+,V,I2R

[
⇢

, , ,

�
(4)

where the parameters range over the reals. Arrows m ! n of ECirc represent open linear electrical circuits

with m open terminals on the left and n open terminals on the right. Generator
R

represents a resistor,

+–
V

a voltage source,
I

a current source,
L

an inductor and
C

a capacitor.
Circuits in ECirc are translated to GAA over R(x): the field of fractions of polynomials with real

coefficients (see [6, 3]). The semantics is a strict monoidal functor I : ECirc ! GAA where I (1) = 2
on objects: the idea is that every electrical wire is represented by two GAA wires, the voltage wire on
top and the current wire on the bottom. We give the semantics in Figure 1, by showing the action on
generators. Given circuits c,d of ECirc we write c I

= d when I (c) = I (d) (in the equational theory of

GAA, or equivalently as affine relations in A↵RelR(x)). Similarly, we write c
I
 d when I (c)  I (d).

3 The Impedance Calculus

We now exploit a pattern of the semantics in Figure 1 to simplify the passage between circuits and GAA.
This results in the impedance calculus, which can be used to simplify diagrammatic reasoning on circuits.

We extend the syntax (4) of ECirc with impedance boxes—illustrated in (5)—parametrised with
respect to arbitrary GAA circuits of type (1, 1): that is, with one wire on the left and one on the right. We
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Equational characterisationFig. 4. Two additive and two N-affine relations.

Our characterisation will extend this isomorphism to affine
systems. The challenge is to identify equations that govern the
behaviour of the new generator . We claim that adding the
following three equations is sufficient:

(dup)
=

(del)
=

(?)
=

First, let us explain the new axioms. The first two say that
can be deleted and copied by the comonoid structure, just

like . This has the effect of constraining the interpretation
of as a 0-ary functional relation, i.e. it is a constant.

More interestingly, the third equation is justified by the
possibility of expressing the empty set, by, for example,

h iK = {(•, 1)} ; {(0, •)} = ?. (16)

As mentioned previously, ? is an affine relation that is not
linear. Since for any R and S in RelR, ? � R = ? � S =
?, composing or taking the monoidal product of ? with any
relation results in ?. Thus ? is analogous to logical false.

Definition 15. The prop AIHK (affine interacting Hopf alge-
bras) is the quotient of ACircK by the equations of IHK plus
(dup), (del) and (?).

We are going to show that AIHK is isomorphic to A↵RelK.
First, the following lemma formalises the preceding discussion
about equation (?).

Lemma 16. For any two arrows c, d : k ! l of AIHK,

c
lk = d

k l

We are now ready to prove our characterisation result.
Because all the equations of AIHK are sound in LinRelK,
we can define a prop morphism J� KK : AIHK ! LinRelK
inductively by the same clauses (Fig. 2) of h · iK.

Theorem 17. J · KK : AIHK ! LinRelK is a prop isomorphism.

Proof. First, we show that J · KK is full. Diagrammatically,
homogenisation means that K-affine relations can be thought
of as K-linear relations with an extra dangling wire for the
additional dimension. Because the restriction of J� KK to a
functor IHK ! LinRelK is well-defined and an isomorphism
(thus, also full) [3, Theorem 6.4], we can always obtain a
string diagram dR̂ in IHK for the homogenisation R̂ of an

affine relation R. Then, we can use generator to plug this
wire, obtaining a string diagram

dR̂ lk .

Finally, equation (12) implies that
u

v dR̂ lk

}

~

K

= R

proving that J� KK is full. It remains to show that J� KK is
faithful. We will use a normal form argument, which relies
on the isomorphism of IHK and LinRelK [3, Theorem 6.4].
Let d : k ! l be a diagram in AIHK. By naturality of the
symmetry we may write d as follows:

d
lk = c

l

k

(17)

for some diagram c, in the image of the embedding IHK ,!
AIHK. In graphical terms, we have pulled all copies of up
and down, past the rest of the diagram which represents some
linear relation c. We may now simplify (17):

c
l

k

(dup)
= c

l

k

= c
0 l

k

where c
0 is the diagram enclosed in the dotted box. Finally,

[3, Theorem 6.2] shows that any linear relation is the image
of a matrix (this is its so-called span form). Thus, using
the isomorphism LinRelK ⇠= IHK, we can find a diagram
e : p ! l + 1 + k representing some matrix Me (i.e.,
J e KK = {(a,Mea) | a 2 Kp}), such that the columns of Me

generate J c0 KK. This translates to the following diagrammatic
equation in which we distinguish matrices using a directed
box notation:

c
0 l

k
=

e

l

k

p

GAA = GLA + 

Theorem. GAA ≅ AffRelk



Case study: non passive 
electrical circuits

• work with the diagrammatic language for AffRelR[x]


• introduce a syntactic prop of electrical circuits 


• develop diagrammatic reasoning techniques


• the impedance calculus


• prove classical “theorems” of electrical circuit theory



The prop of electrical circuits

• ECirc, free on the following signature


•          resistor 


•          voltage source 


•          current source 


•          inductor 


•          capacitor
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coefficients (see [6, 3]). The semantics is a strict monoidal functor I : ECirc ! GAA where I (1) = 2
on objects: the idea is that every electrical wire is represented by two GAA wires, the voltage wire on
top and the current wire on the bottom. We give the semantics in Figure 1, by showing the action on
generators. Given circuits c,d of ECirc we write c I

= d when I (c) = I (d) (in the equational theory of

GAA, or equivalently as affine relations in A↵RelR(x)). Similarly, we write c
I
 d when I (c)  I (d).

3 The Impedance Calculus

We now exploit a pattern of the semantics in Figure 1 to simplify the passage between circuits and GAA.
This results in the impedance calculus, which can be used to simplify diagrammatic reasoning on circuits.

We extend the syntax (4) of ECirc with impedance boxes—illustrated in (5)—parametrised with
respect to arbitrary GAA circuits of type (1, 1): that is, with one wire on the left and one on the right. We
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obtaining a richer string diagrammatic syntax as the arrows of the free prop GAA. Abusing notation,
the semantics [�]k : GAA ! A↵Relk is defined the same way as for GLA on the shared generators, and
[ ]k = {(•, 1)}. To characterise A↵Relk we add the following equations:
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Instead of relying purely on equational reasoning, it is often convenient to work with inequations,
which can lead to shorter calculations, and allow us to identify some interesting, higher-level categorical
structures. Instead of working with ordinary props, one works with ordered props, that is props enriched
over the category of posets. Similarly any equational theory can be presented as an inequational theory
in the obvious way, by replacing an equation by two inequations.

Indeed, LinRelk and A↵Relk can be considered as ordered props by using set-theoretical inclusion of
relations as the homset order. On the syntactic side, it suffices [2] to add a single inequation:
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The ordered setting also lends itself to higher level reasoning schema. In particular, LinRelk is an abelian
bicategory of relations and A↵Relk is a cartesian bicategory of relations, concepts developed in [5].
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then extend the semantic mapping I (·) to cover impedance boxes, as below right.
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The following are now easy derivations in the equational theory of GAA:
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We now prove results that give the impedance calculus its power and allow us to manipulate impedance

boxes within circuits. Henceforward we will use the syntactic sugar def
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(iii) : C = C

= C = C

(iv) : C = C

Using Lemma 1 (iii) we can immediately derive several useful properties of circuits:

Corollary 2.
(i) Resistors, inductors and capacitors are “directionless”:

R I
=

R
,

L I
=

L
,

C I
=

C
.

(ii) Reversing the direction of voltage and current sources flips polarities:

V
+–

I
= +–

-V def
= + –

V
,

I I
=

-I def
=

I
.

The impedance calculus is useful for proving circuit equivalences. The following proposition are just
a few examples of classic equivalences one would find in any textbook.

Proposition 3.

(i)
R1 R2 I

=
R3

where R3 =
R1

R2
= R1+R2

(ii)

R1

R2
I
=

R3
where R3 =

R1

R2
= R1 R1+R2 R2

(iii)

I

R
I
= +–

IR R

(iv)
+–

+–

V1

V2
I
= +–

V1
if V 1 = V 2, otherwise its semantics is /0 (the empty relation)

It is useful to contrast our treatment with the classical approach. Parts (i) and (iii) are standard
and often-used equivalences. Part (ii) is known classically, but R3 is typically given a formula like
R1R2/(R1 + R2). Classical formulas, however, do not work for all values of R1 and R2, whereas the
graphical one does. Given that it mirrors the case for resistors in series, we argue that the graphical
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Proof of (ii)

6 String Diagrammatic Electrical Circuit Theory

formula is the more natural one. Finally, in (iv), the empty case is usually excluded by classical treat-
ments. A textbook deems such a circuit degenerate and ignores that case when proving theorems. In
GAA however, the empty relation is a first-class citizen and our theorems uniformly include the empty
case as well.

Proof. Part (i) is a simple exercise in the use of the impedance calculus:

R1 R2 I
= R1 R2

I
=

R1

R2

I
=

R3
.

