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Pseudoradiality and known results

A space X is sequentially compact (SC) if every sequence in X has a convergent
subsequence.

® ([w is compact and non-SC

® (7 is sequentially compact and non-compact.

Definition
Let X be a topological space, A C X
® A is radially closed provided no sequence in A converges out of A.
® The radial closure of A, Zr, is the minimum radially closed set containing A.

® X is pseudoradial if the radial closure of every subset of X is closed. That is,
A" =A. That is, if A is non-closed, then there is a sequence of A converging out of
A.

The following spaces are pseudoradial
® First countable
® Ordinals



If X is compact, then X is sequentially compact if and only if for every countable
non-closed A C X, there is a sequence in A converging out of A (pseudoradial to
countable sets).
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If X is compact, then X is sequentially compact if and only if for every countable
non-closed A C X, there is a sequence in A converging out of A (pseudoradial to
countable sets).
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Theorem (Sapirovski, 1990)
[CH] Every CSC space is pseudoradial.

Theorem (Juhasz, Szentmikléssy, 1993)

1. If ¢ <Ny, every CSC space is pseudoradial.

2. If X is compact and not pseudoradial, then there is Y C X with |Y| < ¢ such that Y
is not pseudoradial.

3. It is consistent with ¢ = N3 that there is a non-pseudoradial CSC space.
® Does ¢ = N3 imply there is a non-pseudoradial CSC space?

Theorem (Dow, Juhasz, Soukup, Szentmikléssy, 1996)

a ¢ can be replaces by s in (2).

b In the forcing extension by adding any number of Cohen reals over a model of CH,
every CSC space is pseudoradial.

%X is pseudoradial if the radial closure of every subset of X is closed
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Separable subspaces

Suppose X is compact and non-pseudoradial.

Theorem (Bella, Dow, Tironi, 2001)

1. Is it true that X contains a closed separable non-pseudoradial subspace?
(That is, can we replace s by Y in the previous Theorem?)

2. The answer is affirmative if 2“2 is not pseudoradial.

Question (SapirovskiY)

Is it true in ZFC that 2“2 is not pseudoradial?
Independent from the axioms of ZFC

® 2“2 is not pseudoradial : Juhdsz, Szentmikldssy

® 2“2 is pseudoradial : Alan Dow

X is pseudoradial if the radial closure of every subset of X is closed
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Let X be compact, then

(1) X is pseudoradial

4
(2) 'closed separable subspaces are pseudoradial’
Y
(3) 'radial closures of countable sets are closed’” == weakly pseudoradial
4

(4) X is sequentially compact

(1): Under CH (Sapirovskir)

(3): Under p =¢

(3): In progress

(2): It is consistent with ¢ = p = s = N3 that 2“2 is not pseudoradial.
s = min{k : 2" is not sequentially compact})

2) # (1): 7?77 (For this we need model in which 22 is pseudoradial)



Elementary submodels

Given Yoo madels MEV, Mis an e,\em-‘arj
SO&DMQM of' N (‘“\4\’\ it anj S“a;‘e,mu“', m‘-“\

(Jafaw,\-ers in M/ "WC in \l 15 also ‘\-foe_ n M.

Ntce Qea‘\'ore_s'.
15 1 M is coontable , MO, is o copntable ordinal.



Elementary submodels

Given Yoo madels MEV, Mis an e,lem-‘arj
shweded of N (MLV) i} oy slodement, with

?Mﬂm\'ers in M/ “Nc in \l is also ‘\-foe_ n M.

Ntce Ig)@_oc\'ure_s'.
1> 1€ M is countable, ;\M\wl is o coyntable ordinal.

w | w ;,?_ — Ord




Elementary submodels

Given Yoo madels MEV, Mis an e,lem-‘arj
SO&)MQM of' N (l"\‘(\!\ it a,\3 wa‘e_mu“', m‘-“\
Qafaw,\-ers in M/ “NC in \l s also ‘\-foe_ n M.

Nice Ig)@_ou'\'ure_s :

1§ 1 M is countoble, ;\M\ W, is a copntable ordinal.

| | 1 L
W W, w, .- 0rd
2\\ le Ace M, M coun‘\'al)(e and Herw 15 ne li)?Je,C\'fov\

P:w—A n M,‘H\u\ A is uncoonfable.




Elementary submodels

Lemma 16 I\Ad‘““\’-} IS & gamlj of e.*.u‘-le
5@:"‘:, 'H\u\ i4 |na5 an uncw'la“e A-sxs'l'en.



