Weak pseudoradiality of CSC spaces Joint work with Alan Dow

Hector Barriga-Acosta

hbarriga@uncc.edu Postdoc at University of North Carolina at Charlotte BLAST 2022 Chapman University. Orange, CA

August 11, 2022

Figure: Random tree.

Figure: Architecture.

Figure: Spiritual.

Figure: Intellectual.

Figure: Physical.

Figure: Social.

Figure: Laguna beach sunset.

BLAST 2023 University of North Carolina at Charlotte

An almost dijoint family on ω is a collection $\mathcal{A} \subset \mathcal{P}(\omega)$ such that $\forall a, b \in \mathcal{A}$, $a \cap b$ is finite.

 $\mathfrak{a} = \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{P}(\omega) \text{ is a maximal almost disjoint family}\}$

 $\omega_1 \leq \mathfrak{a} \leq \mathfrak{c}$

An almost dijoint family on ω is a collection $\mathcal{A} \subset \mathcal{P}(\omega)$ such that $\forall a, b \in \mathcal{A}$, $a \cap b$ is finite.

 $\mathfrak{a} = \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{P}(\omega) \text{ is a maximal almost disjoint family}\}$

- a almost disjoint number
- b bounding number
- c continuum
- **d** dominating number
- ¢ evasion number
 - groupwise density number
 - distributivity number
 - independence number
- ŧ

• f

• g

• h

• i

• j

- [
- m Martin's number

- pseudointersection number
- r reaping number

• n

• 0

• p

• q

• u

• v

• w

• ŗ

• ŋ

• 3

- \$ splitting number
- t tower number
 - ultrafilter number

• Convergent sequence in \mathbb{R} (Frechet)

• Convergent sequence in \mathbb{R} (Frechet)

- Convergent sequence in \mathbb{R} (Frechet)
- Cauchy sequence

- Convergent sequence in \mathbb{R} (Frechet)
- Cauchy sequence
- Free sequence

- Convergent sequence in \mathbb{R} (Frechet)
- Cauchy sequence
- Free sequence
- Convergent filter

Definitions involving sequences

- Sequentially compact
- Sequential
- Fréchet-Urysohn
- Radiality
- Pseudoradiality

Convergence under the presence of

- Covering properties
- Numerability axioms
- Linear orders
- Metric

VEZEC

Paul Cohen (1937-2007)

A space X is **sequentially compact (SC)** if every sequence in X has a convergent subsequence.

A space X is sequentially compact (SC) if every sequence in X has a convergent subsequence.

- $\beta \omega$ is compact and non-SC
- ω_1 is sequentially compact and non-compact.

A space X is sequentially compact (SC) if every sequence in X has a convergent subsequence.

- $\beta\omega$ is compact and non-SC
- ω_1 is sequentially compact and non-compact.

Definition

- Let X be a topological space, $A \subset X$
 - A is radially closed provided no sequence in A converges out of A.

A space X is sequentially compact (SC) if every sequence in X has a convergent subsequence.

- $\beta\omega$ is compact and non-SC
- ω_1 is sequentially compact and non-compact.

Definition

Let X be a topological space, $A \subset X$

- A is radially closed provided no sequence in A converges out of A.
- The radial closure of A, \overline{A}^r , is the minimum radially closed set containing A.

A space X is **sequentially compact (SC)** if every sequence in X has a convergent subsequence.

- $\beta\omega$ is compact and non-SC
- ω_1 is sequentially compact and non-compact.

Definition

Let X be a topological space, $A \subset X$

- A is radially closed provided no sequence in A converges out of A.
- The radial closure of A, \overline{A}^r , is the minimum radially closed set containing A.
- X is **pseudoradial** if the radial closure of every subset of X is closed.

A space X is **sequentially compact (SC)** if every sequence in X has a convergent subsequence.

- $\beta \omega$ is compact and non-SC
- ω_1 is sequentially compact and non-compact.

Definition

Let X be a topological space, $A \subset X$

- A is radially closed provided no sequence in A converges out of A.
- The radial closure of A, \overline{A}^r , is the minimum radially closed set containing A.
- X is **pseudoradial** if the radial closure of every subset of X is closed. That is, $\overline{A}^r = \overline{A}$.

A space X is **sequentially compact (SC)** if every sequence in X has a convergent subsequence.

- $\beta \omega$ is compact and non-SC
- ω_1 is sequentially compact and non-compact.