For part (ii), we have

R1

R2
I
=

R1

R2

I
=

R1

R2
. Now

R1

R2
=

R2
R1

R1
= R1

R1
R2

R2
= R1 R1+R2 R2

extracts the classical formula: because R1 and R2 are nonnegative, either R1 + R2 6= 0 and R1+R2 is
a scalar, or R1 = R2 = 0 and the formula is equal to 0. In both cases the result is a scalar.

Part (iii) is another simple calculation:

I

R
I
=

-I

R

I
=

R

-I
I
= R

I

I
= R

I R
I
= IR R

I
= +–

IR R

For part (iv), we can simplify using the impedance calculus as follows:

+–

+–

V1

V2
I
=

V1

V2

I
=

V1

V2

Now
V2

V1
is just V 1 if V 1 = V 2, and otherwise. In that case, the circuit evaluates to

which denotes the empty relation.

We shall see that, as a consequence of our Representation Theorem (Theorem 9), any (•, •) circuit
can be represented by an impedance box.

4 Measuring Closed Circuits

Thus far, we have kept the language of circuits ECirc and the language of GAA neatly separated by
impedance boxes (5) and the prop morphism I (·) : ECirc ! GAA. It is time to tear down the wall.

What if R1=R2=0?

=
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Measuring closed circuits
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While impedance boxes are useful for open circuit calculations, engineers often study closed circuits.
The problem is that these are mapped to 0 ! 0 affine relations, and there are only two: the singleton and
the empty set. In other words, the mapping only tells us whether the circuit has a solution, and nothing
else. Indeed, no interesting behavior can be observed in a closed circuit in our existing framework.

Classically, a closed circuit is annotated with names for the currents and voltage differences of inter-
est. In some presentations voltmeters and ammeters are even added as explicit elements. This is exactly
what we do: add meters to our syntax. Instead of assigning names, however, our meters have an outgoing
“information” wire, thought of as an ordinary GAA wire. Information wires allow us to probe closed cir-
cuits, i.e. those with no open electric wires, and to state and prove several theorems of circuit theory. Our
diagrams will now have two types of wires: electric wires and information wires. Instead of keeping the
props ECirc and GAA separate, we unite the two and work with a coloured (multisorted) prop EECirc.

The coloured prop EECirc has as objects words over the alphabet {•, •}. It is freely generated by the
union of all the generators (1), (2), (3) of GAA, the generators (4) of ECirc, and the following:

8
><

>:
V , A , +– , , C

<latexit sha1_base64="+QQsIVeD7C20WSTBUcrRlrfSkYA=">AAACDXicbVDLSgNBEOyNrxhfUY9eBoOQU9gVUY8BLx4TMA9IljA7O0mGzMwuM7PisuQLPHjRT/EmXv0Gv8Srk2QPJrGgoajqprsriDnTxnW/ncLG5tb2TnG3tLd/cHhUPj5p6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNM7mZ+55EqzSL5YNKY+gKPJBsygo2VmmJQrrg1dw60TrycVCBHY1D+6YcRSQSVhnCsdc9zY+NnWBlGOJ2W+ommMSYTPKI9SyUWVPvZ/NApurBKiIaRsiUNmqt/JzIstE5FYDsFNmO96s3E/7xeYoa3fsZknBgqyWLRMOHIRGj2NQqZosTw1BJMFLO3IjLGChNjs1naoo3AKlXh0ifZUzq1SXmruayT9mXNu665zatKvZpnVoQzOIcqeHADdbiHBrSAAIVneIU358V5dz6cz0VrwclnTmEJztcvrwWdBQ==</latexit>m <latexit sha1_base64="wg/cAlJzy8BZmCZ5ZW3hzeLTitM=">AAACDXicbVDLSgNBEJyNrxhfUY9eBoOQU9gVUY8BLx4TMA9IljA720mGzMwuM7PisuQLPHjRT/EmXv0Gv8Srk2QPJrGgoajqprsriDnTxnW/ncLG5tb2TnG3tLd/cHhUPj5p6yhRFFo04pHqBkQDZxJahhkO3VgBEQGHTjC5m/mdR1CaRfLBpDH4gowkGzJKjJWaclCuuDV3DrxOvJxUUI7GoPzTDyOaCJCGcqJ1z3Nj42dEGUY5TEv9RENM6ISMoGepJAK0n80PneILq4R4GClb0uC5+nciI0LrVAS2UxAz1qveTPzP6yVmeOtnTMaJAUkXi4YJxybCs69xyBRQw1NLCFXM3orpmChCjc1maYs2gqhUhUufZE/p1CblreayTtqXNe+65javKvVqnlkRnaFzVEUeukF1dI8aqIUoAvSMXtGb8+K8Ox/O56K14OQzp2gJztcvsK6dBg==</latexit>n 9
>=

>;
m,n2N,c:m+1!n+1 in GAA

.

These are a voltmeter V : (•, ••), ammeter A : (•, ••), controlled voltage source +– : (••, •),

controlled current source : (••, •) and a generalised impedance box (•m•, •n•), parametrised over
arbitrary GAA diagrams c : m+1 ! n+1.

We abuse notation and denote the translation of EECirc to GAA by I : EECirc ! GAA. On objects,
I (•) = 2, since—as before—an electrical wire is represented by two wires in GAA, but the information
wire “is” a GAA wire, i.e. I (•) = 1. Next, I acts on the generators of GAA as identity and on the basic

electrical components (4) as described in Figure 1. We delay the translations of { V , A , +– , }
to later in this section and first focus on the generalised impedance boxes. Their translation is:

I

0

B@ C
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CA = C
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.

We again use I
= and

I
 as circuit relations to mean = and  on their translations to GAA, using its

(in)equational theory. The properties of Lemma 1 easily generalise to these extended impedance boxes.
We omit the details, and only mention one simple, but useful fact: GAA diagrams can breach impedance
boxes. Suppose that d : m ! m0, e : n ! n0 in EECirc are built up using only the GAA generators, then:

Observation 4.

c
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•                voltmeter


•                ammeter


•                controlled voltage source 


•                controlled current source
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While impedance boxes are useful for open circuit calculations, engineers often study closed circuits.
The problem is that these are mapped to 0 ! 0 affine relations, and there are only two: the singleton and
the empty set. In other words, the mapping only tells us whether the circuit has a solution, and nothing
else. Indeed, no interesting behavior can be observed in a closed circuit in our existing framework.

Classically, a closed circuit is annotated with names for the currents and voltage differences of inter-
est. In some presentations voltmeters and ammeters are even added as explicit elements. This is exactly
what we do: add meters to our syntax. Instead of assigning names, however, our meters have an outgoing
“information” wire, thought of as an ordinary GAA wire. Information wires allow us to probe closed cir-
cuits, i.e. those with no open electric wires, and to state and prove several theorems of circuit theory. Our
diagrams will now have two types of wires: electric wires and information wires. Instead of keeping the
props ECirc and GAA separate, we unite the two and work with a coloured (multisorted) prop EECirc.

The coloured prop EECirc has as objects words over the alphabet {•, •}. It is freely generated by the
union of all the generators (1), (2), (3) of GAA, the generators (4) of ECirc, and the following:

8
><

>:
V , A , +– , , C
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>=

>;
m,n2N,c:m+1!n+1 in GAA

.

These are a voltmeter V : (•, ••), ammeter A : (•, ••), controlled voltage source +– : (••, •),

controlled current source : (••, •) and a generalised impedance box (•m•, •n•), parametrised over
arbitrary GAA diagrams c : m+1 ! n+1.

We abuse notation and denote the translation of EECirc to GAA by I : EECirc ! GAA. On objects,
I (•) = 2, since—as before—an electrical wire is represented by two wires in GAA, but the information
wire “is” a GAA wire, i.e. I (•) = 1. Next, I acts on the generators of GAA as identity and on the basic

electrical components (4) as described in Figure 1. We delay the translations of { V , A , +– , }
to later in this section and first focus on the generalised impedance boxes. Their translation is:

I

0

B@ C
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We again use I
= and

I
 as circuit relations to mean = and  on their translations to GAA, using its

(in)equational theory. The properties of Lemma 1 easily generalise to these extended impedance boxes.
We omit the details, and only mention one simple, but useful fact: GAA diagrams can breach impedance
boxes. Suppose that d : m ! m0, e : n ! n0 in EECirc are built up using only the GAA generators, then:

Observation 4.

c
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While impedance boxes are useful for open circuit calculations, engineers often study closed circuits.
The problem is that these are mapped to 0 ! 0 affine relations, and there are only two: the singleton and
the empty set. In other words, the mapping only tells us whether the circuit has a solution, and nothing
else. Indeed, no interesting behavior can be observed in a closed circuit in our existing framework.

Classically, a closed circuit is annotated with names for the currents and voltage differences of inter-
est. In some presentations voltmeters and ammeters are even added as explicit elements. This is exactly
what we do: add meters to our syntax. Instead of assigning names, however, our meters have an outgoing
“information” wire, thought of as an ordinary GAA wire. Information wires allow us to probe closed cir-
cuits, i.e. those with no open electric wires, and to state and prove several theorems of circuit theory. Our
diagrams will now have two types of wires: electric wires and information wires. Instead of keeping the
props ECirc and GAA separate, we unite the two and work with a coloured (multisorted) prop EECirc.

