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The pointfree Yosida Adjunction
W is the category of archimedean vector lattice with
designate weak order unit. RL is the W-object of frame
homomorphisms from the topology OR of the real numbers
into a completely regular frame L.

Theorem (Madden-Vermeer, 1983)
For each W-object G there is a completely regular frame L
and a W-injection μG : G→ RL such that for any completely
regular frame M and W-homomorphism θ there is a unique
frame homomorphism m such that θ(g) = m ◦ g̃ for all g ∈ G.

G RL L OR

RM M

←→
μG

←

→θ

←→ Rm ←→m
←→

g̃

←→

θ(g)

The frame L is called the Madden frame of G. It is the frame
of W-kernels of G and is designated KG.



The pointfree Yosida adjunction
F is the category of completely regular frames and frame
homomorphisms.

Geometry Algebra
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The objects fixed by the adjunction
LF is the full subcategory of Lindelöf frames. RL is the full
subcategory of W-objects of the form RL for some L.

F W

R

K

LF RL



KRL = LL
É An interesting feature of F is that one has a Lindelöf

coreflection LL→ L.
É Since OR is Lindelöf, every frame homomorphism OR→ L

factors through LL→ L.

OR LL

L

←→

←

→

←→
É This means that RL = RLL.
É In other words, RL does not “see” L very clearly.
É We address this issue in this talk.
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Characterizing RL-objects
É The W-objects of the form CX are tricky to characterize

algebraically. One of us has written several deep papers
on the intricacies of this matter. Perhaps the most
interesting results are negative.

É W-objects of the form RL are somewhat better
described. Two of us have written several papers on this
issue.

É In this talk we shall add to the list of characterizations of
RL-objects.

É The relevant characterization involves convergences on
W-objects.
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Convergences on sets
A convergence on a set G is obtained by specifying which
filters F converge to which points g, written F −→ g, subject
to three mild constraints.
É ġ −→ g for all g ∈ G. Here ġ is {K ⊆ G : g ∈ K }, the

principal ultrafilter of g.
É If G ⊇ F −→ g then G −→ g.
É If F −→ g and G −→ g then F ∩ G −→ g. Here F ∩ G is the

filter with base sets of the form F ∪G, F ∈F , G ∈ G .
É The convergence is said to be Hausdorff if F −→ f and

F −→ g imply f = g.
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Convergences on W-objects
A convergence on a W-object G is said to be a
W-convergence if it is a convergence on G with the following
properties.

É The W operations are continuous: if F −→ f and G
g
−→ g

then F � G −→ f �g, where � can be taken to be +, −, ∨, or
∧.

É The convergence is convex, i.e., if F −→ g then 〈F 〉 −→ g.
Here 〈F 〉 is the filter whose base sets are the convex
sublattices generated by the sets of F .

É E (g) −→ 0 for all g ∈ G+. Here E (g) is the filter with base
sets of the form { f : |f | ≤ g/n}, n ∈ N.

É The third item amounts to insisting that g/n→ 0 as
n→∞ for all g ∈ G+. This is equivalent to the
archimedean property of G.

É The third item implies that every W-convergence is
Hausdorff.
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A W-convergence is determined by the filters
convergent to 0.

Theorem
Let

x−→ be a W-convergence on a W-object G. Then the family
Wx ≡

¦

F : F
x−→ 0

©

has the following properties.

É E (g) ∈ Wx for all g ∈ G+.
É G ⊇ F ∈ Wx implies G ∈ Wx.
É Whenever Wx contains filters F and G , it also contains

filters −F , 2F , 〈F 〉, and F ∩ G .
Conversely, if W is a family of filters on G with these
properties, then the unique W-convergence

x−→ for which
W = Wx is defined by declaring F

x−→ g if F − ġ ∈ W . And the
convergence is topological if and only if Wx contains a
smallest filter.
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The poset W of filters convergent to 0
ġ1 ġ2 ġ3 ġ40̇

{G}

E (g1) E (g2)

ultrafilters

W



Examples of W-convergences
Let G be an arbitrary W-object.
É Classical uniform convergence is generated by the single

filter E (1).
É The convergence generated by all of the E (g)’s, g ∈ G+,

is called archimedean convergence, and is designated
a−→.