Definition

Let X be a topological space, $A \subset X$

- A is radially closed provided no sequence in A converges out of A.
- The radial closure of A, \overline{A}^r , is the minimum radially closed set containing A.
- X is pseudoradial if the radial closure of every subset of X is closed. That is, A' = A. That is, if A is non-closed, then there is a sequence of A converging out of A.

The following spaces are pseudoradial

- First countable
- Ordinals

Theorem (Šapirovskiĭ, 1990)

[CH] Every CSC space is pseudoradial.

 $^{^{0}}X$ is pseudoradial if the radial closure of every subset of X is closed

Theorem (Šapirovskiĭ, 1990)

[CH] Every CSC space is pseudoradial.

Theorem (Juhász, Szentmiklóssy, 1993)

1. If $\mathfrak{c} \leq \aleph_2$, every CSC space is pseudoradial.

 $^{^{0}}X$ is pseudoradial if the radial closure of every subset of X is closed
Theorem (Šapirovskiĭ, 1990)

[CH] Every CSC space is pseudoradial.

Theorem (Juhász, Szentmiklóssy, 1993)

- 1. If $\mathfrak{c} \leq \aleph_2$, every CSC space is pseudoradial.
- 2. If X is compact and not pseudoradial, then there is $Y \subset X$ with $|Y| < \mathfrak{c}$ such that \overline{Y} is not pseudoradial.

 $^{^{0}}X$ is pseudoradial if the radial closure of every subset of X is closed

Theorem (Juhász, Szentmiklóssy, 1993)

- 1. If $\mathfrak{c}\leq \! \aleph_2,$ every CSC space is pseudoradial.
- 2. If X is compact and not pseudoradial, then there is $Y \subset X$ with $|Y| < \mathfrak{c}$ such that \overline{Y} is not pseudoradial.
- 3. It is consistent with $\mathfrak{c} = \aleph_3$ that there is a non-pseudoradial CSC space.

 $^{^{0}}X$ is pseudoradial if the radial closure of every subset of X is closed

Theorem (Juhász, Szentmiklóssy, 1993)

- 1. If $\mathfrak{c}\leq \! \aleph_2,$ every CSC space is pseudoradial.
- 2. If X is compact and not pseudoradial, then there is $Y \subset X$ with $|Y| < \mathfrak{c}$ such that \overline{Y} is not pseudoradial.
- 3. It is consistent with $\mathfrak{c} = \aleph_3$ that there is a non-pseudoradial CSC space.
 - Does $\mathfrak{c} = \aleph_3$ imply there is a non-pseudoradial CSC space?

 $^{^{0}}X$ is pseudoradial if the radial closure of every subset of X is closed

Theorem (Juhász, Szentmiklóssy, 1993)

- 1. If $\mathfrak{c} \leq \aleph_2$, every CSC space is pseudoradial.
- 2. If X is compact and not pseudoradial, then there is $Y \subset X$ with $|Y| < \mathfrak{c}$ such that \overline{Y} is not pseudoradial.
- 3. It is consistent with $\mathfrak{c} = \aleph_3$ that there is a non-pseudoradial CSC space.
 - Does $\mathfrak{c} = \aleph_3$ imply there is a non-pseudoradial CSC space?

Theorem (Dow, Juhász, Soukup, Szentmiklóssy, 1996)

a \mathfrak{c} can be replaces by \mathfrak{s} in (2).

 $^{^{0}}X$ is pseudoradial if the radial closure of every subset of X is closed

Theorem (Juhász, Szentmiklóssy, 1993)

- 1. If $\mathfrak{c} \leq \aleph_2$, every CSC space is pseudoradial.
- 2. If X is compact and not pseudoradial, then there is $Y \subset X$ with $|Y| < \mathfrak{c}$ such that \overline{Y} is not pseudoradial.
- 3. It is consistent with $\mathfrak{c} = \aleph_3$ that there is a non-pseudoradial CSC space.
 - Does $\mathfrak{c} = \aleph_3$ imply there is a non-pseudoradial CSC space?

Theorem (Dow, Juhász, Soukup, Szentmiklóssy, 1996)

- a \mathfrak{c} can be replaces by \mathfrak{s} in (2).
- b In the forcing extension by adding any number of Cohen reals over a model of CH, every CSC space is pseudoradial.

 $^{^{0}}X$ is pseudoradial if the radial closure of every subset of X is closed

Suppose X is compact and non-pseudoradial.

Theorem (Bella, Dow, Tironi, 2001)

 Is it true that X contains a closed separable non-pseudoradial subspace? (That is, can we replace \$\$ by ℵ1 in the previous Theorem?)