The coloured prop EECirc has as objects words over the alphabet {•, •}. It is freely generated by the
union of all the generators (1), (2), (3) of GAA, the generators (4) of ECirc, and the following:

8
><

>:
V , A , +– , , C
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>=

>;
m,n2N,c:m+1!n+1 in GAA

.

These are a voltmeter V : (•, ••), ammeter A : (•, ••), controlled voltage source +– : (••, •),

controlled current source : (••, •) and a generalised impedance box (•m•, •n•), parametrised over
arbitrary GAA diagrams c : m+1 ! n+1.

We abuse notation and denote the translation of EECirc to GAA by I : EECirc ! GAA. On objects,
I (•) = 2, since—as before—an electrical wire is represented by two wires in GAA, but the information
wire “is” a GAA wire, i.e. I (•) = 1. Next, I acts on the generators of GAA as identity and on the basic

electrical components (4) as described in Figure 1. We delay the translations of { V , A , +– , }
to later in this section and first focus on the generalised impedance boxes. Their translation is:

I

0

B@ C
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We again use I
= and

I
 as circuit relations to mean = and  on their translations to GAA, using its

(in)equational theory. The properties of Lemma 1 easily generalise to these extended impedance boxes.
We omit the details, and only mention one simple, but useful fact: GAA diagrams can breach impedance
boxes. Suppose that d : m ! m0, e : n ! n0 in EECirc are built up using only the GAA generators, then:

Observation 4.

c
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While impedance boxes are useful for open circuit calculations, engineers often study closed circuits.
The problem is that these are mapped to 0 ! 0 affine relations, and there are only two: the singleton and
the empty set. In other words, the mapping only tells us whether the circuit has a solution, and nothing
else. Indeed, no interesting behavior can be observed in a closed circuit in our existing framework.

Classically, a closed circuit is annotated with names for the currents and voltage differences of inter-
est. In some presentations voltmeters and ammeters are even added as explicit elements. This is exactly
what we do: add meters to our syntax. Instead of assigning names, however, our meters have an outgoing
“information” wire, thought of as an ordinary GAA wire. Information wires allow us to probe closed cir-
cuits, i.e. those with no open electric wires, and to state and prove several theorems of circuit theory. Our
diagrams will now have two types of wires: electric wires and information wires. Instead of keeping the
props ECirc and GAA separate, we unite the two and work with a coloured (multisorted) prop EECirc.

The coloured prop EECirc has as objects words over the alphabet {•, •}. It is freely generated by the
union of all the generators (1), (2), (3) of GAA, the generators (4) of ECirc, and the following:

8
><

>:
V , A , +– , , C
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>=

>;
m,n2N,c:m+1!n+1 in GAA

.

These are a voltmeter V : (•, ••), ammeter A : (•, ••), controlled voltage source +– : (••, •),

controlled current source : (••, •) and a generalised impedance box (•m•, •n•), parametrised over
arbitrary GAA diagrams c : m+1 ! n+1.

We abuse notation and denote the translation of EECirc to GAA by I : EECirc ! GAA. On objects,
I (•) = 2, since—as before—an electrical wire is represented by two wires in GAA, but the information
wire “is” a GAA wire, i.e. I (•) = 1. Next, I acts on the generators of GAA as identity and on the basic

electrical components (4) as described in Figure 1. We delay the translations of { V , A , +– , }
to later in this section and first focus on the generalised impedance boxes. Their translation is:

I

0

B@ C
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CA = C

<latexit sha1_base64="+QQsIVeD7C20WSTBUcrRlrfSkYA=">AAACDXicbVDLSgNBEOyNrxhfUY9eBoOQU9gVUY8BLx4TMA9IljA7O0mGzMwuM7PisuQLPHjRT/EmXv0Gv8Srk2QPJrGgoajqprsriDnTxnW/ncLG5tb2TnG3tLd/cHhUPj5p6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNM7mZ+55EqzSL5YNKY+gKPJBsygo2VmmJQrrg1dw60TrycVCBHY1D+6YcRSQSVhnCsdc9zY+NnWBlGOJ2W+ommMSYTPKI9SyUWVPvZ/NApurBKiIaRsiUNmqt/JzIstE5FYDsFNmO96s3E/7xeYoa3fsZknBgqyWLRMOHIRGj2NQqZosTw1BJMFLO3IjLGChNjs1naoo3AKlXh0ifZUzq1SXmruayT9mXNu665zatKvZpnVoQzOIcqeHADdbiHBrSAAIVneIU358V5dz6cz0VrwclnTmEJztcvrwWdBQ==</latexit>m <latexit sha1_base64="wg/cAlJzy8BZmCZ5ZW3hzeLTitM=">AAACDXicbVDLSgNBEJyNrxhfUY9eBoOQU9gVUY8BLx4TMA9IljA720mGzMwuM7PisuQLPHjRT/EmXv0Gv8Srk2QPJrGgoajqprsriDnTxnW/ncLG5tb2TnG3tLd/cHhUPj5p6yhRFFo04pHqBkQDZxJahhkO3VgBEQGHTjC5m/mdR1CaRfLBpDH4gowkGzJKjJWaclCuuDV3DrxOvJxUUI7GoPzTDyOaCJCGcqJ1z3Nj42dEGUY5TEv9RENM6ISMoGepJAK0n80PneILq4R4GClb0uC5+nciI0LrVAS2UxAz1qveTPzP6yVmeOtnTMaJAUkXi4YJxybCs69xyBRQw1NLCFXM3orpmChCjc1maYs2gqhUhUufZE/p1CblreayTtqXNe+65javKvVqnlkRnaFzVEUeukF1dI8aqIUoAvSMXtGb8+K8Ox/O56K14OQzp2gJztcvsK6dBg==</latexit>n

.

We again use I
= and

I
 as circuit relations to mean = and  on their translations to GAA, using its

(in)equational theory. The properties of Lemma 1 easily generalise to these extended impedance boxes.
We omit the details, and only mention one simple, but useful fact: GAA diagrams can breach impedance
boxes. Suppose that d : m ! m0, e : n ! n0 in EECirc are built up using only the GAA generators, then:

Observation 4.

c

<latexit sha1_base64="+QQsIVeD7C20WSTBUcrRlrfSkYA=">AAACDXicbVDLSgNBEOyNrxhfUY9eBoOQU9gVUY8BLx4TMA9IljA7O0mGzMwuM7PisuQLPHjRT/EmXv0Gv8Srk2QPJrGgoajqprsriDnTxnW/ncLG5tb2TnG3tLd/cHhUPj5p6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNM7mZ+55EqzSL5YNKY+gKPJBsygo2VmmJQrrg1dw60TrycVCBHY1D+6YcRSQSVhnCsdc9zY+NnWBlGOJ2W+ommMSYTPKI9SyUWVPvZ/NApurBKiIaRsiUNmqt/JzIstE5FYDsFNmO96s3E/7xeYoa3fsZknBgqyWLRMOHIRGj2NQqZosTw1BJMFLO3IjLGChNjs1naoo3AKlXh0ifZUzq1SXmruayT9mXNu665zatKvZpnVoQzOIcqeHADdbiHBrSAAIVneIU358V5dz6cz0VrwclnTmEJztcvrwWdBQ==</latexit>m <latexit sha1_base64="wg/cAlJzy8BZmCZ5ZW3hzeLTitM=">AAACDXicbVDLSgNBEJyNrxhfUY9eBoOQU9gVUY8BLx4TMA9IljA720mGzMwuM7PisuQLPHjRT/EmXv0Gv8Srk2QPJrGgoajqprsriDnTxnW/ncLG5tb2TnG3tLd/cHhUPj5p6yhRFFo04pHqBkQDZxJahhkO3VgBEQGHTjC5m/mdR1CaRfLBpDH4gowkGzJKjJWaclCuuDV3DrxOvJxUUI7GoPzTDyOaCJCGcqJ1z3Nj42dEGUY5TEv9RENM6ISMoGepJAK0n80PneILq4R4GClb0uC5+nciI0LrVAS2UxAz1qveTPzP6yVmeOtnTMaJAUkXi4YJxybCs69xyBRQw1NLCFXM3orpmChCjc1maYs2gqhUhUufZE/p1CblreayTtqXNe+65javKvVqnlkRnaFzVEUeukF1dI8aqIUoAvSMXtGb8+K8Ox/O56K14OQzp2gJztcvsK6dBg==</latexit>nd
<latexit sha1_base64="f4MinNxSwi4ZwSc5DQvtNi8UzWA=">AAACDnicbVDLSgNBEJz1GeMr6tHLYBA9hV0J6jHgxWMU84BkCbOT2WTIzOwy0ysuS/7Agxf9FG/i1V/wS7w6SfZgEgsaiqpuuruCWHADrvvtrKyurW9sFraK2zu7e/ulg8OmiRJNWYNGItLtgBgmuGIN4CBYO9aMyECwVjC6mfitR6YNj9QDpDHzJRkoHnJKwEr38qxXKrsVdwq8TLyclFGOeq/00+1HNJFMARXEmI7nxuBnRAOngo2L3cSwmNARGbCOpYpIZvxseukYn1qlj8NI21KAp+rfiYxIY1IZ2E5JYGgWvYn4n9dJILz2M67iBJiis0VhIjBEePI27nPNKIjUEkI1t7diOiSaULDhzG0xIIlOdX/uk+wpHdukvMVclknzouJdVty7arlWzTMroGN0gs6Rh65QDd2iOmogikL0jF7Rm/PivDsfzuesdcXJZ47QHJyvXxjlnUI=</latexit>

