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These series of lectures are about an ongoing research program that is in
joint work with Jeff Bergfalk and Martino Lupini.

[1] The definable content of homological invariants I: Ext & lim1,
(2020), arXiv:2008.08782.

[2] The definable content of homological invariants II: cohomology and
homotopy classication, (2022), in preparation.
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Recall...

Goal. Enriching various classical invariants of homological algebra and
algebraic topology with additional structures pertinent to “definability”.

This results into much finer invariants for:

(1) classifying spaces up to homotopy equivalence

Steenrod homology  definable homology

Čech cohomology  definable cohomology

(2) classifying various algebraic structures up to isomorphism

Ext(−,−)-bifunctor  definable Ext(−,−)

lim1(−)-functor  definable lim1(−)
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Recall...

Classical invariants are constructed as (co)homology groups of
appropriate (co)chain complexes.

One starts from a cochain complex C•

0→ C0 −→ · · · → Cn−1 δn−→ Cn
δn+1

−−−→ Cn+1 → · · ·

• Each Cn is an abelian group recording the pertinent n-dim data.
• Coboundary maps δn : Cn−1 → Cn are group homomorphism.

The associated n-dimensional cohomology group is:

Hn := ker(δn+1)/im(δn)
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Recall...

Definable invariants are constructed as (co)homology groups with a
Polish cover of appropriate Polish (co)chain complexes.

One starts from a Polish cochain complex C•

0→ C0 −→ · · · → Cn−1 δn−→ Cn
δn+1

−−−→ Cn+1 → · · ·

• Each Cn is an abelian Polish group.
• Maps δn : Cn−1 → Cn are continuous. group homomorphism.

The associated n-dimensional cohomology group with a Polish cover is:

Hn := ker(δn+1)/im(δn)
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Recall...
Standard setup.

Objects. Abstract abelian groups Hn := ker(δn+1)/im(δn).
Maps. Abstract group homomorphisms.
Isomorphisms. Abstract group isomorphisms.

Definable setup.

Objects. Groups with a Polish cover Hn := ker(δn+1)/im(δn).
Maps. Definable homomorphisms.
Isomorphisms. Definable isomorphisms.

Fact

There are uncountably many pairwise homotopy-inequivalent solenoids
with the same Steenrod (or singular) homology.

Theorem (Bergfalk, Lupini, P.)

Definable homology classifies solenoids up to homeomorphism.
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Today...

Convince that these categories provide a natural/convenient frameworks
• Polish cochain complexes with continuous cochain maps.
• Groups with a Polish cover with definable homomorphisms

Provide examples of how one passes from the classical to the definable.
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Definable Homological Algebra

A Polish cochain complex is a cochain complex A• := (An, ∂n)n∈Z in
the category of abelian Polish groups and continuous homomorphisms:

· · · ∂−→ A−2 ∂−→ A−1 ∂−→ A0 ∂−→ A1 ∂−→ A2 ∂−→ · · ·

By definition this means that ∂n+1 ◦ ∂n = 0 for all n.
In other words, we always have that Ker(δn+1)/im(δn) is well defined.

A continuous cochain map f• : A• → B• is a sequence of continuous
homomorphisms fn : An → Bn so that each square commutes:

· · ·A−2 A−1 A0 A1 A2 · · ·

· · ·B−2 B−1 B0 B1 B2 · · ·

f−2 f−1 f0 f1 f2

That is, fn ◦ ∂A = ∂Bf
n−1 for all n ∈ N.
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Classical Homological Algebra

Let 0→ A• → B• → C• → 0 be a short exact sequence of cochain complexes:

0 0 0 0 0

· · ·A−2 A−1 A0 A1 A2 · · ·

· · ·B−2 B−1 B0 B1 B2 · · ·

· · ·C−2 C−1 C0 C1 C2 · · ·

0 0 0 0 0

f−2 f−1 f0 f1 f2

g−2 g−1 g0 g1 g2

That is, ker(gn) = im(fn), gn is surjective, and fn is injective for all n.
Then one gets a long exact sequence of the associated cohomology groups:

· · · → Hn−1(A•)→ Hn−1(B•)→ Hn−1(C•)
∂−→ Hn(A•)→ Hn(B•)→ Hn(C•)→ · · ·
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This is done using the snake lemma!
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The snake lemma
Consider the following diagram of abelian groups where squares commute:

If both horizontal rows are short exact then there is a homomorphism
∂ : Ker(γ)→ A′/im(α) which fits into a long exact sequence:

ker(α)
f−→ ker(β)

g−→ ker(γ)
∂−→ coker(α)

f ′−→ coker(β)
g′−→ coker(γ).
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The snake lemma
Consider the following diagram of abelian groups where squares commute:

If both horizontal rows are short exact then there is a homomorphism
∂ : Ker(γ)→ A′/im(α) which fits into a long exact sequence:

ker(α)
f−→ ker(β)

g−→ ker(γ)
∂−→ coker(α)
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Proof Sketch.
Let c ∈ Ker(γ)
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If both horizontal rows are short exact then there is a homomorphism
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Since horizontal lines are exact and c→ 0, we can choose b ∈ B with g(b) = c.
Push down the chosen b via β to get β(b).
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The snake lemma
Consider the following diagram of abelian groups where squares commute:

If both horizontal rows are short exact then there is a homomorphism
∂ : Ker(γ)→ A′/im(α) which fits into a long exact sequence:

ker(α)
f−→ ker(β)

g−→ ker(γ)
∂−→ coker(α)
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g′−→ coker(γ).

Proof Sketch.
Let c ∈ Ker(γ)
Since horizontal lines are exact and c→ 0, we can choose b ∈ B with g(b) = c.
Push down the chosen b via β to get β(b).
By g′ ◦ β(b) = γ ◦ g(b) = γ(c) = 0 and exactness get a′ ∈ A′ with f ′(a′) = β(b).
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The definable snake lemma

Consider the following diagram of continuous homomorphisms between
abelian Polish groups where every square commutes.

0 A B C 0

0 A′ B′ C ′ 0

f

α β

g

γ

f ′ g′

If both horizontal rows are short exact and ∂ : Ker(γ)→ A′/im(α) is the
homomorphism that fits in the exact sequence:

ker(α)
f−→ ker(β)

g−→ ker(γ) −→ coker(α)
f ′−→ coker(β)

g′−→ coker(γ).

Then ∂ : Ker(γ)→ A′/im(α) admit a Borel lift ∂̂ : Ker(γ)→ A′.

Lemma

If f : G→ H is a continuous homomorphism between Polish groups then
there exists a Borel function s : H → G so that f(s(x)) = x for all x ∈ H.
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Definable isomorphisms of groups with a Polish cover

A group with a Polish cover is a quotient group G/N where:
• G is a Polish group;
• N is Polishable normal subgroup of G.

Recall that a definable isomorphism is group isomorphism f : G/N → G′/N ′

which admits a Borel function f̂ : G→ G′ as a lift:

G G′

G/N G′/N ′

f̂

f

Does f−1 admit a Borel lift?

(Kechris-Macdonald) Indeed it does! As a consequence we have that:

Corollary

A map f : G/N → G′/N ′ is a definable isomorphism iff it is an iso in the
category of definable homomorphisms between groups with a Polish cover.

This relies heavily on “Large Section” Uniformization Results from DST.
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Uniformization
Let B be a Borel subset of X × Y where X,Y are Polish spaces.
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Uniformization
Let B be a Borel subset of X × Y where X,Y are Polish spaces.

We say that B admits a Borel uniformization if there exists a Borel S ⊆ B so
that for all x ∈ X we have: “there exists y ∈ Y with (x, y) ∈ B” if and only if
“there exists precisely one y ∈ Y with (x, y) ∈ S”.

Fact 1. Not every Borel B admits a Borel uniformization.
Fact 2. Not every Borel B with proj(B) Borel admits a Borel uniformization.
Fact 3. If B is Borel and the slice Bx ⊆ Y is non-meager for all x ∈ X, B
admits a Borel uniformization.

This is where Polishability of N in G/N is used!
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The first derived bifunctor Ext(−,−) of Hom(−,−).