 $^{^{0}}X$ is pseudoradial if the radial closure of every subset of X is closed

Suppose X is compact and non-pseudoradial.

Theorem (Bella, Dow, Tironi, 2001)

- Is it true that X contains a closed separable non-pseudoradial subspace? (That is, can we replace \$\varsis\$ by \$\%_1\$ in the previous Theorem?)
- 2. The answer is affirmative if 2^{ω_2} is not pseudoradial.

 $^{^{0}}X$ is pseudoradial if the radial closure of every subset of X is closed

Suppose X is compact and non-pseudoradial.

Theorem (Bella, Dow, Tironi, 2001)

- 1. Is it true that X contains a closed separable non-pseudoradial subspace? (That is, can we replace \mathfrak{s} by \aleph_1 in the previous Theorem?)
- 2. The answer is affirmative if 2^{ω_2} is not pseudoradial.

Question (Šapirovskiĭ)

Is it true in ZFC that 2^{ω_2} is not pseudoradial?

 $^{^{0}}X$ is pseudoradial if the radial closure of every subset of X is closed

Suppose X is compact and non-pseudoradial.

Theorem (Bella, Dow, Tironi, 2001)

- 1. Is it true that X contains a closed separable non-pseudoradial subspace? (That is, can we replace \mathfrak{s} by \aleph_1 in the previous Theorem?)
- 2. The answer is affirmative if 2^{ω_2} is not pseudoradial.

Question (Šapirovskiĭ)

Is it true in ZFC that 2^{ω_2} is not pseudoradial? Independent from the axioms of ZFC

- 2^{ω_2} is not pseudoradial : Juhász, Szentmiklóssy
- 2^{ω_2} is pseudoradial : Alan Dow

 $^{^{0}}X$ is pseudoradial if the radial closure of every subset of X is closed

Remark

(1) X is pseudoradial \downarrow (2) 'closed separable subspaces are pseudoradial'

Remark

```
    (1) X is pseudoradial
        ↓
        (2) 'closed separable subspaces are pseudoradial'
        ↓
        (3) 'radial closures of countable sets are closed'
```

Remark

(1) X is pseudoradial
 ↓
 (2) 'closed separable subspaces are pseudoradial'
 ↓
 (3) 'radial closures of countable sets are closed' == weakly pseudoradial

(4) \Rightarrow (1): Under CH (Šapirovskiĭ)

(4) \Rightarrow (1): Under CH (Šapirovskiĭ) (4) \Rightarrow (3): Under $\mathfrak{p} = \mathfrak{c}$

Remark (1) X is pseudoradial \Downarrow (2) 'closed separable subspaces are pseudoradial' \Downarrow (3) 'radial closures of countable sets are closed' == weakly pseudoradial \Downarrow (4) X is sequentially compact

(4) \Rightarrow (1): Under CH (Šapirovskiĭ) (4) \Rightarrow (3): Under $\mathfrak{p} = \mathfrak{c}$ (4) \Rightarrow (3): In progress

Remark

```
(1) X is pseudoradial

\downarrow

(2) 'closed separable subspaces are pseudoradial'

\downarrow

(3) 'radial closures of countable sets are closed' == weakly pseudoradial

\downarrow

(4) X is sequentially compact
```

- (4) \Rightarrow (1): Under CH (Šapirovskiľ)
- (4) \Rightarrow (3): Under $\mathfrak{p} = \mathfrak{c}$
- (4) \Rightarrow (3): In progress
- (3) \neq (2): It is consistent with $\mathfrak{c} = \mathfrak{p} = \mathfrak{s} = \aleph_3$ that 2^{ω_2} is not pseudoradial.
- $(\mathfrak{s} = \min\{\kappa : 2^{\kappa} \text{ is not sequentially compact}\})$

Remark

```
(1) X is pseudoradial

\downarrow

(2) 'closed separable subspaces are pseudoradial'

\downarrow

(3) 'radial closures of countable sets are closed' == weakly pseudoradial

\downarrow

(4) X is sequentially compact
```

- (4) \Rightarrow (1): Under CH (Šapirovskiľ)
- (4) \Rightarrow (3): Under $\mathfrak{p} = \mathfrak{c}$
- (4) \Rightarrow (3): In progress
- (3) \neq (2): It is consistent with $\mathfrak{c} = \mathfrak{p} = \mathfrak{s} = \aleph_3$ that 2^{ω_2} is not pseudoradial.
- $(\mathfrak{s} = \min\{\kappa : 2^{\kappa} \text{ is not sequentially compact}\})$
- (2) \neq (1): ??? (For this we need model in which 2^{ω_2} is pseudoradial)

Given two models MEV, M is an elementary submodel of N (MXV) if any statement, with parameters in M, true in V is also true in M. NICE features: 1) If M is countable, MNW, is a countable ordinal.