Elementary submodels

Lemma 16 I\Ad‘““\’-} IS & Qamlj of e.*.u‘-le
5@:"‘:, '|'lwl\ i4 |v\a5 an uncw'la“e A—sxs"'eﬂl.
pmd;:

13 Lt M ke Couf\JfaMe, ,.; S': M @
OW\o\ l:e,J( S: MOL«J' !



Elementary submodels

lemma 1€ A Ay o ew, } IS & ga.mlj ot e..u‘le
56"‘: -le\ l" has an W\cou‘lab’e A - sxs']'eﬂl
pmog R / \ S

13 Lt M ke Couajfak[e, ,.; S— M) 0 w,
OW\o\ I:e:‘( S z MO Ld' !
2—\ Le,‘r R=MNA q



Elementary submodels

lemma 1€ AAg: “‘“} IS & ga.mlj ot e..u‘le
56"5 -le\ l" has an W\cou‘la“e A - sxs']‘eﬂl
Proot: R\ As

) Leb M be cambable, . e
OW\o\ I:e:\ S: MOL«J' !

2—\ Le,‘r R=MN Ag

63 Cons?a\u ng« s, /\Adi 0‘6[5} 15 0 max}w\ux
A‘ﬁns‘\‘&w\ with root R.



Elementary submodels

Lemma. 18 I\Ad “‘“} s a ga.mlj ot e..u‘le

56"5 -le\ l" has an vncou‘la“e A - sxs']‘eﬂl
p('oo.g. R / \ S

1‘) Lel M ke cour\Jtaue, h; S: MO w

OW\o\ led S: MO&Jl

2—\ Le\' P\: Mf\ A%

33 CQV\Sw\u Bcw‘\ st /\Ad'- O‘GE’} 15 0 Max?w\ux
A - | stem with root R.

43 Le ‘l'l«a.re. (s a ImJe,cLon \? w—>A In M ‘I’km Sé"\l

w,



Forcing, sequences and elementarity

® A poset QQ is completely embedded into P if every maximal antichain of Q is
maximal in P.



Forcing, sequences and elementarity

® A poset QQ is completely embedded into P if every maximal antichain of Q is

maximal in P.

® Then P is forcing equivalent to the two-iteration Q x (P/G), where G is a name for a
Q-generic filter.



Forcing, sequences and elementarity

® A poset QQ is completely embedded into P if every maximal antichain of Q is

maximal in P.

® Then P is forcing equivalent to the two-iteration Q x (P/G), where G is a name for a
Q-generic filter.

® Let M < H(A), P € M, and G a P-generic filter. Then, M[G] < H(0)[G] (which is
the H(0) of V[G]).



Forcing, sequences and elementarity

® A poset QQ is completely embedded into P if every maximal antichain of Q is
maximal in P.

® Then P is forcing equivalent to the two-iteration Q x (P/G), where G is a name for a
Q-generic filter.

® Let M < H(A), P € M, and G a P-generic filter. Then, M[G] < H(0)[G] (which is
the H(0) of V[G]).

® |f Pis ccc and M“ C M, then Pyy =P N M is a complete embedding of P. (Thus
Gy = G N M is Py-generic)



Forcing, sequences and elementarity

® A poset QQ is completely embedded into P if every maximal antichain of Q is
maximal in P.

® Then P is forcing equivalent to the two-iteration Q x (P/G), where G is a name for a
Q-generic filter.

® Let M < H(A), P € M, and G a P-generic filter. Then, M[G] < H(0)[G] (which is
the H(0) of V[G]).

® |f Pis ccc and M“ C M, then Pyy =P N M is a complete embedding of P. (Thus
Gy = G N M is Py-generic)

o M[G]N[w]* = M[Gum] N [w]* = V[Gm] N [w]
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® A poset IP has property K if every uncountable subset of IP has an uncountable linked
(elements are pairwise compatible) subset.

® A poset P has finally property K if for each completely embedded poset Q the
quotient P/Q is forced, by Q, to have property K.

Finally property K = property K = ccc.

® Any measure algebra has property K.

Any finite support iteration of property K posets has property K.

Cohen forcing C has property K, hence C, has finally property K.

A Suslin tree S as a forcing notion doesn't have property K.

C xS has property K but not finally property K.
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Davies Trees

INFINITE COMBINATORICS PLAIN AND SIMPLE

DANIEL T. SOUKUP AND LAJOS SOUKUP

Now. we say that a high Davies-tree for k over x is a sequence (M, : o < k) of
elementary submodels of (H (0). €. <1) for some large enough regular 6 such that
1) [M(,]m CM,.|M,|=cand x € M, forall a < k.
(I1) [£]” € Uper Ma. and
(IIT) foreach f# < k there are Ny ; < H(0) with [Ny ;]° C Ny, and x € Ny, for
J <  such that

U{M(, ra< f} :U{N/‘J' tj <o}

THEOREM 8.1. There is a high Davies-tree (M, : o < k) for k over x whenever
l. kK =k and
2. p is w-inaccessible, n” = p* and O, holds for all u with ¢ < u < k and
of(u) = o.
Moreover. the high Davies-tree (M, : a < K) can be constructed so that
3. (My 1< B) € Mg forall p <k and
4. |{ My : a < K} is also a countably closed elementary submodel of H ().
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® s = min{x : 2" is not sequentially compact}
® pse = min{k : 2" is not pseudoradial}

® w1 < pse <s (2“ is pseudoradial)

® If s > wj if and only if pse > wy (2“1 is sequentially compact if and only if it is
pseudoradial)

® |t is consistente that pse < s (Juhdsz, Szentmikldssy: s = N3 and 2“2 is pseudoradial)

Question

® Where is pse located in van Douwen diagram?
® |s pse regular?

