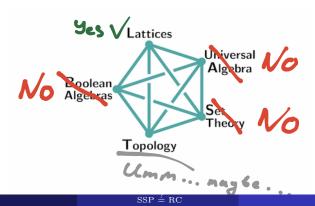


Bogdan Chornomaz

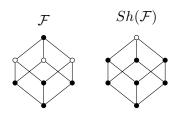


Reminder: Sauer-Shelah-Perles lemma

${\cal F}$	•00	•••	00•	Let us fix a base set X and a family \mathcal{F} . A set $Y \subseteq X$ is shattered by \mathcal{F} iff $\mathcal{F} _Y = 2^Y$. Stated otherwise:
		000		$\forall Z \subseteq Y \;\; \exists X \in \mathcal{F} \;\; \text{s.t.} \; Z = Y \cap X.$
				Lemma (Sauer-Shelah-Perles)
$Sh(\mathcal{F})$	•0•	•0•	0	Every family \mathcal{F} shatters at least as many elements as it has.
	•00	000	00●	Alternatively, we can say that F is a subset of a boolean lattice B_n , and an element $y \in B_n$ is shattered by F if

$$\forall z \leq y \;\; \exists X \in F \;\; \text{s.t.} \; z = y \wedge x.$$

Lattices, satisfying SSP.



 \mathcal{F}

So, for the original SSP lemma in the background we always have a boolean lattice B_n , which regulates how shattering is defined.

We can change B_n to arbitrary finite lattice L, and say that $F \subseteq L$ shatters an element $y \in L$, iff

$$\forall z \leq y \;\; \exists x \in F \;\; \text{s.t.} \; z = y \land x.$$

We say that L satisfies Sauer-Shelah-Perles property (is SSP), if for any $F \subseteq L$ it holds: $|F| \leq |Sh(F)|$.

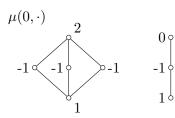
Thus, all B_n are SSP, but, for example, a chain of length at least two is not.

A sufficient condition for SSP.

Which finite lattices are SSP? There is one nice sufficient condition from László Babai, Péter Frankl. Linear algebra methods in combinatorics.

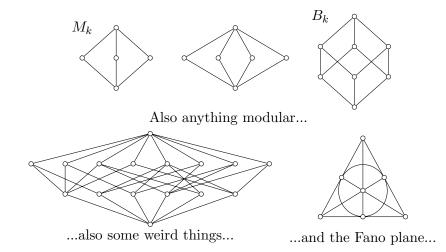
Theorem (Babai, Frankl)

If a lattice L has a non-vanishing Möbius function (is NMF), then it is SSP.



- As we see, M_3 is NMF, so it is SSP. Same argument shows that M_n is SSP for all $n \ge 2$, including $M_2 = B_2$.
- Chains of length at least two are not NMF. Although this condition is not necessary, such chains are not SSP.

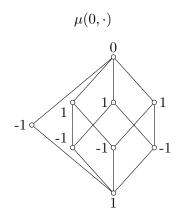
Example: geometric lattices (they are NMF)



...and so on.

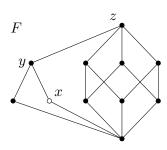
 $SSP \stackrel{r}{=} RC$

Some examples: NMF is not necessary



- For a lattice on the picture, the Möbius vanishes on the pair (0, 1), however the corresponding lattice is SSP. This example can be covered by a slight strengthening of the NMF condition;
- This example can be generalized by adjoining an element in the similar way to any SSP lattice with $\mu(0,1) = -1$.

Very simple necessary condition



Sh(F)

Lemma

If L is SSP then it does not have a three-element chain as a subinterval.

A lattice is **relatively complemented** (RC) if for all x < y < z there is w, a complement of y in [x, z], s.t. $x = y \land w$ and $z = y \lor w$.

Lemma (Björner)

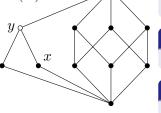
A lattice does not have 3-element intervals iff it is relatively complemented.

Corollary

 $SSP \Rightarrow RC.$

Conjecture

SSP = RC.



This page is empty

A simple SSP \Rightarrow RC type result.