m�

I
=

c

<latexit sha1_base64="+QQsIVeD7C20WSTBUcrRlrfSkYA=">AAACDXicbVDLSgNBEOyNrxhfUY9eBoOQU9gVUY8BLx4TMA9IljA7O0mGzMwuM7PisuQLPHjRT/EmXv0Gv8Srk2QPJrGgoajqprsriDnTxnW/ncLG5tb2TnG3tLd/cHhUPj5p6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNM7mZ+55EqzSL5YNKY+gKPJBsygo2VmmJQrrg1dw60TrycVCBHY1D+6YcRSQSVhnCsdc9zY+NnWBlGOJ2W+ommMSYTPKI9SyUWVPvZ/NApurBKiIaRsiUNmqt/JzIstE5FYDsFNmO96s3E/7xeYoa3fsZknBgqyWLRMOHIRGj2NQqZosTw1BJMFLO3IjLGChNjs1naoo3AKlXh0ifZUzq1SXmruayT9mXNu665zatKvZpnVoQzOIcqeHADdbiHBrSAAIVneIU358V5dz6cz0VrwclnTmEJztcvrwWdBQ==</latexit>m <latexit sha1_base64="wg/cAlJzy8BZmCZ5ZW3hzeLTitM=">AAACDXicbVDLSgNBEJyNrxhfUY9eBoOQU9gVUY8BLx4TMA9IljA720mGzMwuM7PisuQLPHjRT/EmXv0Gv8Srk2QPJrGgoajqprsriDnTxnW/ncLG5tb2TnG3tLd/cHhUPj5p6yhRFFo04pHqBkQDZxJahhkO3VgBEQGHTjC5m/mdR1CaRfLBpDH4gowkGzJKjJWaclCuuDV3DrxOvJxUUI7GoPzTDyOaCJCGcqJ1z3Nj42dEGUY5TEv9RENM6ISMoGepJAK0n80PneILq4R4GClb0uC5+nciI0LrVAS2UxAz1qveTPzP6yVmeOtnTMaJAUkXi4YJxybCs69xyBRQw1NLCFXM3orpmChCjc1maYs2gqhUhUufZE/p1CblreayTtqXNe+65javKvVqnlkRnaFzVEUeukF1dI8aqIUoAvSMXtGb8+K8Ox/O56K14OQzp2gJztcvsK6dBg==</latexit>n

d
<latexit sha1_base64="f4MinNxSwi4ZwSc5DQvtNi8UzWA=">AAACDnicbVDLSgNBEJz1GeMr6tHLYBA9hV0J6jHgxWMU84BkCbOT2WTIzOwy0ysuS/7Agxf9FG/i1V/wS7w6SfZgEgsaiqpuuruCWHADrvvtrKyurW9sFraK2zu7e/ulg8OmiRJNWYNGItLtgBgmuGIN4CBYO9aMyECwVjC6mfitR6YNj9QDpDHzJRkoHnJKwEr38qxXKrsVdwq8TLyclFGOeq/00+1HNJFMARXEmI7nxuBnRAOngo2L3cSwmNARGbCOpYpIZvxseukYn1qlj8NI21KAp+rfiYxIY1IZ2E5JYGgWvYn4n9dJILz2M67iBJiis0VhIjBEePI27nPNKIjUEkI1t7diOiSaULDhzG0xIIlOdX/uk+wpHdukvMVclknzouJdVty7arlWzTMroGN0gs6Rh65QDd2iOmogikL0jF7Rm/PivDsfzuesdcXJZ47QHJyvXxjlnUI=</latexit>

m� and

<latexit sha1_base64="+QQsIVeD7C20WSTBUcrRlrfSkYA=">AAACDXicbVDLSgNBEOyNrxhfUY9eBoOQU9gVUY8BLx4TMA9IljA7O0mGzMwuM7PisuQLPHjRT/EmXv0Gv8Srk2QPJrGgoajqprsriDnTxnW/ncLG5tb2TnG3tLd/cHhUPj5p6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNM7mZ+55EqzSL5YNKY+gKPJBsygo2VmmJQrrg1dw60TrycVCBHY1D+6YcRSQSVhnCsdc9zY+NnWBlGOJ2W+ommMSYTPKI9SyUWVPvZ/NApurBKiIaRsiUNmqt/JzIstE5FYDsFNmO96s3E/7xeYoa3fsZknBgqyWLRMOHIRGj2NQqZosTw1BJMFLO3IjLGChNjs1naoo3AKlXh0ifZUzq1SXmruayT9mXNu665zatKvZpnVoQzOIcqeHADdbiHBrSAAIVneIU358V5dz6cz0VrwclnTmEJztcvrwWdBQ==</latexit>m

<latexit sha1_base64="wg/cAlJzy8BZmCZ5ZW3hzeLTitM=">AAACDXicbVDLSgNBEJyNrxhfUY9eBoOQU9gVUY8BLx4TMA9IljA720mGzMwuM7PisuQLPHjRT/EmXv0Gv8Srk2QPJrGgoajqprsriDnTxnW/ncLG5tb2TnG3tLd/cHhUPj5p6yhRFFo04pHqBkQDZxJahhkO3VgBEQGHTjC5m/mdR1CaRfLBpDH4gowkGzJKjJWaclCuuDV3DrxOvJxUUI7GoPzTDyOaCJCGcqJ1z3Nj42dEGUY5TEv9RENM6ISMoGepJAK0n80PneILq4R4GClb0uC5+nciI0LrVAS2UxAz1qveTPzP6yVmeOtnTMaJAUkXi4YJxybCs69xyBRQw1NLCFXM3orpmChCjc1maYs2gqhUhUufZE/p1CblreayTtqXNe+65javKvVqnlkRnaFzVEUeukF1dI8aqIUoAvSMXtGb8+K8Ox/O56K14OQzp2gJztcvsK6dBg==</latexit>n

c
e

<latexit sha1_base64="yF3efmoALtNu/FaZZnNjeP7pJDo=">AAACDnicbVDLSgNBEJz1GeMr6tHLYBBzCrsi6jHgxWMU84BkCbOT2WTIzOwy0ysuS/7Agxf9FG/i1V/wS7w6SfZgEgsaiqpuuruCWHADrvvtrKyurW9sFraK2zu7e/ulg8OmiRJNWYNGItLtgBgmuGIN4CBYO9aMyECwVjC6mfitR6YNj9QDpDHzJRkoHnJKwEr36qxXKrtVdwq8TLyclFGOeq/00+1HNJFMARXEmI7nxuBnRAOngo2L3cSwmNARGbCOpYpIZvxseukYn1qlj8NI21KAp+rfiYxIY1IZ2E5JYGgWvYn4n9dJILz2M67iBJiis0VhIjBEePI27nPNKIjUEkI1t7diOiSaULDhzG0xIIlOdX/uk+wpHdukvMVclknzvOpdVt27i3KtkmdWQMfoBFWQh65QDd2iOmogikL0jF7Rm/PivDsfzuesdcXJZ47QHJyvXxbznTc=</latexit>

n�

I
=

c

e
<latexit sha1_base64="+QQsIVeD7C20WSTBUcrRlrfSkYA=">AAACDXicbVDLSgNBEOyNrxhfUY9eBoOQU9gVUY8BLx4TMA9IljA7O0mGzMwuM7PisuQLPHjRT/EmXv0Gv8Srk2QPJrGgoajqprsriDnTxnW/ncLG5tb2TnG3tLd/cHhUPj5p6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNM7mZ+55EqzSL5YNKY+gKPJBsygo2VmmJQrrg1dw60TrycVCBHY1D+6YcRSQSVhnCsdc9zY+NnWBlGOJ2W+ommMSYTPKI9SyUWVPvZ/NApurBKiIaRsiUNmqt/JzIstE5FYDsFNmO96s3E/7xeYoa3fsZknBgqyWLRMOHIRGj2NQqZosTw1BJMFLO3IjLGChNjs1naoo3AKlXh0ifZUzq1SXmruayT9mXNu665zatKvZpnVoQzOIcqeHADdbiHBrSAAIVneIU358V5dz6cz0VrwclnTmEJztcvrwWdBQ==</latexit>m <latexit sha1_base64="wg/cAlJzy8BZmCZ5ZW3hzeLTitM=">AAACDXicbVDLSgNBEJyNrxhfUY9eBoOQU9gVUY8BLx4TMA9IljA720mGzMwuM7PisuQLPHjRT/EmXv0Gv8Srk2QPJrGgoajqprsriDnTxnW/ncLG5tb2TnG3tLd/cHhUPj5p6yhRFFo04pHqBkQDZxJahhkO3VgBEQGHTjC5m/mdR1CaRfLBpDH4gowkGzJKjJWaclCuuDV3DrxOvJxUUI7GoPzTDyOaCJCGcqJ1z3Nj42dEGUY5TEv9RENM6ISMoGepJAK0n80PneILq4R4GClb0uC5+nciI0LrVAS2UxAz1qveTPzP6yVmeOtnTMaJAUkXi4YJxybCs69xyBRQw1NLCFXM3orpmChCjc1maYs2gqhUhUufZE/p1CblreayTtqXNe+65javKvVqnlkRnaFzVEUeukF1dI8aqIUoAvSMXtGb8+K8Ox/O56K14OQzp2gJztcvsK6dBg==</latexit>n