® Can we replace s by pse in...?7

Theorem (Dow, Juhdsz, Soukup, Szentmikléssy, 1996)

If X compact and not pseudoradial, then there is Y € [X]<* such that Y is not
pseudoradial.



Let X be compact, then

(1) X is pseudoradial

4
(2) 'closed separable subspaces are pseudoradial’
Y
(3) 'radial closures of countable sets are closed’ == weakly pseudoradial
Y
(4) X is sequentially compact
4 1): Under CH (SapirovskiY) . aadin > <
4 3): Under p=c¢ ?0(0“& % ‘0 v ®

(

(

(3): In progress (MATRIX ITERATION)

(2): It is consistent with ¢ = p = s = N3 that 2“2 is not pseudoradial.
i

I2 in{x : 2" is not sequentially compact})
2) # (1): 7?77 (For this we need model in which 22 is pseudoradial)



First, the ingredients

Theorem

It is consistent that there is a
compactification X of w and a (descending)
mod finite family {a, : @ € w1} C [w]¥ s.t.:

1. the weight of X is less than s,

2. the family {a, : & € w1} has no infinite
pseudointersection,

3. each clx(aq) is a clopen subset of X,

4. for each cub C C w1, thereis a a
clopen Uc C X satisfying that each of
{6 € C:ag\aéé C Uc} and
{0€ C:as\ag:NUc =0} are
uncountable.

If a space X is as in Theorem. then it
follows that X is CSC and the radial closure
of w is not closed.
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First, the ingredients

Theorem

If a space X is as in Theorem. then it
follows that X is CSC and the radial closure
of w is not closed.

It is consistent that there is a
compactification X of w and a (descending)
mod finite family {a, : a € w1} C [w]¥ s.t.

1. the weight of X is less thans, 2 —— X is CsC

2. the family {a, : & € w1} has no infinite
pseudointersection, k’\
3. each clx(aq) is a clopen subset of X, -
Ove b
® o 4 9 o o o &

4. for each cub C C w1, thereis a a

clopen Uc C X satisfying that each of ¢« 0"

{56C:a5\aégCUc} and

W
{5€C135\35gﬂUc:®} are L) Yd: Cl)((-'*’\"Q , 7: Uy‘x: ‘:-J(

uncountable. x <L,



Definition
A matrix iteration is a kK X A-system

s={(P5, Q5 a <k < N)
satisfying the following conditions:
® Foreach a <k and v < A, QZW IS a
P -name of a ccc poset.
® For each a < &, (Pf}—ﬁ7 QZ—7 ty < A) s
a finite support iteration and PZ—,/\ is the
limit.
® Fory < Aand a < 8 <k, PS—,7 forces
that Q;-7 is a subposet of 0%7 in
which each Pf;,y—name of a maximal
antichain of Q% is a P5_-name of a
maximal antichain of Q[Sg7

J F_or each ~ < A,
Q/S?,’y = U{chx_,fy o< KJ}.




Definition
A matrix iteration is a kK X A-system

§={(P3‘,7,Q§,7204§H:,7§>\> K
satisfying the following conditions:

® Foreach a <k and v < A, QZ—7 IS a

P -name of a ccc poset. <—
® For each o < i, (Pf}j77 QZ—7 ty < A) s \

a finite support iteration and PZ—/\ is the .

limit. 1B IF (NPIRRERES
° FOI”'}/ < )\ and a < 6 S K, F)S_/y fOfCGS (ﬁ.-- ........................................ ..

that QZ—7 is a subposet of 0%7 in
which each P ,-name of a maximal
antichain of Q% is a P5_-name of a

maximal antichain of Q[Sg7 :
® For each v < ), \
Gt = U{@5, o < k). /
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A matrix iteration is a kK X A-system

s={(P5, Q5 a <k < N)
satisfying the following conditions:
® Foreach a <k and v < A, QZ—7 IS a
P -name of a ccc poset.
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Definition
A matrix iteration is a kK X A-system

§:{(P§[—,7,Q§,7:a§ﬁ:,’y§)\> K
satisfying the following conditions:

® Foreach a <k and v < A, QZ—7 IS a
P%’,y—name of a ccc poset.

® For each a < &, (Pf}—ﬁ7 QZ—7 ty < A) s ‘ @ = U @P
a finite support iteration and PZ—,/\ is the
limit.

® Fory< Aand a < f <k, PS—,7 forces
that QZ—7 is a subposet of 0%7 in
which each Pf;,y—name of a maximal
antichain of Q% is a P5_-name of a
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Lemma

For each oo < w1 and each P, ,,-name f of an element of w®, it is forced by Puy41,., that
ha+1 is not dominated by f.
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Thank youl!