É A filter F on G order converges to 0, designated F
o−→ 0,

if
∧
�

g ∈ G+ : ∃F ∈F∀f ∈ F (|f | ≤ g)
	

= 0.

The meet is reckoned in G.
É A filter F on a W-object G is said to α-converge to 0,

written F
α−→ 0, provided that

∀0 < g ∈ G∃g′ (0 ≤ g′ < g and g ↓ g′ ∈F ),

where g ↓ g′ ≡
�

f ∈ G : f ∧ g ≤ g′
	

.
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Admissible W-convergences
Let G be a W-object.

Definition
For a filter F on G and element 0 < g ∈ G, we denote by F (g)
the filter with base sets of the form [0,g′] for elements
0 ≤ g′ < g such that g ↓ g′ ∈F . A W-convergence

x−→ is said
to be admissible F (g)

x−→ 0 whenever F
x−→ 0 and 0 < g ∈ G.

Proposition
a−→ is the finest admissible convergence on G and

α−→ is the
coarsest admissible convergence on G. And for every W
convergence

x−→ between
a−→ and

α−→ there is a finest
admissible W-convergence coarser than

x−→.



The category cW

Definition
The category cW has objects of the form (G,

x−→), where G is a
W-object and

x−→ is an admissible W-convergence on G. A
cW-morphism is a continuous W-homomorphism
(G,

x−→)→ (H,
y
−→).

Propostion
Every W-homomorphism is a-continuous. A complete
W-homomorphism is α-continuous.



The frame of cW-kernels of a cW-object (G,
x−→)

Lemma
É A convex ℓ-subgroup of a cW-object (G,

x−→) is the kernel
of a cW-homomorphism iff it is an x-closed W-kernel.

É The map K 7→ [K]x which takes a W-kernel to its x-closure
functions as a nucleus on KG.

É The family {K ∈ KG : K is x-closed} is a sublocale of KG,
and so a frame in the containment order.

É We denote this sublocale by Kc(G,
x−→) or simply KcG. We

denote the (restriction of its) nucleus by qc
G

: KG→ KcG.



The frame of cW-kernels of a cW-object (G,
x−→)

Lemma
É A convex ℓ-subgroup of a cW-object (G,

x−→) is the kernel
of a cW-homomorphism iff it is an x-closed W-kernel.

É The map K 7→ [K]x which takes a W-kernel to its x-closure
functions as a nucleus on KG.

É The family {K ∈ KG : K is x-closed} is a sublocale of KG,
and so a frame in the containment order.

É We denote this sublocale by Kc(G,
x−→) or simply KcG. We

denote the (restriction of its) nucleus by qc
G

: KG→ KcG.



The frame of cW-kernels of a cW-object (G,
x−→)

Lemma
É A convex ℓ-subgroup of a cW-object (G,

x−→) is the kernel
of a cW-homomorphism iff it is an x-closed W-kernel.

É The map K 7→ [K]x which takes a W-kernel to its x-closure
functions as a nucleus on KG.

É The family {K ∈ KG : K is x-closed} is a sublocale of KG,
and so a frame in the containment order.

É We denote this sublocale by Kc(G,
x−→) or simply KcG. We

denote the (restriction of its) nucleus by qc
G

: KG→ KcG.



The frame of cW-kernels of a cW-object (G,
x−→)

Lemma
É A convex ℓ-subgroup of a cW-object (G,

x−→) is the kernel
of a cW-homomorphism iff it is an x-closed W-kernel.

É The map K 7→ [K]x which takes a W-kernel to its x-closure
functions as a nucleus on KG.

É The family {K ∈ KG : K is x-closed} is a sublocale of KG,
and so a frame in the containment order.

É We denote this sublocale by Kc(G,
x−→) or simply KcG. We

denote the (restriction of its) nucleus by qc
G

: KG→ KcG.



Kc is functorial

Proposition
For any cW-homomorphism θ : (G,

x−→)→ (H,
y
−→), the frame

homomorphism Kθ which realizes its W-reduct drops through
qc
G

and qc
H
. That is, there exists a unique frame

homomorphism m which makes the diagram commute.

G KG Kc(G,
x−→)

H KH Kc(H,
y
−→)

←→θ ←→Kθ
←→
qcG

←→ m

←→
qcH

The map m satisfies m(K) = [θ(K)]y for all K ∈ KcG.