Let B,F be two countable abelian groups.
An extension E of B by F is any short exact sequence:

0 F E B 0

The extensions E and E ′ are isomorphic, if there is a group isomorphism
E → E′ which makes the following diagram commute.

E

0 F B 0

E′

'

Example. Here are two non-isomorphic extensions of Z/2Z by Z:

0→ Z→ Z→ (Z/2Z)→ 0 and 0→ Z→ (Z/2Z)⊕ Z→ (Z/2Z)→ 0
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The first derived bifunctor Ext(−,−) of Hom(−,−).
Schreier (1926) and Baer(1934): the “collection of all possible extensions” of B
by F is itself an abelian group. We denote it by Ext(B,F ).

This is defined as the 1-dim cohomology group of a certain cochain complex:

0 −→ FB
δ1−→ FB×B

δ2−→ FB×B×B −→ · · ·
• im(δ1) is the image of the product group FB via the map

δ1 : FB → FB×B with δ1(h)(x, y) = h(x) + h(y)− h(x+ y)

• ker(δ2) consists of all c : B ×B → F so that for all x, y, z ∈ B we have:
c(x, 0) = c(0, y) = 0, c(x, y)+c(x+y, z) = c(x, y+z)+c(y, z), c(x, y) = c(y, x).

Idea. We are trying to describe the multiplication table of E in terms of B and F :

0 F E B 0

If s : B → E is a section of E → B the multiplication table of E is entirely
determined by the unique function cs : B ×B → F which satisfies:

s(x) + s(y) = s(x+ y) + cs(x, y).

If t : B → E is a another section of E → B, the function h : B → F with
h(x) = s(x)− t(x) witnesses that cs and ct represent the same extension.

For definable Ext(B,F ) use the product topology on FB×···×B .
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Definable Ext(B,F )

Theorem (Bergfalk, Lupini, P.)

The definable Ext(−,Z) functor is fully faithful on the category of finite
rank torsion-free abelian groups Λ.

This simply follows from the results that we covered in Part II, since
Z(B,F ) is a non-archimedean abelian group with a Polish cover:

Theorem (Bergfalk, Lupini, P.)

Let f : G/N → G′/N ′ be a group homomorphism where G/N and G′/N ′

are in NAAPC and N is dense in G. If N ′ is countable then:

f is definable ⇐⇒ f is trivial.

Compare: there are uncountably many such Λ with isomorphic Ext(Λ,Z).
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Definable cohomology for simplicial complexes

A simplicial complex is a family K of finite sets with σ ⊆ τ ∈ K =⇒ σ ∈ K.
A face of K is any σ ∈ K. A vertex of K is any v ∈ dom(K) :=

⋃
K

Fix any abelian Polish group A and any countable simplicial complex K.
K(n) := {(v0, . . . , vn) | {v0, . . . , vn} ∈ K} is the singular n-skeleton of K.

0→ C0(K,A) −→ · · · → Cn−1(K,A) δn−→ Cn(K,A)
δn+1

−−−→ Cn+1(K,A)→ · · ·

Cn(K,A) consists of all n-cochains, i.e., all maps ζ : K(n) → A.
We have the coboundary map δn : Cn−1(K,A)→ Cn(K,A) with

(δn (ζ))
(
(v0, . . . , vn)

)
=

n∑
i=0

(−1)
i
ζ(v0, . . . , v̂i, . . . , vn)

Čech cohomology of K: the groups Hn(K,A) = ker(δn+1)/im(δn).
Definable cohomology of K: Use product topology on Cn(K,A).
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Čech cohomology for locally compact spaces

Let X be a locally compact space and let G be a countable abelian group.
Let OC(X) be the collection of all open covers U of X.
The Čech cohomology group Hn

Cech(X,G) of X is the colimit

Hn
Cech(X,G) := colimU∈OC(X)H

n(Nv(U), G),

where Nv(U) is the nerve of U and OC(X) is ordered by refinement.