Given two models MEV, M is an elementary submodel of N (MKV) if any statement, with parameters in M, true in V is also true in M. Nice features: 1) If M is countable, MNW, is a countable ordinal. ()rd ω. IJ

Given two models MEV, M is an elementary
submodel of N (MKV) if any statement, with
parameters in M, true in V is also true in M.
NICE features:
1) If M is countable,
$$M \cap \omega_1$$
 is a countable ordinal.
2) If A & M, M countable and there is no bijection
 $\Psi: \omega \rightarrow A$ in M, then A is uncountable.

Lemma: If
$$\{A_{\alpha}: \alpha < w_{i}\}$$
 is a family of finite
sets, then it has an uncoutable Δ -system.

Definition

 A poset Q is completely embedded into P if every maximal antichain of Q is maximal in P.

Definition

- A poset $\mathbb Q$ is completely embedded into $\mathbb P$ if every maximal antichain of $\mathbb Q$ is maximal in $\mathbb P.$
 - Then \mathbb{P} is forcing equivalent to the two-iteration $\mathbb{Q} \star (\mathbb{P}/\dot{G})$, where \dot{G} is a name for a \mathbb{Q} -generic filter.

Definition

- A poset Q is completely embedded into P if every maximal antichain of Q is maximal in P.
 - Then \mathbb{P} is forcing equivalent to the two-iteration $\mathbb{Q} \star (\mathbb{P}/\dot{G})$, where \dot{G} is a name for a \mathbb{Q} -generic filter.

Remark

Let M ≺ H(θ), ℙ ∈ M, and G a ℙ-generic filter. Then, M[G] ≺ H(θ)[G] (which is the H(θ) of V[G]).

Definition

- A poset Q is completely embedded into P if every maximal antichain of Q is maximal in P.
 - Then \mathbb{P} is forcing equivalent to the two-iteration $\mathbb{Q} \star (\mathbb{P}/\dot{G})$, where \dot{G} is a name for a \mathbb{Q} -generic filter.

Remark

- Let M ≺ H(θ), ℙ ∈ M, and G a ℙ-generic filter. Then, M[G] ≺ H(θ)[G] (which is the H(θ) of V[G]).
- If \mathbb{P} is ccc and $M^{\omega} \subset M$, then $\mathbb{P}_M = \mathbb{P} \cap M$ is a complete embedding of \mathbb{P} . (Thus $G_M = G \cap M$ is \mathbb{P}_M -generic)

Definition

- A poset \mathbb{Q} is completely embedded into \mathbb{P} if every maximal antichain of \mathbb{Q} is maximal in \mathbb{P} .
 - Then \mathbb{P} is forcing equivalent to the two-iteration $\mathbb{Q} \star (\mathbb{P}/\dot{G})$, where \dot{G} is a name for a \mathbb{Q} -generic filter.

Remark

- Let M ≺ H(θ), ℙ ∈ M, and G a ℙ-generic filter. Then, M[G] ≺ H(θ)[G] (which is the H(θ) of V[G]).
- If \mathbb{P} is ccc and $M^{\omega} \subset M$, then $\mathbb{P}_M = \mathbb{P} \cap M$ is a complete embedding of \mathbb{P} . (Thus $G_M = G \cap M$ is \mathbb{P}_M -generic)
- $M[G] \cap [\omega]^{\omega} = M[G_M] \cap [\omega]^{\omega} = V[G_M] \cap [\omega]^{\omega}$

Definition

 A poset ℙ has property K if every uncountable subset of ℙ has an uncountable linked (elements are pairwise compatible) subset.

Definition

- A poset ℙ has property K if every uncountable subset of ℙ has an uncountable linked (elements are pairwise compatible) subset.
- A poset P has finally property K if for each completely embedded poset Q the quotient P/Q is forced, by Q, to have property K.

Definition

- A poset ℙ has property K if every uncountable subset of ℙ has an uncountable linked (elements are pairwise compatible) subset.
- A poset P has finally property K if for each completely embedded poset Q the quotient P/Q is forced, by Q, to have property K.

Remark

• Finally property $K \implies$ property $K \implies$ ccc.