We have a functor. Is it adjoint?

F cW

?

Kc



Continuous convergence in RL
Classical continuous convegence has an unexpectedly
elegant formulation in RL.

Definition
A filter F on RL is said to c-converge to 0, designated
F

c−→ 0, if

∀ϵ > 0

�

∨

F

∧

F

f (0ϵ) = >
�

.



Continuous convergence in RL
Continuous convergence is very well behaved on RL.

Theorem
É For any frame L,

c−→ is an admissible W-convergence on
RL.

É Every c-Cauchy filter on RL converges.
É Every W-subobject G ⊆ RL such that cozG join generates
L is c-dense.

É For any frame homomorphism m : L→M, the induced
W-homomorphism Rm : RL→ RM = (g 7→m ◦ g) is
c-continuous.

Definition
To any frame L, the functor Rc assigns the cW-object
(RL, c−→). To any frame homomorphism m : L→M, Rc assigns
the cW-homomorphism Rm above.
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Kc a Rc

Lemma
For a cW-object (G,

x−→), let μG be the Yosida representation
of its W-reduct, let qc

G
: KG→ KcG be the canonical

surjection, and let

μc
G
≡ (Rqc

G
) ◦ μG =

�

g 7→ qc
G
◦ g̃ ≡ g̊

�

.

Then μc
G

is continuous, i.e., a cW-homomorphism.

(G,
x−→) RKG KG OR

RcKcG KcG

←→
μG

←

→μcG

←→ RqcG

←→qcG

←→

g̃

←→

g̊

Notation: For g ∈ G, denote μc
G

(g) by g̊, and
�

g̊ : g ∈ G
	

by G̊.



Kc a Rc

Theorem
Let (G,

x−→) be a cW-object. Then for any frame L and
cW-homomorphism θ there is a unique frame
homomorphism m making the diagram commute.

(G,
x−→) G̊ ⊆ RcKcG KcG OR

RcL L

←→
μcG

←
→θ

←→ Rcm ←→m

←→

g̊

←

→
θ(g)



Kc a Rc

F cW

Rc

Kc



The objects fixed by the adjunction
Every frame is fixed by the adjunction.

Proposition
Every frame L is canonically isomorphic to KcRcL.

Definition
Two admissible W-convergences

x−→ and
y
−→ on a W-object G

are said to be equivalent if [K]x = [K]y for all K ∈ KG. That is,
x−→ and

y
−→ are equivalent if Kc(G,

x−→) = Kc(G,
y
−→).

Definition
Let (G,

x−→) be a cW-object. Denote by
cx−→ the W-convergence

on G which is inherited from the restriction of
c−→ on

RcKc(G,
x−→) to G̊. That is, F

cx−→ 0 if F̊
c−→ 0, i.e., if

∨

F

∧

F f̊ (0ϵ) = > for all ϵ > 0.

Lemma
On any cW-object (G,

x−→), the coarsest admissible
W-convergence equivalent to

x−→ is
cx−→.



Complete cW-objects

Definition
We say that an admissible W-convergence

x−→ on a W-object
G is coarse if it is coarser than any equivalent admissible
W-convergence on G. That is,

x−→ is coarse if it coincides with
cx−→. A cW-object (G,

x−→) is said to be complete if
x−→ is coarse

and G is x-Cauchy complete, i.e., every x-Cauchy filter
converges. We denote by ccW the full subcategory of cW
comprised of the complete objects.

Proposition
A cW-object is complete if and only if it is isomorphic to
(RL, c−→) for some frame L.

Theorem
1. ccW is bireflective in cW, and a reflector for the object

(G,
x−→) is its embedding μc

G
: (G,

x−→)→ RcKc(G,
x−→).

2. The restrictions of the functors Rc and Kc provide an
equivalence between the categories F and ccW.



The objects fixed by the adjunction

F cW

Rc

Kc

ccW



A quick application

Proposition
The following are equivalent for a W-object G.
1. G is isomorphic to RL for some frame L.

2. There is an admissible W-convergence
x−→ for which G is

cx-Cauchy complete, i.e., (G,
cx−→) is a ccW-object.

3. G is ca-Cauchy complete.



Thank you very much.