Two main problems in developing definable cohomology groups:

1 The cofinality of (OC(X),�) is uncountable in general;
2 The definition above is not in terms of a cochain complex.
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Suslin schemes of open covers

Let X be a separable locally compact space. Denote N := NN.
A covering system for X is a triple U =

(
(Xn), (Uα), (rβα)

)
so that:

1 X0 ⊆ X1 ⊆ · · · is an exhaustion of X with compact sets.
2 (Uα : α ∈ N ) is a family of locally-finite open covers of X;
3 (rβα : α ≤ β) is a coherent family of refinement maps rβα : Uβ → Uα,

where α ≤ β holds iff α(n) ≤ β(n) for all n ∈ N.

Moreover, U has to satisfy certain locality and extensionality axioms:
(L1) if α|n = β|n, then Uα � Xn = Uβ � Xn;

(L2) same for rβα and rδγ with α ≤ β and γ ≤ δ;

(L3) if α ≤ β then rβα � (Uβ � Xn) is surjective on Uα � Xn;
(E1) for all U ∈ OC(X) and all n < m in N, if Uα � Xn � U � Xn, then

∃β ∈ Nα|n so that Uβ � Xm � U � Xm.

Proposition (Bergfalk, Lupini, P. )

Every separable locally compact X admits a covering system U .

Proof. U = A(Ufin) for some scheme Ufin of finite covers.
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Definable cohomology for X

Let G be a countable abelian group and X be separable locally compact.
Fix a covering system U =

(
(Xn), (Uα), (rβα)

)
for X.

For all n ∈ N we define the Polish semigroup of pre-cochains:

Cnsem(U , G) :=
⋃
α∈N

Cn(Nv(Uα), G)

(ζ + η)(U) = ζ(rα∨βα (U)) + η(rα∨ββ (U)
)

where for every ζ : Nv(U)(n) → G and n ∈ N we have the basic open:

Vζ,n := {η : η � Xn = ζ � Xn}.
Then we get the Polish cochain complex C•(U , G) := C•sem(U , G)/ ∼

by moding out with the closed semigroup congruence

ζ ∼ η ⇐⇒ ζ ◦ rα∨βα = η ◦ rα∨ββ .

Here we make essential use of the locality axioms (L1), (L2) and (L3).
The definable cohomology H•(X,G). is extracted from C•(U , G).

Question. Does Hn(X,G) depend on U?
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Here we make essential use of the locality axioms (L1), (L2) and (L3).
The definable cohomology H•(X,G). is extracted from C•(U , G).

Question. Does Hn(X,G) depend on U?
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Definable Huber’s theorem
Let X,Y be separable locally compact spaces and let Maps(X,Y ) be the
Polish space of all maps f : X → Y with the compact open topology.

Consider the problem (Maps(X,Y ),') of classifying all maps f : X → Y
up to homotopy: f ' g if there is continuous H : X × [0, 1]→ Y with

f = H(−, 0) and g = H(−, 1).

Classically, the quotient Maps(X,Y )/ ' is denoted by [X,Y ].
If Y := K(G,n) is the Eilenberg-MacLane associated to the countable
abelian group G then [X,Y ] carries an abelian group structure. In fact:

Theorem (Huber) If X is locally compact and G is countable abelian, we
have a group isomorphism j : [X,K(G,n)]→ Hn

Cech(X,G).

Theorem (Bergfalk, Lupini, P.)

The map j above lifts to a Borel map ĵ : Maps(X,Y )→ Cn(U , G)

Proof. We use (E1) to prove a “definable simplicial approximation” lemma.
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Application 1

Theorem (Bergfalk, Lupini, P.)

The isomorphism j : [X,K(G,n)]→ Hn
U (X,G) is definable.

But the same holds if we replace U with any other covering system V

We would like to deduce that Hn
U (X,G) and Hn

V(X,G) are definably
isomorphic and hence Hn(X,G) is well defined.

Theorem (Bergalk, Lupini, P.)

If Y = |K| for some simplicial complex, then (Maps(X,Y ),') is idealistic.

This relies on a “definable homotopy extension” theorem
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Application 2

Theorem (Bergfalk, Lupini, P.)

The isomorphism j : [X,K(G,n)]→ Hn(X,G) is definable.

idealistic

•smooth

countable structures (co)homological invariants

Corollary

(Maps(X,Y ),') is classifiable by cohomological invariants whenever
Y is an Eilenberg-MacLane space, e.g. when Y = S1 or Y = S2.
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