Definition

- A poset ℙ has property K if every uncountable subset of ℙ has an uncountable linked (elements are pairwise compatible) subset.
- A poset P has finally property K if for each completely embedded poset Q the quotient P/Q is forced, by Q, to have property K.

Remark

- Finally property $K \implies$ property $K \implies$ ccc.
- Any measure algebra has property K.
Definition

- A poset ℙ has property K if every uncountable subset of ℙ has an uncountable linked (elements are pairwise compatible) subset.
- A poset P has finally property K if for each completely embedded poset Q the quotient P/Q is forced, by Q, to have property K.

- Finally property $K \implies$ property $K \implies$ ccc.
- Any measure algebra has property K.
- Any finite support iteration of property K posets has property K.

Definition

- A poset ℙ has property K if every uncountable subset of ℙ has an uncountable linked (elements are pairwise compatible) subset.
- A poset P has finally property K if for each completely embedded poset Q the quotient P/Q is forced, by Q, to have property K.

- Finally property $K \implies$ property $K \implies$ ccc.
- Any measure algebra has property K.
- Any finite support iteration of property K posets has property K.
- Cohen forcing \mathbb{C} has property K, hence \mathbb{C}_{κ} has finally property K.

Definition

- A poset ℙ has property K if every uncountable subset of ℙ has an uncountable linked (elements are pairwise compatible) subset.
- A poset P has finally property K if for each completely embedded poset Q the quotient P/Q is forced, by Q, to have property K.

- Finally property $K \implies$ property $K \implies$ ccc.
- Any measure algebra has property K.
- Any finite support iteration of property K posets has property K.
- Cohen forcing \mathbb{C} has property K, hence \mathbb{C}_{κ} has finally property K.
- A Suslin tree S as a forcing notion doesn't have property K.

Definition

- A poset ℙ has property K if every uncountable subset of ℙ has an uncountable linked (elements are pairwise compatible) subset.
- A poset P has finally property K if for each completely embedded poset Q the quotient P/Q is forced, by Q, to have property K.

- Finally property $K \implies$ property $K \implies$ ccc.
- Any measure algebra has property K.
- Any finite support iteration of property K posets has property K.
- Cohen forcing \mathbb{C} has property K, hence \mathbb{C}_{κ} has finally property K.
- A Suslin tree S as a forcing notion doesn't have property K.
- $\mathbb{C} \star \mathbb{S}$ has property K but not finally property K.

Theorem (Dow, Juhász, Soukup, Szentmiklóssy, 1996)

In the forcing extension by adding any number of Cohen reals over a model of CH, every CSC space is pseudoradial.

Theorem (Dow, B., 2022)

Theorem (Dow, B., 2022)

Theorem (Dow, B., 2022)

Theorem (Dow, B., 2022)

Theorem (Dow, B., 2022)

Theorem (Dow, B., 2022)

Theorem (Dow, B., 2022)

Theorem (Dow, B., 2022)

Davies Trees

INFINITE COMBINATORICS PLAIN AND SIMPLE

DÁNIEL T. SOUKUP AND LAJOS SOUKUP

Now, we say that a *high Davies-tree for* κ *over* x is a sequence $\langle M_{\alpha} : \alpha < \kappa \rangle$ of elementary submodels of $(H(\theta), \in, \triangleleft)$ for some large enough regular θ such that

- (I) $[M_{\alpha}]^{\omega} \subset M_{\alpha}, |M_{\alpha}| = \mathfrak{c} \text{ and } x \in M_{\alpha} \text{ for all } \alpha < \kappa,$
- (II) $[\kappa]^{\omega} \subset \bigcup_{\alpha < \kappa} M_{\alpha}$, and

(III) for each $\beta < \kappa$ there are $N_{\beta,j} \prec H(\theta)$ with $[N_{\beta,j}]^{\omega} \subset N_{\beta,j}$ and $x \in N_{\beta,j}$ for $j < \omega$ such that

$$\bigcup \{M_{\alpha}: \alpha < \beta\} = \bigcup \{N_{\beta,j}: j \lessdot \omega\}.$$

THEOREM 8.1. There is a high Davies-tree $\langle M_{\alpha} : \alpha < \kappa \rangle$ for κ over x whenever

1.
$$\kappa = \kappa^{\omega}$$
 and

2. μ is ω -inaccessible, $\mu^{\omega} = \mu^+$ and \Box_{μ} holds for all μ with $\mathfrak{c} < \mu < \kappa$ and $cf(\mu) = \omega$.

