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Reminder: Sauer-Shelah-Perles lemma

F Let us fix a base set X and a family F. A set
eoe Y C X is shattered by F iff F|y = 2Y.
eco oeo ooe  Stated otherwise:
000 VZCY X e F st. Z=YNX.

Lemma (Sauer-Shelah-Perles)

Sh(F)

Every family F shatters at least as many
elements as it has.

[ Jof ] [ JoJ ] cee

[ JeJe) ceo ocoe
Alternatively, we can say that F' is a subset of
a boolean lattice B,,, and an element y € B,
is shattered by F if

000

Vz2<y IX €F st. z=yAuzx.




Lattices, satisfying SSP.

F Sh(F)

So, for the original SSP lemma in the
background we always have a boolean lattice
B,,, which regulates how shattering is defined.

We can change B, to arbitrary finite lattice
L, and say that F' C L shatters an element
y € L, iff

Ve<y dz €F st. z=yAuw.
We say that L satisfies Sauer-Shelah-Perles

property (is SSP), if for any F' C L it holds:
|F| < |Sh(F)].

Thus, all B,, are SSP, but, for example, a
chain of length at least two is not.




A sufficient condition for SSP.

Which finite lattices are SSP? There is one nice sufficient condition
from Ldszlo Babai, Péter Frankl. Linear algebra methods in
combinatorics.

Theorem (Babai, Frankl)

If a lattice L has a non-vanishing Mobius function (is NMF), then it is
SSP.

(0, ) m As we see, M3 is NMF, so it is SSP.
2 0 Same argument shows that M, is SSP
for all n > 2, including My = Bs.

m Chains of length at least two are not
NMEF. Although this condition is not
1 necessary, such chains are not SSP.




Example: geometric lattices (they are NMF)

o

Also anything modular...

&
A

...also some weird things... ...and the Fano plane...

...and so on.




Some examples: NMF' is not necessary

(0, - m For a lattice on the picture, the Mobius
vanishes on the pair (0,1), however the
corresponding lattice is SSP. This
example can be covered by a slight
strengthening of the NMF condition;

m This example can be generalized by
adjoining an element in the similar way
to any SSP lattice with p(0,1) = —1.




Very simple necessary condition

B

If L is SSP then it does not have a
three-element chain as a subinterval.

A lattice is relatively complemented (RC)
if for all x < y < z there is w, a complement
ofyin [z, z],st. z=yAwand z=yVw.

Lemma (Bjorner)

A lattice does not have 3-element intervals iff
it 1s relatively complemented.

Y
SSP = RC. \

SSP = RC. \
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A simple SSP=-RC type result.

Suppose F C L is such that an order-filter of elements not
shattered by F contains just one minimal element. That is

L — Str(F) = [z).
m Then x is non-shattered through some y < x. That is
FCL—{uel|uhz=uy}.

Call S=8S,=[z)and C=Cy ={u € L | uAz=uy}. Itis enough
to show that |C] > |S], as then

| Ste(F)| = |L =S| = [L| = [S| = |L] - |C] = [L = C| = | F].

But ¢(u) = ¢(y, z,u) is an injective function from S to C, so
|C| > |S| and we are done.
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The first reformulation (antichains)

The SSP=RC conjecture would follow from the following one

Conjecture (a slight strenghtening of SSP=RC)

For an RC-lattice L, let a system of size k be an antichain x1, ..., Ty
together with the elements y1,...,yr where y; < x;. Let us define

S=Ul[xi), and C = {u | u A z; = y;}.
Then |S| < |C].

We can now try to prove it for small k, and:

- for k = 1 it’s trivial, we have just proven it;

- for k = 2 it’s not hard (but we use a peculiar structural lemma);

- for k = 3 it’s true, but very hard to prove. The subject of this talk
is a subcase of this case, which is generic enough.




The structural lemma

Lemma (Corresponds to E2)

For arbitrary x,, v, xp, € L there are
elements v~ and v, v~ < v <vT such
that

v_an:vv:I:a:v+v:ca,
v_A:zb:vA:cb:v+/\a:b,
vtV > 2y,

v ATy < T
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The second reformulation: RC-graphs

An RC-graph (over an index set Z = {a, b, c}) is “this”

o
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The extension conditions

(E1) For a black vertex u and a € 7(u), there
is an a-edge from u to (a white vertex) z  a A
with A € 7(z); a
This corresponds to the fact that if x > x,
then u = ¢(yq, Zq, u) is in C, and joins z, to u.