<latexit sha1_base64="yF3efmoALtNu/FaZZnNjeP7pJDo=">AAACDnicbVDLSgNBEJz1GeMr6tHLYBBzCrsi6jHgxWMU84BkCbOT2WTIzOwy0ysuS/7Agxf9FG/i1V/wS7w6SfZgEgsaiqpuuruCWHADrvvtrKyurW9sFraK2zu7e/ulg8OmiRJNWYNGItLtgBgmuGIN4CBYO9aMyECwVjC6mfitR6YNj9QDpDHzJRkoHnJKwEr36qxXKrtVdwq8TLyclFGOeq/00+1HNJFMARXEmI7nxuBnRAOngo2L3cSwmNARGbCOpYpIZvxseukYn1qlj8NI21KAp+rfiYxIY1IZ2E5JYGgWvYn4n9dJILz2M67iBJiis0VhIjBEePI27nPNKIjUEkI1t7diOiSaULDhzG0xIIlOdX/uk+wpHdukvMVclknzvOpdVt27i3KtkmdWQMfoBFWQh65QDd2iOmogikL0jF7Rm/PivDsfzuesdcXJZ47QHJyvXxbznTc=</latexit>

n�

.

G. Boisseau & P. Sobociński 7

While impedance boxes are useful for open circuit calculations, engineers often study closed circuits.
The problem is that these are mapped to 0 ! 0 affine relations, and there are only two: the singleton and
the empty set. In other words, the mapping only tells us whether the circuit has a solution, and nothing
else. Indeed, no interesting behavior can be observed in a closed circuit in our existing framework.

Classically, a closed circuit is annotated with names for the currents and voltage differences of inter-
est. In some presentations voltmeters and ammeters are even added as explicit elements. This is exactly
what we do: add meters to our syntax. Instead of assigning names, however, our meters have an outgoing
“information” wire, thought of as an ordinary GAA wire. Information wires allow us to probe closed cir-
cuits, i.e. those with no open electric wires, and to state and prove several theorems of circuit theory. Our
diagrams will now have two types of wires: electric wires and information wires. Instead of keeping the
props ECirc and GAA separate, we unite the two and work with a coloured (multisorted) prop EECirc.

The coloured prop EECirc has as objects words over the alphabet {•, •}. It is freely generated by the
union of all the generators (1), (2), (3) of GAA, the generators (4) of ECirc, and the following:

8
><

>:
V , A , +– , , C
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>=

>;
m,n2N,c:m+1!n+1 in GAA

.

These are a voltmeter V : (•, ••), ammeter A : (•, ••), controlled voltage source +– : (••, •),

controlled current source : (••, •) and a generalised impedance box (•m•, •n•), parametrised over
arbitrary GAA diagrams c : m+1 ! n+1.

We abuse notation and denote the translation of EECirc to GAA by I : EECirc ! GAA. On objects,
I (•) = 2, since—as before—an electrical wire is represented by two wires in GAA, but the information
wire “is” a GAA wire, i.e. I (•) = 1. Next, I acts on the generators of GAA as identity and on the basic

electrical components (4) as described in Figure 1. We delay the translations of { V , A , +– , }
to later in this section and first focus on the generalised impedance boxes. Their translation is:

I

0

B@ C
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We again use I
= and

I
 as circuit relations to mean = and  on their translations to GAA, using its

(in)equational theory. The properties of Lemma 1 easily generalise to these extended impedance boxes.
We omit the details, and only mention one simple, but useful fact: GAA diagrams can breach impedance
boxes. Suppose that d : m ! m0, e : n ! n0 in EECirc are built up using only the GAA generators, then:

Observation 4.

c
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Compilation to GAA
8 String Diagrammatic Electrical Circuit Theory

4.1 Meters and controlled sources

We now turn to the translations of the voltmeter and the ammeter.
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◆
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✓
A

◆
=

Note that orientation follows the conventions used so far: current and voltage difference are right to left.
We can finally observe the behavior of closed circuits! Consider a simple circuit, with just a battery

and a resistor. Having no open electrical wires, it is closed, but has one outgoing information wire.
Mapping to GAA, we get a diagram with one output, giving us the computed value for the current.
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Although elementary enough above, these kinds of calculations can be drastically simplified using the
impedance calculus by keeping the GAA diagrams small, as we shall demonstrate in the following.

First let us turn to controlled sources. Those are like independent sources, but their value is controlled
by an information wire. Their translations to GAA are given below.
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✓
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◆
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✓ ◆
= .

As in the previous section, it is usually simpler to combine impedances directly rather than map
them fully to GAA. This can be extended to work with meters too, giving a convenient way to solve
many circuits. Using the generalised impedance boxes, we have:
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We can redo our simple example using this new technology:
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An important property of meters and sources is that they can be considered one at a time. This is
often used classically to keep calculations manageable. The following two theorems make this precise.
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Theorems 1
• Relativity of potentials. Adding the same voltage 

difference to open wires does not change behaviour.


• Conservation of current. The sum of incoming current is 
equal to the sum of outgoing current.

G. Boisseau & P. Sobociński 11

5 Structural theorems

We conclude the paper with three results that showcase the graphical language’s power to state and
prove non-trivial invariants. Indeed, given that our circuits are a bona fide syntax, we can use structural
induction.

5.1 Representation theorem

Kirchhoff’s laws imply two global invariants are satisfied by all circuits. They can be elegantly stated
and proved graphically, and imply a very useful result: all one-port circuits (those with one electrical
input and one electrical output) are representable by an impedance as described in section 3. Thus the
impedance calculus can be used with any one-port circuit that we encounter.
Proposition 7 (Relativity of potentials). A circuit constrains voltage differences, not absolute voltages.
That is, adding the same voltage difference to all open wires of a circuit does not change its behavior.
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Proof. First, a lemma:
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Then using the impedance calculus we notice that voltage sources commute with circuit elements
and junctions:
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This together with the first lemma allows us to pass the voltage sources through any circuit. This can
be made formal using induction but we omit the details for brevity.

Proposition 8 (Conservation of currents). The sum of the currents going into a circuit is equal to the
sum of the outgoing currents.
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5 Structural theorems

We conclude the paper with three results that showcase the graphical language’s power to state and
prove non-trivial invariants. Indeed, given that our circuits are a bona fide syntax, we can use structural
induction.

5.1 Representation theorem

Kirchhoff’s laws imply two global invariants are satisfied by all circuits. They can be elegantly stated
and proved graphically, and imply a very useful result: all one-port circuits (those with one electrical
input and one electrical output) are representable by an impedance as described in section 3. Thus the
impedance calculus can be used with any one-port circuit that we encounter.
Proposition 7 (Relativity of potentials). A circuit constrains voltage differences, not absolute voltages.
That is, adding the same voltage difference to all open wires of a circuit does not change its behavior.
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Proof. First, a lemma:
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Then using the impedance calculus we notice that voltage sources commute with circuit elements
and junctions:
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This together with the first lemma allows us to pass the voltage sources through any circuit. This can
be made formal using induction but we omit the details for brevity.

Proposition 8 (Conservation of currents). The sum of the currents going into a circuit is equal to the
sum of the outgoing currents.
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Theorems 2
• Independent measurement theorem. 

• Superposition theorem.
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4.2 Independent Measurement Theorem

The first theorem is quite intuitive: measuring somewhere in a circuit ought not to affect measurements
elsewhere. In other words, we can extract the full behavior of a circuit by considering measurements one
at a time. In fact, this is so natural that it is just assumed to be true classically, and not mentioned in
textbooks. We are being more rigorous here: the result is more subtle than one might think.

To get a single measurement we discard (i.e. plug into) all meters but one. It is easy to show that
an ignored ammeter is equivalent to a wire, and an ignored voltmeter to an open circuit.

A
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Theorem 5 (Independent Measurement Theorem). Given a closed circuit C with n meter outputs, the
behavior of the n measurements simultaneously is a subset of the behavior of one measurement at a time,
ignoring the others. The proof is a simple derivation, using cartesian bicategory structure:
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The diagram above illustrates this for ammeters, but it applies to any mixture of meters, remembering
that a discarded voltmeter is an open circuit. If moreover each individual measurement is a function of
the inputs (i.e. single-valued and total), then the inclusion is an equality.