Moreover, the high Davies-tree $\langle M_{\alpha} : \alpha < \kappa \rangle$ can be constructed so that

3. $\langle M_{\alpha} : \alpha < \beta \rangle \in M_{\beta}$ for all $\beta < \kappa$ and 4. $\bigcup \{M_{\alpha} : \alpha < \kappa\}$ is also a countably closed elementary submodel of $H(\theta)$.

- $\mathfrak{s} = \min\{\kappa : 2^{\kappa} \text{ is not sequentially compact}\}$
- $\mathfrak{pse} = \min\{\kappa : 2^{\kappa} \text{ is not pseudoradial}\}$

- $\mathfrak{s} = \min\{\kappa : 2^{\kappa} \text{ is not sequentially compact}\}$
- $\mathfrak{pse} = \min\{\kappa : 2^{\kappa} \text{ is not pseudoradial}\}$

• $\omega_1 \leq \mathfrak{pse} \leq \mathfrak{s} \ (2^{\omega} \text{ is pseudoradial})$

- $\mathfrak{s} = \min\{\kappa : 2^{\kappa} \text{ is not sequentially compact}\}$
- $\mathfrak{pse} = \min\{\kappa : 2^{\kappa} \text{ is not pseudoradial}\}$

- $\omega_1 \leq \mathfrak{pse} \leq \mathfrak{s} \ (2^{\omega} \text{ is pseudoradial})$
- If $\mathfrak{s} > \omega_1$ if and only if $\mathfrak{pse} > \omega_1$ (2^{ω_1} is sequentially compact if and only if it is pseudoradial)

- $\mathfrak{s} = \min\{\kappa : 2^{\kappa} \text{ is not sequentially compact}\}$
- $\mathfrak{pse} = \min\{\kappa : 2^{\kappa} \text{ is not pseudoradial}\}$

- $\omega_1 \leq \mathfrak{pse} \leq \mathfrak{s} \ (2^{\omega} \text{ is pseudoradial})$
- If $\mathfrak{s} > \omega_1$ if and only if $\mathfrak{pse} > \omega_1$ (2^{ω_1} is sequentially compact if and only if it is pseudoradial)
- It is consistente that $\mathfrak{pse} < \mathfrak{s}$ (Juhász, Szentmiklóssy: $\mathfrak{s} = \aleph_3$ and 2^{ω_2} is pseudoradial)

- $\mathfrak{s} = \min\{\kappa : 2^{\kappa} \text{ is not sequentially compact}\}$
- $\mathfrak{pse} = \min\{\kappa : 2^{\kappa} \text{ is not pseudoradial}\}$

- $\omega_1 \leq \mathfrak{pse} \leq \mathfrak{s} \ (2^{\omega} \text{ is pseudoradial})$
- If $\mathfrak{s} > \omega_1$ if and only if $\mathfrak{pse} > \omega_1$ (2^{ω_1} is sequentially compact if and only if it is pseudoradial)
- It is consistente that $\mathfrak{pse} < \mathfrak{s}$ (Juhász, Szentmiklóssy: $\mathfrak{s} = \aleph_3$ and 2^{ω_2} is pseudoradial)

Question

- Where is pse located in van Douwen diagram?
- Is pse regular?
- Can we replace \$\$ by \$\$\$\$\$ in...?

Theorem (Dow, Juhász, Soukup, Szentmiklóssy, 1996)

If X compact and not pseudoradial, then there is $Y \in [X]^{<\mathfrak{s}}$ such that \overline{Y} is not pseudoradial.

Let X be compact, then


```
(1) X is pseudoradial

\downarrow

(2) 'closed separable subspaces are pseudoradial'

\downarrow

(3) 'radial closures of countable sets are closed' == weakly pseudoradial

\downarrow

(4) X is sequentially compact
```

(4) \Rightarrow (1): Under CH (Šapirovskiĭ) (4) \Rightarrow (3): Under $\mathfrak{p} = \mathfrak{c}$ (4) \Rightarrow (3): In progress (MATRIX ITERATION) (3) \Rightarrow (2): It is consistent with $\mathfrak{c} = \mathfrak{p} = \mathfrak{s} = \aleph_3$ that 2^{ω_2} is not pseudoradial. ($\mathfrak{s} = \min{\{\kappa : 2^{\kappa} \text{ is not sequentially compact}\}}$) (2) \Rightarrow (1): ??? (For this we need model in which 2^{ω_2} is pseudoradial)

First, the ingredients

Theorem

It is consistent that there is a compactification X of ω and a (descending) mod finite family $\{a_{\alpha} : \alpha \in \omega_1\} \subset [\omega]^{\omega}$ s.t.:

- 1. the weight of X is less than \mathfrak{s} ,
- 2. the family $\{a_{\alpha} : \alpha \in \omega_1\}$ has no infinite pseudointersection,
- 3. each $cl_X(a_\alpha)$ is a clopen subset of X,
- 4. for each cub $C \subset \omega_1$, there is a a clopen $U_C \subset X$ satisfying that each of $\{\delta \in C : a_{\delta} \setminus a_{\delta_C^+} \subset U_C\}$ and $\{\delta \in C : a_{\delta} \setminus a_{\delta_C^+} \cap U_C = \emptyset\}$ are uncountable.

If a space X is as in Theorem. then it follows that X is CSC and the radial closure of ω is not closed.

First, the ingredients

Theorem

It is consistent that there is a compactification X of ω and a (descending) mod finite family $\{a_{\alpha} : \alpha \in \omega_1\} \subset [\omega]^{\omega}$ s.t.:

- 1. the weight of X is less than \mathfrak{s} ,
- 2. the family $\{a_{\alpha} : \alpha \in \omega_1\}$ has no infinite pseudointersection,
- 3. each $cl_X(a_\alpha)$ is a clopen subset of X,
- 4. for each cub $C \subset \omega_1$, there is a a clopen $U_C \subset X$ satisfying that each of $\{\delta \in C : a_{\delta} \setminus a_{\delta_C^+} \subset U_C\}$ and $\{\delta \in C : a_{\delta} \setminus a_{\delta_C^+} \cap U_C = \emptyset\}$ are uncountable.

If a space X is as in Theorem. then it follows that X is CSC and the radial closure of ω is not closed.

X is CSC

First, the ingredients

Theorem

It is consistent that there is a compactification X of ω and a (descending) mod finite family $\{a_{\alpha} : \alpha \in \omega_1\} \subset [\omega]^{\omega}$ s.t.:

- 1. the weight of X is less than \mathfrak{s} ,
- 2. the family $\{a_{\alpha} : \alpha \in \omega_1\}$ has no infinite pseudointersection,
- 3. each $cl_X(a_\alpha)$ is a clopen subset of X,
- 4. for each cub $C \subset \omega_1$, there is a a clopen $U_C \subset X$ satisfying that each of $\{\delta \in C : a_\delta \setminus a_{\delta_C^+} \subset U_C\}$ and $\{\delta \in C : a_\delta \setminus a_{\delta_C^+} \cap U_C = \emptyset\}$ are uncountable.

If a space X is as in Theorem. then it follows that X is CSC and the radial closure of ω is not closed.

A matrix iteration is a $\kappa \times \lambda$ -system $\underline{\mathbf{s}} = \{ \langle P_{\alpha,\gamma}^{\underline{\mathbf{s}}}, \dot{Q}_{\alpha,\gamma}^{\underline{\mathbf{s}}} : \alpha \leq \kappa, \gamma \leq \lambda \rangle$ satisfying the following conditions:

- For each $\alpha \leq \kappa$ and $\gamma < \lambda$, $\dot{Q}_{\alpha,\gamma}^{\underline{s}}$ is a $P_{\alpha,\gamma}^{\underline{s}}$ -name of a ccc poset.
- For each $\alpha \leq \kappa$, $\langle P_{\alpha,\gamma}^{\underline{s}}, \dot{Q}_{\alpha,\gamma}^{\underline{s}} : \gamma < \lambda \rangle$ is a finite support iteration and $P_{\alpha,\lambda}^{\underline{s}}$ is the limit.
- For $\gamma < \lambda$ and $\alpha < \beta \leq \kappa$, $P_{\beta,\gamma}^{\underline{s}}$ forces that $\dot{Q}_{\overline{\alpha},\gamma}^{\underline{s}}$ is a subposet of $\dot{Q}_{\overline{\beta},\gamma}^{\underline{s}}$ in which each $P_{\overline{\alpha},\gamma}^{\underline{s}}$ -name of a maximal antichain of $\dot{Q}_{\overline{\alpha},\gamma}^{\underline{s}}$ is a $P_{\overline{\beta},\gamma}^{\underline{s}}$ -name of a maximal antichain of $\dot{Q}_{\overline{\beta},\gamma}^{\underline{s}}$.
- For each $\gamma < \lambda$, $\dot{Q}_{\kappa,\gamma}^{\underline{s}} = \bigcup \{ \dot{Q}_{\alpha,\gamma}^{\underline{s}} : \alpha < \kappa \}.$