Suppose $\mathcal{F} \subseteq L$ is such that an order-filter of elements not shattered by \mathcal{F} contains just one minimal element. That is

$$L - \operatorname{Str}(\mathcal{F}) = [x).$$

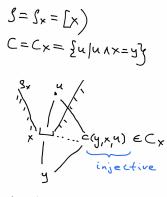
• Then x is non-shattered through some $y \leq x$. That is

$$\mathcal{F} \subseteq L - \{ u \in L \mid u \land x = y \}.$$

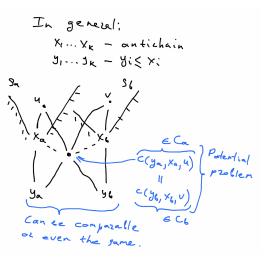
• Call $S = S_x = [x)$ and $C = C_x = \{u \in L \mid u \land x = y\}$. It is enough to show that $|C| \ge |S|$, as then

$$|\operatorname{Str}(\mathcal{F})| = |L - S| = |L| - |S| \ge |L| - |C| = |L - C| \ge |\mathcal{F}|.$$

But $\varphi(u) = c(y, x, u)$ is an injective function from S to C, so $|C| \ge |S|$ and we are done.



50 1013/181



The SSP=RC conjecture would follow from the following one $% \mathcal{S}$

Conjecture (a slight strenghtening of SSP=RC)

For an RC-lattice L, let a system of size k be an antichain x_1, \ldots, x_k together with the elements y_1, \ldots, y_k where $y_i \leq x_i$. Let us define $S = \bigcup [x_i)$, and $C = \bigcup \{u \mid u \land x_i = y_i\}.$

Then $|S| \leq |C|$.

We can now try to prove it for small k, and:

- for k = 1 it's trivial, we have just proven it;
- for k = 2 it's not hard (but we use a peculiar structural lemma);

- for k = 3 it's true, but very hard to prove. The subject of this talk is a subcase of this case, which is generic enough.

The structural lemma

Lemma (Corresponds to E2)

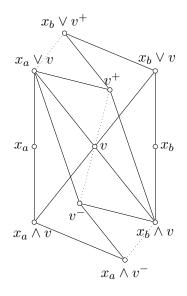
For arbitrary x_a , v, $x_b \in L$ there are elements v^- and v^+ , $v^- \leq v \leq v^+$ such that

$$v^{-} \lor x_{a} = v \lor x_{a} = v^{+} \lor x_{a},$$

$$v^{-} \land x_{b} = v \land x_{b} = v^{+} \land x_{b},$$

$$v^{+} \lor x_{b} \ge x_{a},$$

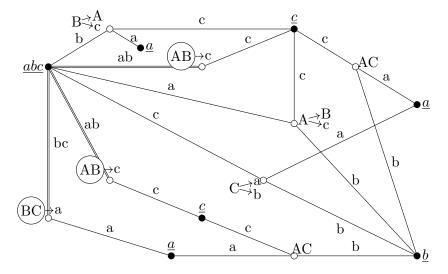
$$v^{-} \land x_{a} \le x_{b}.$$



This page is empty

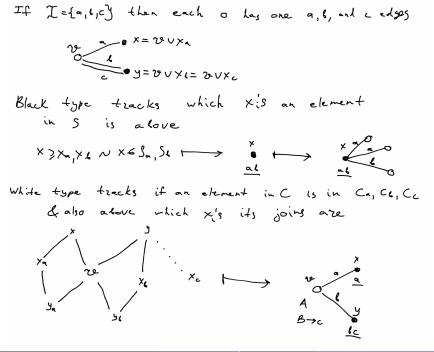
The second reformulation: RC-graphs

An RC-graph (over an index set $\mathcal{I} = \{a, b, c\}$) is "this"



How RC graph tracks a system over RC lattice

$$x \in S \longrightarrow black$$
 vertex $x = 0$
 $v \in C \longrightarrow$ white vertex $v = 0$
 $v \vee x_a = x \longrightarrow a$ -edge letveen $v \otimes x = 0$
 $Tf = \{a_1, b_1c\}$ then each $a = a, b, and c = dges$
 $v = v \vee x_a = v \vee x_a$
 $v = v \vee x_a = v \vee x_a$
 $v = v \vee x_a = v \vee x_a$

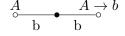


The extension conditions

(E1) For a black vertex u and $a \in \tau(u)$, there is an *a*-edge from u to (a white vertex) xwith $A \in \tau(x)$;

This corresponds to the fact that if $x \ge x_a$ then $u = c(y_a, x_a, u)$ is in C_a and joins x_a to u.

E2) For a white vertex
$$x$$
 and $a, b \in \mathcal{I}$, if
 $A \in \tau(x)$ then there is a *b*-*b*-path from x
to (a white vertex) x^+ such that 1)
 $A \to b \in \tau(x^+)$, and 2) $A_{\tau(x^+)} \supseteq A_{\tau(x)}$,
that is, $\tau(x^+)$ has all arrows that $\tau(x)$
has;



a

a

This is a somewhat special condition, and it corresponds to a structural lemma about RClattices.