The inclusion above is an equality for all “well-behaved” circuits. Classically, equality is postulated.
It is, of course, reasonable to do so: if the inclusion is strict, it must be the case that either (i) that some
meter can return a nonzero value with all sources off, i.e. it is not measuring anything physical, or (ii) that
some settings of the sources are disallowed and can cause the semantics to be empty, which is degenerate.
For example, in the following example we have accidentally short-circuited the source, meaning that we
cannot turn it on with a nonzero value. This, indeed, is a degenerate case and we do not have equality.
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It does not appear easy to characterise graphically the circuits with such behavior. Instead we give the
result in its general form, trusting that equality is easy to notice when calculating the right-hand side.
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4.3 Superposition Theorem

The second theorem is amongst the most useful results of classical circuit theory. The superposition
theorem ensures that the behavior of a circuit with multiple sources can be calculated from its behaviors
with one source turned on at a time.

To do this, we set all sources but one to zero by plugging . It is easy to show that a zero current
source is equivalent to a disconnected circuit, and a zero voltage source is equivalent to a plain wire.

I
= +–

I
=

In a precise sense it is the dual of the independent measurement theorem: they are related by swap-
ping colors and vertical reflection, which is a powerful operation of GLA that often generates elegant
dualities.

Theorem 6 (Superposition Theorem). The behaviour of closed circuit C with m source inputs and no
independent sources is a superset of the sum of its behaviors with one source turned on at a time:
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<latexit sha1_base64="5F1SHgfTgK7rxMemFyCyFiNR8dQ=">AAACDnicbVC7TsNAEDyHVwivACXNiQhBFdkIAWVEGsqAyENKrOh8PiennM/W3RphWfkDChr4FDpEyy/wJbRcEhckYaSVRjO72t3xYsE12Pa3VVhZXVvfKG6WtrZ3dvfK+wctHSWKsiaNRKQ6HtFMcMmawEGwTqwYCT3B2t6oPvHbj0xpHskHSGPmhmQgecApASPd10/75YpdtafAy8TJSQXlaPTLPz0/oknIJFBBtO46dgxuRhRwKti41Es0iwkdkQHrGipJyLSbTS8d4xOj+DiIlCkJeKr+nchIqHUaeqYzJDDUi95E/M/rJhBcuxmXcQJM0tmiIBEYIjx5G/tcMQoiNYRQxc2tmA6JIhRMOHNbNIREpcqf+yR7SscmKWcxl2XSOq86l1X77qJSu8kzK6IjdIzOkIOuUA3dogZqIooC9Ixe0Zv1Yr1bH9bnrLVg5TOHaA7W1y/XKJ0m</latexit>

C � <latexit sha1_base64="Wbdpt5r7SBy3pFd6Cs7Tvh9NnAY=">AAACDXicbVDLSgNBEJyNrxhfUY9eBoPgKexKUI8BLx4TMA9IljA720mGzMwuM7PisuQLPHjRT/EmXv0Gv8Srk2QPJrGgoajqprsriDnTxnW/ncLG5tb2TnG3tLd/cHhUPj5p6yhRFFo04pHqBkQDZxJahhkO3VgBEQGHTjC5m/mdR1CaRfLBpDH4gowkGzJKjJWaclCuuFV3DrxOvJxUUI7GoPzTDyOaCJCGcqJ1z3Nj42dEGUY5TEv9RENM6ISMoGepJAK0n80PneILq4R4GClb0uC5+nciI0LrVAS2UxAz1qveTPzP6yVmeOtnTMaJAUkXi4YJxybCs69xyBRQw1NLCFXM3orpmChCjc1maYs2gqhUhUufZE/p1CblreayTtpXVe+66jZrlXotz6yIztA5ukQeukF1dI8aqIUoAvSMXtGb8+K8Ox/O56K14OQzp2gJztcvtEqdEg==</latexit>n I
= <latexit sha1_base64="yrGHzvWCNOrsj7mRNED9h08CKac=">AAACEnicbVDLSgNBEJz1GeMr6tHLYBByCrsi6jHgxWME84BkCbOzk2TM7Mwy0xtclvyDBy/6Kd7Eqz/gl3h1kuzBJBY0FFXddHcFseAGXPfbWVvf2NzaLuwUd/f2Dw5LR8dNoxJNWYMqoXQ7IIYJLlkDOAjWjjUjUSBYKxjdTv3WmGnDlXyANGZ+RAaS9zklYKVmdxwqML1S2a26M+BV4uWkjHLUe6WfbqhoEjEJVBBjOp4bg58RDZwKNil2E8NiQkdkwDqWShIx42ezayf43Coh7ittSwKeqX8nMhIZk0aB7YwIDM2yNxX/8zoJ9G/8jMs4ASbpfFE/ERgUnr6OQ64ZBZFaQqjm9lZMh0QTCjaghS0GIqJTHS58kj2lE5uUt5zLKmleVL2rqnt/Wa5V8swK6BSdoQry0DWqoTtURw1E0SN6Rq/ozXlx3p0P53PeuubkMydoAc7XL/Qbn1Y=</latexit>...

<latexit sha1_base64="5F1SHgfTgK7rxMemFyCyFiNR8dQ=">AAACDnicbVC7TsNAEDyHVwivACXNiQhBFdkIAWVEGsqAyENKrOh8PiennM/W3RphWfkDChr4FDpEyy/wJbRcEhckYaSVRjO72t3xYsE12Pa3VVhZXVvfKG6WtrZ3dvfK+wctHSWKsiaNRKQ6HtFMcMmawEGwTqwYCT3B2t6oPvHbj0xpHskHSGPmhmQgecApASPd10/75YpdtafAy8TJSQXlaPTLPz0/oknIJFBBtO46dgxuRhRwKti41Es0iwkdkQHrGipJyLSbTS8d4xOj+DiIlCkJeKr+nchIqHUaeqYzJDDUi95E/M/rJhBcuxmXcQJM0tmiIBEYIjx5G/tcMQoiNYRQxc2tmA6JIhRMOHNbNIREpcqf+yR7SscmKWcxl2XSOq86l1X77qJSu8kzK6IjdIzOkIOuUA3dogZqIooC9Ixe0Zv1Yr1bH9bnrLVg5TOHaA7W1y/XKJ0m</latexit>

C � <latexit sha1_base64="Wbdpt5r7SBy3pFd6Cs7Tvh9NnAY=">AAACDXicbVDLSgNBEJyNrxhfUY9eBoPgKexKUI8BLx4TMA9IljA720mGzMwuM7PisuQLPHjRT/EmXv0Gv8Srk2QPJrGgoajqprsriDnTxnW/ncLG5tb2TnG3tLd/cHhUPj5p6yhRFFo04pHqBkQDZxJahhkO3VgBEQGHTjC5m/mdR1CaRfLBpDH4gowkGzJKjJWaclCuuFV3DrxOvJxUUI7GoPzTDyOaCJCGcqJ1z3Nj42dEGUY5TEv9RENM6ISMoGepJAK0n80PneILq4R4GClb0uC5+nciI0LrVAS2UxAz1qveTPzP6yVmeOtnTMaJAUkXi4YJxybCs69xyBRQw1NLCFXM3orpmChCjc1maYs2gqhUhUufZE/p1CblreayTtpXVe+66jZrlXotz6yIztA5ukQeukF1dI8aqIUoAvSMXtGb8+K8Ox/O56K14OQzp2gJztcvtEqdEg==</latexit>n = <latexit sha1_base64="yrGHzvWCNOrsj7mRNED9h08CKac=">AAACEnicbVDLSgNBEJz1GeMr6tHLYBByCrsi6jHgxWME84BkCbOzk2TM7Mwy0xtclvyDBy/6Kd7Eqz/gl3h1kuzBJBY0FFXddHcFseAGXPfbWVvf2NzaLuwUd/f2Dw5LR8dNoxJNWYMqoXQ7IIYJLlkDOAjWjjUjUSBYKxjdTv3WmGnDlXyANGZ+RAaS9zklYKVmdxwqML1S2a26M+BV4uWkjHLUe6WfbqhoEjEJVBBjOp4bg58RDZwKNil2E8NiQkdkwDqWShIx42ezayf43Coh7ittSwKeqX8nMhIZk0aB7YwIDM2yNxX/8zoJ9G/8jMs4ASbpfFE/ERgUnr6OQ64ZBZFaQqjm9lZMh0QTCjaghS0GIqJTHS58kj2lE5uUt5zLKmleVL2rqnt/Wa5V8swK6BSdoQry0DWqoTtURw1E0SN6Rq/ozXlx3p0P53PeuubkMydoAc7XL/Qbn1Y=</latexit>...