(E2) For a white vertex x and a,b € Z, if
A € 7(x) then there is a b-b-path from x A A—=b
to (a white vertex) T such that 1) b b
A—=be T(:L’+), and 2) AT(m+) D) AT(ac)a
that is, 7(z") has all arrows that 7(x)
has;

This is a somewhat special condition, and it
corresponds to a structural lemma about RC-
lattices.




The second reformulation: RC-graphs

Conjecture (a big strenghtening of the antichain SSP=RC)
For an RC-graph it holds |S| < |C|.

Now, if k = |Z|, then

- for k =1 it’s trivial;

- for k = 2 it’s easy - by a straightforward use of (E2);

- for k = 3 it’s true, but complicated (the definition of an RC-graph
should be modified);

- for k =5 it’s false!

So the last conjecture is false, and to make use of this approach, we
have to reformulate it as

Lemma (Graph SSP;,=RC; = SSP,=RCj)

For a fized k, if for any I, |Z| < k, and for any I over T it holds
|Sr| < |Cr|, then for any finite RC lattice L and any F C L such that
min (L — Sh(F)) has at most k elements, then |Sh(F)| > |F|.
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Proof strategy: An RC-graph I'

Consider black vertices with types to be fixed, and white ones as
varying.
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An arrow structure Ar of T’

For any u € S, any a € 7(u), and any b € Z — a there is an u by,
arrow (formally, a tuple (u,a,b,v)) such that b € 7(v).

e

a—b
b—c
c—b
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The free RRC-graph F4 of A = Ar

Assumed simplification: trivial closures - there is exactly one top black

element ¢, 7(t) = abe, and the types of all other black elements are
one-element sets.

A C
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The image of F 4 under a congruence ©




Proof strategy: collapsing white vertices in Fq

We want to prove that |S| < [|©]];

There is at least one stage-1 vertex for every black vertex, so if
none of them are collapsed, we’re already done. And it’s not easy
to collpase them, but sometimes they do;

Also, there is a lot of stage-2 vertices, but they are easily
collapsible;

So, we will track the special cases when stage-1 vertices collapse.
These situations will force some stage-2 vertices to be hard to
collapse. We will track those, and ignore all others.

The special cases when stage-1 vertices collapse are triangles and
pyramids.

I~ i)
o




An arrow structure Ar of T’

We will look for special patterns: triangles and pyramids.




Stage-1 and principal stage-2 vertices of Fq

abe




For a congruence © of Fy, |S| < ||O]|

IS

(=l

- We (temporarily) ignore the top vertex ¢.

- There are r triangles, p pyramids, and s singletones, i.e. non-top
black vertices not in a triangle or in a base of a pyramid. Then

S| =3r+2p+s+1;

- Triangles and pyramids produce one stage-1 vertex each, so there are
r+ p+ s stage-1 verticies after contraction. Also, they produce 6 and 2
principal stage-2 vertices respectively;

- All white vertices produced this way are incomparable (almost, some
trickery about special stage-2 vertices is done here);

- Principal stage-2 vertices can contract, but at most in pairs. So, we
get at least r + p + s + (67 + 2p)/2 = 4r + 2p + s white elements.
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For a congruence © of Fy, |S| < ||O]|

We are almost done: we want to prove that |S| < |||, but we know
that |[S| =3r +2p+ s+ 1and 4r +2p+ s < ||©]|. So the only possible
“bad situation” can happen if r = 0, and

IS|=2p+s+1>2p+s=]06].

But also notice that the lower bound for © is acheivable only if we
ignore all arrows from ¢, all non-principal stage-2 vertices, and only if
all principal stage-2 vertices collapse precisely in pairs. That is, the
fact that it’s acheived gives us a lot of structural information. Then,
consequtively, we get:

- there are no triangles;

- no arrow in A goes to the top;

- there are no pyramids;

After that we reach a contradiction because the stage-1 elements of ¢
cannot be contracted with anything.

30/ 34



This page is empty







A related question

Question. Let k > 0, and let Gi be a “normal” graph with
VGk = {((I,@ | a 7é b} and EGk = {(a17b1)) (a27b2) ’ bl # a27b2 7é al}a
with a,b € k. What is the clique covering number of Gj?

In the construction of G, vertices are all stage-2 vertices of a
“generalized triangle”, and edges capture the compatibility relation,
that is, which edges can be contracted to which. In particular, the
counterexample above comes from the fact that for &k = 5 there is a
clique covering if size 4, namely:

m (1,3), (1,4), (1,5), (2,3), (2,4), and (2,5);

 (1,2), (3,2), (3,5), (4,2), and (4,5);
m (2,1), (3,1), (3,4), (5,1), and (5,4);
m (4,1), (4,3), (5,2), and (5,3)
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