The second reformulation: RC-graphs

Conjecture (a big strenghtening of the antichain SSP=RC)

For an RC-graph it holds $|S| \leq |C|$.

Now, if $k = |\mathcal{I}|$, then

- for k = 1 it's trivial;
- for k = 2 it's easy by a straightforward use of (E2);

- for k = 3 it's true, but complicated (the definition of an RC-graph should be modified);

- for k = 5 it's **false**!

So the last conjecture is false, and to make use of this approach, we have to reformulate it as

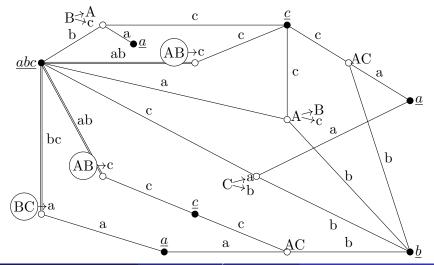
Lemma (Graph $SSP_k = RC_k \Rightarrow SSP_k = RC_k$)

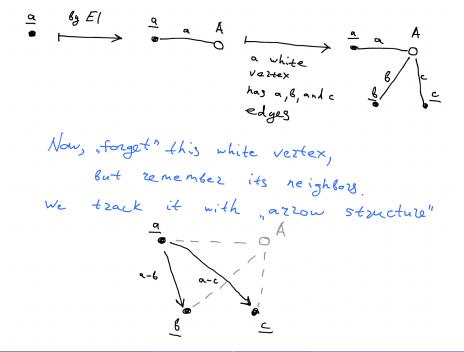
For a fixed k, if for any \mathcal{I} , $|\mathcal{I}| \leq k$, and for any Γ over \mathcal{I} it holds $|S_{\Gamma}| \leq |C_{\Gamma}|$, then for any finite RC lattice L and any $F \subseteq L$ such that $\min(L - Sh(F))$ has at most k elements, then $|Sh(F)| \geq |F|$.

This page is empty

Proof strategy: An RC-graph Γ

Consider black vertices with types to be fixed, and white ones as varying.

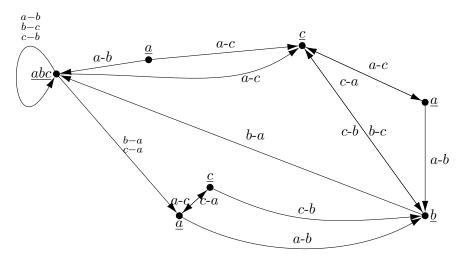


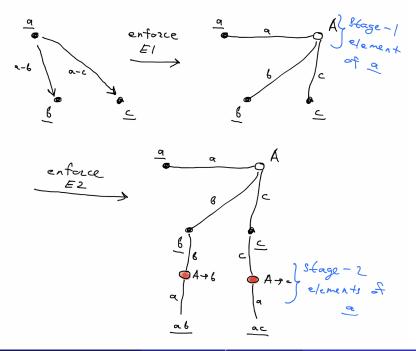


 $SSP \stackrel{\prime}{=} RC$

An arrow structure \mathcal{A}_{Γ} of Γ

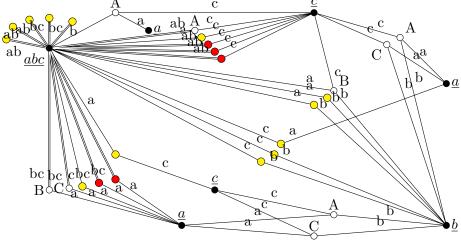
For any $u \in S$, any $a \in \tau(u)$, and any $b \in \mathcal{I} - a$ there is an $u \xrightarrow{a-b} v$ arrow (formally, a tuple (u, a, b, v)) such that $b \in \tau(v)$.





The free RRC-graph $F_{\mathcal{A}}$ of $\mathcal{A} = \mathcal{A}_{\Gamma}$

Assumed simplification: trivial closures - there is exactly one top black element $t, \tau(t) = \underline{abc}$, and the types of all other black elements are one-element sets.



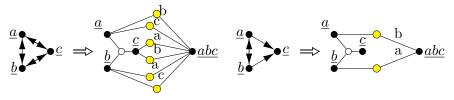
The image of $F_{\mathcal{A}}$ under a congruence Θ



Proof strategy: collapsing white vertices in $F_{\mathcal{A}}$

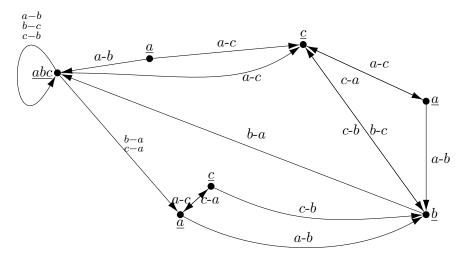
- 1 We want to prove that $|S| \leq ||\Theta||$;
- 2 There is at least one stage-1 vertex for every black vertex, so if none of them are collapsed, we're already done. And it's not easy to collpase them, but sometimes they do;
- 3 Also, there is a lot of stage-2 vertices, but they are easily collapsible;
- So, we will track the special cases when stage-1 vertices collapse. These situations will force some stage-2 vertices to be hard to collapse. We will track those, and ignore all others.