+–

+–

+–

<latexit sha1_base64="IxaZ/xcI/o8sRr75iXrW5dC0DIw=">AAACDXicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9RjMxWMC5gHJEmZnJ8mQmdllpldclnyBBy/6Kd7Eq9/gl3h1kuzBJBY0FFXddHcFseAGXPfbWVvf2NzaLuwUd/f2Dw5LR8ctEyWasiaNRKQ7ATFMcMWawEGwTqwZkYFg7WBcm/rtR6YNj9QDpDHzJRkqPuCUgJUatX6p7FbcGfAq8XJSRjnq/dJPL4xoIpkCKogxXc+Nwc+IBk4FmxR7iWExoWMyZF1LFZHM+Nns0Ak+t0qIB5G2pQDP1L8TGZHGpDKwnZLAyCx7U/E/r5vA4NbPuIoTYIrOFw0SgSHC069xyDWjIFJLCNXc3orpiGhCwWazsMWAJDrV4cIn2VM6sUl5y7msktZlxbuuuI2rcvUuz6yATtEZukAeukFVdI/qqIkoYugZvaI358V5dz6cz3nrmpPPnKAFOF+/cR2c9Q==</latexit>

C
<latexit sha1_base64="Wbdpt5r7SBy3pFd6Cs7Tvh9NnAY=">AAACDXicbVDLSgNBEJyNrxhfUY9eBoPgKexKUI8BLx4TMA9IljA720mGzMwuM7PisuQLPHjRT/EmXv0Gv8Srk2QPJrGgoajqprsriDnTxnW/ncLG5tb2TnG3tLd/cHhUPj5p6yhRFFo04pHqBkQDZxJahhkO3VgBEQGHTjC5m/mdR1CaRfLBpDH4gowkGzJKjJWaclCuuFV3DrxOvJxUUI7GoPzTDyOaCJCGcqJ1z3Nj42dEGUY5TEv9RENM6ISMoGepJAK0n80PneILq4R4GClb0uC5+nciI0LrVAS2UxAz1qveTPzP6yVmeOtnTMaJAUkXi4YJxybCs69xyBRQw1NLCFXM3orpmChCjc1maYs2gqhUhUufZE/p1CblreayTtpXVe+66jZrlXotz6yIztA5ukQeukF1dI8aqIUoAvSMXtGb8+K8Ox/O56K14OQzp2gJztcvtEqdEg==</latexit>n

The diagram illustrates this with voltage sources, but it applies to any mixture of sources, given that a
turned-off current source is an open circuit. If moreover the outputs are a function (i.e. single-valued and
total) of each source when activated individually, then the inclusion is an equality.

Proof. Since C has no independent sources, its mapping to GAA lands in the GLA fragment. Thus we can
transpose (color-swap and flip) the result from the independent measurement theorem, noting that being
a function is a self-transpose property, and color-swap reverses the direction of inclusion. Alternatively,
one can use the fact that GLA modulo its inequational theory is an abelian category of relations [5].

The analysis of the equality case in the previous section also applies here via the duality. Note that
the theorem as stated forbids independent sources. However it is easy to extend it to work with them too:

+–
V1

+–
V2

<latexit sha1_base64="IxaZ/xcI/o8sRr75iXrW5dC0DIw=">AAACDXicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9RjMxWMC5gHJEmZnJ8mQmdllpldclnyBBy/6Kd7Eq9/gl3h1kuzBJBY0FFXddHcFseAGXPfbWVvf2NzaLuwUd/f2Dw5LR8ctEyWasiaNRKQ7ATFMcMWawEGwTqwZkYFg7WBcm/rtR6YNj9QDpDHzJRkqPuCUgJUatX6p7FbcGfAq8XJSRjnq/dJPL4xoIpkCKogxXc+Nwc+IBk4FmxR7iWExoWMyZF1LFZHM+Nns0Ak+t0qIB5G2pQDP1L8TGZHGpDKwnZLAyCx7U/E/r5vA4NbPuIoTYIrOFw0SgSHC069xyDWjIFJLCNXc3orpiGhCwWazsMWAJDrV4cIn2VM6sUl5y7msktZlxbuuuI2rcvUuz6yATtEZukAeukFVdI/qqIkoYugZvaI358V5dz6cz3nrmpPPnKAFOF+/cR2c9Q==</latexit>

C

<latexit sha1_base64="IxaZ/xcI/o8sRr75iXrW5dC0DIw=">AAACDXicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9RjMxWMC5gHJEmZnJ8mQmdllpldclnyBBy/6Kd7Eq9/gl3h1kuzBJBY0FFXddHcFseAGXPfbWVvf2NzaLuwUd/f2Dw5LR8ctEyWasiaNRKQ7ATFMcMWawEGwTqwZkYFg7WBcm/rtR6YNj9QDpDHzJRkqPuCUgJUatX6p7FbcGfAq8XJSRjnq/dJPL4xoIpkCKogxXc+Nwc+IBk4FmxR7iWExoWMyZF1LFZHM+Nns0Ak+t0qIB5G2pQDP1L8TGZHGpDKwnZLAyCx7U/E/r5vA4NbPuIoTYIrOFw0SgSHC069xyDWjIFJLCNXc3orpiGhCwWazsMWAJDrV4cIn2VM6sUl5y7msktZlxbuuuI2rcvUuz6yATtEZukAeukFVdI/qqIkoYugZvaI358V5dz6cz3nrmpPPnKAFOF+/cR2c9Q==</latexit>

C

I
=

+–

V1

+–

V2

<latexit sha1_base64="IxaZ/xcI/o8sRr75iXrW5dC0DIw=">AAACDXicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9RjMxWMC5gHJEmZnJ8mQmdllpldclnyBBy/6Kd7Eq9/gl3h1kuzBJBY0FFXddHcFseAGXPfbWVvf2NzaLuwUd/f2Dw5LR8ctEyWasiaNRKQ7ATFMcMWawEGwTqwZkYFg7WBcm/rtR6YNj9QDpDHzJRkqPuCUgJUatX6p7FbcGfAq8XJSRjnq/dJPL4xoIpkCKogxXc+Nwc+IBk4FmxR7iWExoWMyZF1LFZHM+Nns0Ak+t0qIB5G2pQDP1L8TGZHGpDKwnZLAyCx7U/E/r5vA4NbPuIoTYIrOFw0SgSHC069xyDWjIFJLCNXc3orpiGhCwWazsMWAJDrV4cIn2VM6sUl5y7msktZlxbuuuI2rcvUuz6yATtEZukAeukFVdI/qqIkoYugZvaI358V5dz6cz3nrmpPPnKAFOF+/cR2c9Q==</latexit>

C

<latexit sha1_base64="IxaZ/xcI/o8sRr75iXrW5dC0DIw=">AAACDXicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9RjMxWMC5gHJEmZnJ8mQmdllpldclnyBBy/6Kd7Eq9/gl3h1kuzBJBY0FFXddHcFseAGXPfbWVvf2NzaLuwUd/f2Dw5LR8ctEyWasiaNRKQ7ATFMcMWawEGwTqwZkYFg7WBcm/rtR6YNj9QDpDHzJRkqPuCUgJUatX6p7FbcGfAq8XJSRjnq/dJPL4xoIpkCKogxXc+Nwc+IBk4FmxR7iWExoWMyZF1LFZHM+Nns0Ak+t0qIB5G2pQDP1L8TGZHGpDKwnZLAyCx7U/E/r5vA4NbPuIoTYIrOFw0SgSHC069xyDWjIFJLCNXc3orpiGhCwWazsMWAJDrV4cIn2VM6sUl5y7msktZlxbuuuI2rcvUuz6yATtEZukAeukFVdI/qqIkoYugZvaI358V5dz6cz3nrmpPPnKAFOF+/cR2c9Q==</latexit>

C

I


+–

+–

V1

V2
<latexit sha1_base64="IxaZ/xcI/o8sRr75iXrW5dC0DIw=">AAACDXicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9RjMxWMC5gHJEmZnJ8mQmdllpldclnyBBy/6Kd7Eq9/gl3h1kuzBJBY0FFXddHcFseAGXPfbWVvf2NzaLuwUd/f2Dw5LR8ctEyWasiaNRKQ7ATFMcMWawEGwTqwZkYFg7WBcm/rtR6YNj9QDpDHzJRkqPuCUgJUatX6p7FbcGfAq8XJSRjnq/dJPL4xoIpkCKogxXc+Nwc+IBk4FmxR7iWExoWMyZF1LFZHM+Nns0Ak+t0qIB5G2pQDP1L8TGZHGpDKwnZLAyCx7U/E/r5vA4NbPuIoTYIrOFw0SgSHC069xyDWjIFJLCNXc3orpiGhCwWazsMWAJDrV4cIn2VM6sUl5y7msktZlxbuuuI2rcvUuz6yATtEZukAeukFVdI/qqIkoYugZvaI358V5dz6cz3nrmpPPnKAFOF+/cR2c9Q==</latexit>

C
I
=

+–

+–

V1

V2
<latexit sha1_base64="IxaZ/xcI/o8sRr75iXrW5dC0DIw=">AAACDXicbVDLSgNBEJz1GeMr6tHLYBA8hV0R9RjMxWMC5gHJEmZnJ8mQmdllpldclnyBBy/6Kd7Eq9/gl3h1kuzBJBY0FFXddHcFseAGXPfbWVvf2NzaLuwUd/f2Dw5LR8ctEyWasiaNRKQ7ATFMcMWawEGwTqwZkYFg7WBcm/rtR6YNj9QDpDHzJRkqPuCUgJUatX6p7FbcGfAq8XJSRjnq/dJPL4xoIpkCKogxXc+Nwc+IBk4FmxR7iWExoWMyZF1LFZHM+Nns0Ak+t0qIB5G2pQDP1L8TGZHGpDKwnZLAyCx7U/E/r5vA4NbPuIoTYIrOFw0SgSHC069xyDWjIFJLCNXc3orpiGhCwWazsMWAJDrV4cIn2VM6sUl5y7msktZlxbuuuI2rcvUuz6yATtEZukAeukFVdI/qqIkoYugZvaI358V5dz6cz3nrmpPPnKAFOF+/cR2c9Q==</latexit>

C



Thévenin’s theorem

• If C is a one port circuit of resistors and independent 
sources then one of the following is true 


• - 


• -


• -                denotes the empty relation
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So, restricting to just information wires, we have the full expressivity of GAA. The following result
characterises expressivity, also taking electrical wires into account.