A matrix iteration is a $\kappa \times \lambda$ -system $\underline{\mathbf{s}} = \{ \langle P_{\alpha,\gamma}^{\underline{\mathbf{s}}}, \dot{Q}_{\alpha,\gamma}^{\underline{\mathbf{s}}} : \alpha \leq \kappa, \gamma \leq \lambda \rangle$ satisfying the following conditions:

- For each $\alpha \leq \kappa$ and $\gamma < \lambda$, $\dot{Q}_{\overline{\alpha},\gamma}^{\underline{s}}$ is a $P_{\overline{\alpha},\gamma}^{\underline{s}}$ -name of a ccc poset.
- For each $\alpha \leq \kappa$, $\langle P_{\overline{\alpha},\gamma}^{\underline{s}}, \dot{Q}_{\overline{\alpha},\gamma}^{\underline{s}} : \gamma < \lambda \rangle$ is a finite support iteration and $P_{\alpha,\lambda}^{\underline{s}}$ is the limit.
- For $\gamma < \lambda$ and $\alpha < \beta \leq \kappa$, $P_{\beta,\gamma}^{\underline{s}}$ forces that $\dot{Q}_{\overline{\alpha},\gamma}^{\underline{s}}$ is a subposet of $\dot{Q}_{\overline{\beta},\gamma}^{\underline{s}}$ in which each $P_{\overline{\alpha},\gamma}^{\underline{s}}$ -name of a maximal antichain of $\dot{Q}_{\overline{\alpha},\gamma}^{\underline{s}}$ is a $P_{\overline{\beta},\gamma}^{\underline{s}}$ -name of a maximal antichain of $\dot{Q}_{\overline{\beta},\gamma}^{\underline{s}}$.
- For each $\gamma < \lambda$, $\dot{Q}_{\kappa,\gamma}^{\underline{s}} = \bigcup \{ \dot{Q}_{\alpha,\gamma}^{\underline{s}} : \alpha < \kappa \}.$

A matrix iteration is a $\kappa \times \lambda$ -system $\underline{\mathbf{s}} = \{ \langle P_{\alpha,\gamma}^{\underline{\mathbf{s}}}, \dot{Q}_{\alpha,\gamma}^{\underline{\mathbf{s}}} : \alpha \leq \kappa, \gamma \leq \lambda \rangle$ satisfying the following conditions:

- For each $\alpha \leq \kappa$ and $\gamma < \lambda$, $\dot{Q}_{\alpha,\gamma}^{\underline{s}}$ is a $P_{\alpha,\gamma}^{\underline{s}}$ -name of a ccc poset.
- For each $\alpha \leq \kappa$, $\langle P_{\alpha,\gamma}^{\underline{s}}, \dot{Q}_{\alpha,\gamma}^{\underline{s}} : \gamma < \lambda \rangle$ is a finite support iteration and $P_{\alpha,\lambda}^{\underline{s}}$ is the limit.
- For $\gamma < \lambda$ and $\alpha < \beta \leq \kappa$, $P_{\beta,\gamma}^{\underline{s}}$ forces that $\dot{Q}_{\overline{\alpha},\gamma}^{\underline{s}}$ is a subposet of $\dot{Q}_{\overline{\beta},\gamma}^{\underline{s}}$ in which each $P_{\overline{\alpha},\gamma}^{\underline{s}}$ -name of a maximal antichain of $\dot{Q}_{\overline{\alpha},\gamma}^{\underline{s}}$ is a $P_{\overline{\beta},\gamma}^{\underline{s}}$ -name of a maximal antichain of $\dot{Q}_{\overline{\beta},\gamma}^{\underline{s}}$.
- For each $\gamma < \lambda$, $\dot{Q}_{\kappa,\gamma}^{\underline{s}} = \bigcup \{ \dot{Q}_{\alpha,\gamma}^{\underline{s}} : \alpha < \kappa \}.$

The posets

The posets

Lemma

For each $\alpha < \omega_1$ and each P_{α,ω_3} -name \dot{f} of an element of ω^{ω} , it is forced by $P_{\alpha+1,\omega_3}$ that $\dot{h}_{\alpha+1}$ is not dominated by \dot{f} .

Lemma

For each $\alpha < \omega_1$ and each P_{α,ω_3} -name \dot{f} of an element of ω^{ω} , it is forced by $P_{\alpha+1,\omega_3}$ that $\dot{h}_{\alpha+1}$ is not dominated by \dot{f} .

ω,

Thank you!