The special cases when stage-1 vertices collapse are *triangles* and *pyramids*.

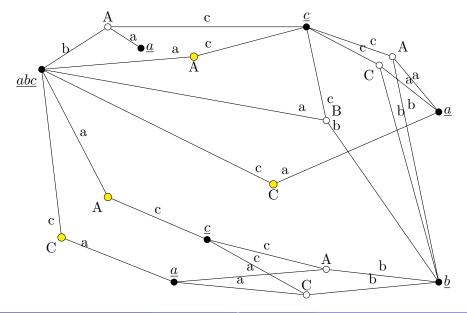


An arrow structure \mathcal{A}_{Γ} of Γ

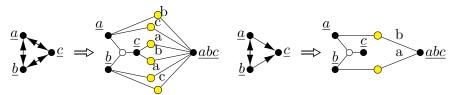
We will look for special patterns: triangles and pyramids.



Stage-1 and principal stage-2 vertices of $F_{\mathcal{A}}$



For a congruence Θ of $F_{\mathcal{A}}$, $|S| \leq ||\Theta||$



- We (temporarily) ignore the top vertex t.

- There are r triangles, p pyramids, and s singletones, i.e. non-top black vertices not in a triangle or in a base of a pyramid. Then |S| = 3r + 2p + s + 1;

- Triangles and pyramids produce one stage-1 vertex each, so there are r + p + s stage-1 vertices after contraction. Also, they produce 6 and 2 *principal* stage-2 vertices respectively;

- All white vertices produced this way are incomparable (almost, some trickery about special stage-2 vertices is done here);

- Principal stage-2 vertices can contract, but at most in pairs. So, we get at least r + p + s + (6r + 2p)/2 = 4r + 2p + s white elements.

For a congruence Θ of $F_{\mathcal{A}}$, $|S| \leq ||\Theta||$

We are almost done: we want to prove that $|S| \leq ||\Theta||$, but we know that |S| = 3r + 2p + s + 1 and $4r + 2p + s \leq ||\Theta||$. So the only possible "bad situation" can happen if r = 0, and

$$|S| = 2p + s + 1 > 2p + s = ||\Theta||.$$

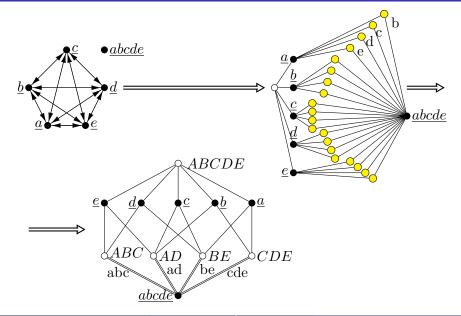
But also notice that the lower bound for Θ is acheivable only if we ignore all arrows from t, all non-principal stage-2 vertices, and only if all principal stage-2 vertices collapse precisely in pairs. That is, the fact that it's acheived gives us a lot of structural information. Then, consequtively, we get:

- there are no triangles;
- no arrow in \mathcal{A} goes to the top;
- there are no pyramids;

After that we reach a contradiction because the stage-1 elements of t cannot be contracted with anything.

This page is empty

A counterexample for k = 5 ($\mathcal{I} = \{a, b, c, d, e\}$)



Question. Let k > 0, and let G_k be a "normal" graph with $V_{G_k} = \{(a, b) \mid a \neq b\}$ and $E_{G_k} = \{(a_1, b_1), (a_2, b_2) \mid b_1 \neq a_2, b_2 \neq a_1\}$, with $a, b \in \overline{k}$. What is the clique covering number of G_k ?

In the construction of G_k vertices are all stage-2 vertices of a "generalized triangle", and edges capture the compatibility relation, that is, which edges can be contracted to which. In particular, the counterexample above comes from the fact that for k = 5 there is a clique covering if size 4, namely:

(1,3), (1,4), (1,5), (2,3), (2,4), and (2,5);
(1,2), (3,2), (3,5), (4,2), and (4,5);
(2,1), (3,1), (3,4), (5,1), and (5,4);
(4,1), (4,3), (5,2), and (5,3).

Thank you!