Theorem 10 (Expressivity Theorem). Using only basic circuit elements (4), meters and controlled
sources, we can express all affine relations that respect the invariants of propositions 7 and 8. This
includes arbitrary affine relations on the information wires.

Proof. We sketched the main idea above; details omitted for space.

Now take a circuit with no open information wires made up of only basic elements, meters and
sources. It is important to note that, although we can construct circuits equivalent to an arbitrary affine
relations on the information wires, there is no direct way to copy information wires in a circuit. Since
they cannot be copied, every meter is connected to exactly one source. This is essentially equivalent to
adding textbook elements called measurement-controlled sources. The voltage-controlled current source
is constructed as follows; other combinations (e.g. current-controlled voltage source) are similar.

v +–

αv

def
=

V
α 

But this also means that, using only basic elements and measurement-controlled sources, we can
build a circuit for any relation that respects the invariants (with no open information wires). There is no
need to fear, therefore: textbook elements already capture enough affine relations.

5.3 Thévenin’s theorem

Last but not least, we prove Thévenin’s theorem, a well-known real-life example of compositional, dia-
grammatic reasoning. It allows one to replace a one-port circuit by a simpler, equivalent one. It can be
seen both as a consequence and a stronger version of the representation theorem (Theorem 9).

Theorem 11 (Thévenin’s theorem). If C is a one-port circuit made only of resistors and independent
sources, then one of the following is true:

(i) <latexit sha1_base64="sNIcCF+5fmYxu+XHIrB8YjFtwLY=">AAACDXicbVDLSgNBEJyNrxhfUY9eBoPgKeyKqCcJePGYgHlAsoTZ2U4yZGZ2mZkVlyVf4MGLfoo38eo3+CVenSR7MIkFDUVVN91dQcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRS0eJotCkEY9UJyAaOJPQNMxw6MQKiAg4tIPx3dRvP4LSLJIPJo3BF2Qo2YBRYqzUoP1yxa26M+BV4uWkgnLU++WfXhjRRIA0lBOtu54bGz8jyjDKYVLqJRpiQsdkCF1LJRGg/Wx26ASfWSXEg0jZkgbP1L8TGRFapyKwnYKYkV72puJ/Xjcxgxs/YzJODEg6XzRIODYRnn6NQ6aAGp5aQqhi9lZMR0QRamw2C1u0EUSlKlz4JHtKJzYpbzmXVdK6qHpXVbdxWand5pkV0Qk6RefIQ9eohu5RHTURRYCe0St6c16cd+fD+Zy3Fpx85hgtwPn6BaUJnRE=</latexit>c
I
= +–

V0 R
for some V0 and R,

(ii) <latexit sha1_base64="sNIcCF+5fmYxu+XHIrB8YjFtwLY=">AAACDXicbVDLSgNBEJyNrxhfUY9eBoPgKeyKqCcJePGYgHlAsoTZ2U4yZGZ2mZkVlyVf4MGLfoo38eo3+CVenSR7MIkFDUVVN91dQcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRS0eJotCkEY9UJyAaOJPQNMxw6MQKiAg4tIPx3dRvP4LSLJIPJo3BF2Qo2YBRYqzUoP1yxa26M+BV4uWkgnLU++WfXhjRRIA0lBOtu54bGz8jyjDKYVLqJRpiQsdkCF1LJRGg/Wx26ASfWSXEg0jZkgbP1L8TGRFapyKwnYKYkV72puJ/Xjcxgxs/YzJODEg6XzRIODYRnn6NQ6aAGp5aQqhi9lZMR0QRamw2C1u0EUSlKlz4JHtKJzYpbzmXVdK6qHpXVbdxWand5pkV0Qk6RefIQ9eohu5RHTURRYCe0St6c16cd+fD+Zy3Fpx85hgtwPn6BaUJnRE=</latexit>c
I
=

I0
for some I0,

(iii) <latexit sha1_base64="sNIcCF+5fmYxu+XHIrB8YjFtwLY=">AAACDXicbVDLSgNBEJyNrxhfUY9eBoPgKeyKqCcJePGYgHlAsoTZ2U4yZGZ2mZkVlyVf4MGLfoo38eo3+CVenSR7MIkFDUVVN91dQcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRS0eJotCkEY9UJyAaOJPQNMxw6MQKiAg4tIPx3dRvP4LSLJIPJo3BF2Qo2YBRYqzUoP1yxa26M+BV4uWkgnLU++WfXhjRRIA0lBOtu54bGz8jyjDKYVLqJRpiQsdkCF1LJRGg/Wx26ASfWSXEg0jZkgbP1L8TGRFapyKwnYKYkV72puJ/Xjcxgxs/YzJODEg6XzRIODYRnn6NQ6aAGp5aQqhi9lZMR0QRamw2C1u0EUSlKlz4JHtKJzYpbzmXVdK6qHpXVbdxWand5pkV0Qk6RefIQ9eohu5RHTURRYCe0St6c16cd+fD+Zy3Fpx85hgtwPn6BaUJnRE=</latexit>c denotes the empty relation.

Proof. Omitted for space.

6 Conclusion and future work

We extended existing compositional treatments of electrical circuit theory by including meters and con-
trolled sources, enabling the analysis of closed circuits. We introduced the impedance calculus and
demonstrated its power by solving simple circuits, and by proving a number of results—with the super-
position theorem and Thévenin’s theorem particularly notable, well-known examples from the corpus of
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So, restricting to just information wires, we have the full expressivity of GAA. The following result
characterises expressivity, also taking electrical wires into account.

Theorem 10 (Expressivity Theorem). Using only basic circuit elements (4), meters and controlled
sources, we can express all affine relations that respect the invariants of propositions 7 and 8. This
includes arbitrary affine relations on the information wires.

Proof. We sketched the main idea above; details omitted for space.

Now take a circuit with no open information wires made up of only basic elements, meters and
sources. It is important to note that, although we can construct circuits equivalent to an arbitrary affine
relations on the information wires, there is no direct way to copy information wires in a circuit. Since
they cannot be copied, every meter is connected to exactly one source. This is essentially equivalent to
adding textbook elements called measurement-controlled sources. The voltage-controlled current source
is constructed as follows; other combinations (e.g. current-controlled voltage source) are similar.

v +–

αv

def
=

V
α 

But this also means that, using only basic elements and measurement-controlled sources, we can
build a circuit for any relation that respects the invariants (with no open information wires). There is no
need to fear, therefore: textbook elements already capture enough affine relations.

5.3 Thévenin’s theorem

Last but not least, we prove Thévenin’s theorem, a well-known real-life example of compositional, dia-
grammatic reasoning. It allows one to replace a one-port circuit by a simpler, equivalent one. It can be
seen both as a consequence and a stronger version of the representation theorem (Theorem 9).

Theorem 11 (Thévenin’s theorem). If C is a one-port circuit made only of resistors and independent
sources, then one of the following is true:
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Proof. Omitted for space.

6 Conclusion and future work

We extended existing compositional treatments of electrical circuit theory by including meters and con-
trolled sources, enabling the analysis of closed circuits. We introduced the impedance calculus and
demonstrated its power by solving simple circuits, and by proving a number of results—with the super-
position theorem and Thévenin’s theorem particularly notable, well-known examples from the corpus of
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I
=

+–
1

V

I
=

A
k ≥ 0

I
= k

+ – A
x

I
= 1

+ – A
x

I
=

+ – A

1

So, restricting to just information wires, we have the full expressivity of GAA. The following result
characterises expressivity, also taking electrical wires into account.

Theorem 10 (Expressivity Theorem). Using only basic circuit elements (4), meters and controlled
sources, we can express all affine relations that respect the invariants of propositions 7 and 8. This
includes arbitrary affine relations on the information wires.

Proof. We sketched the main idea above; details omitted for space.

Now take a circuit with no open information wires made up of only basic elements, meters and
sources. It is important to note that, although we can construct circuits equivalent to an arbitrary affine
relations on the information wires, there is no direct way to copy information wires in a circuit. Since
they cannot be copied, every meter is connected to exactly one source. This is essentially equivalent to
adding textbook elements called measurement-controlled sources. The voltage-controlled current source
is constructed as follows; other combinations (e.g. current-controlled voltage source) are similar.
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Last but not least, we prove Thévenin’s theorem, a well-known real-life example of compositional, dia-
grammatic reasoning. It allows one to replace a one-port circuit by a simpler, equivalent one. It can be
seen both as a consequence and a stronger version of the representation theorem (Theorem 9).
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Span vs Cospan
• every linear relation can be written in span form, or in 

cospan form


• span form = choose a basis


• cospan form = choose a set of equations A Bm nk
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