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Reminder: Sauer-Shelah-Perles lemma

F

Sh(F)

Let us fix a base set X and a family F . A set
Y ⊆ X is shattered by F iff F|Y = 2Y .
Stated otherwise:

∀Z ⊆ Y ∃X ∈ F s.t. Z = Y ∩X.

Lemma (Sauer-Shelah-Perles)

Every family F shatters at least as many
elements as it has.

Alternatively, we can say that F is a subset of
a boolean lattice Bn, and an element y ∈ Bn
is shattered by F if

∀z ≤ y ∃X ∈ F s.t. z = y ∧ x.
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Lattices, satisfying SSP.

F Sh(F)

F Sh(F)

So, for the original SSP lemma in the
background we always have a boolean lattice
Bn, which regulates how shattering is defined.

We can change Bn to arbitrary finite lattice
L, and say that F ⊆ L shatters an element
y ∈ L, iff

∀z ≤ y ∃x ∈ F s.t. z = y ∧ x.

We say that L satisfies Sauer-Shelah-Perles
property (is SSP), if for any F ⊆ L it holds:
|F | ≤ |Sh(F )|.

Thus, all Bn are SSP, but, for example, a
chain of length at least two is not.
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A sufficient condition for SSP.

Which finite lattices are SSP? There is one nice sufficient condition
from László Babai, Péter Frankl. Linear algebra methods in
combinatorics.

Theorem (Babai, Frankl)

If a lattice L has a non-vanishing Möbius function (is NMF), then it is
SSP.
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µ(0, ·)
0

-1

1

As we see, M3 is NMF, so it is SSP.
Same argument shows that Mn is SSP
for all n ≥ 2, including M2 = B2.

Chains of length at least two are not
NMF. Although this condition is not
necessary, such chains are not SSP.
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Example: geometric lattices (they are NMF)

Mk

Bk

Also anything modular...

...also some weird things... ...and the Fano plane...

...and so on.
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Some examples: NMF is not necessary

0

-1
-1 -1
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µ(0, ·) For a lattice on the picture, the Möbius
vanishes on the pair (0, 1), however the
corresponding lattice is SSP. This
example can be covered by a slight
strengthening of the NMF condition;

This example can be generalized by
adjoining an element in the similar way
to any SSP lattice with µ(0, 1) = −1.
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Very simple necessary condition

z

y

x

F

z

y

x

Sh(F )

Lemma

If L is SSP then it does not have a
three-element chain as a subinterval.

A lattice is relatively complemented (RC)
if for all x < y < z there is w, a complement
of y in [x, z], s.t. x = y ∧ w and z = y ∨ w.

Lemma (Björner)

A lattice does not have 3-element intervals iff
it is relatively complemented.

Corollary

SSP ⇒ RC.

Conjecture

SSP = RC.
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A simple SSP⇒RC type result.

Suppose F ⊆ L is such that an order-filter of elements not
shattered by F contains just one minimal element. That is

L− Str(F) = [x).

Then x is non-shattered through some y ≤ x. That is

F ⊆ L− {u ∈ L | u ∧ x = y}.

Call S = Sx = [x) and C = Cx = {u ∈ L | u ∧ x = y}. It is enough
to show that |C| ≥ |S|, as then

| Str(F)| = |L− S| = |L| − |S| ≥ |L| − |C| = |L− C| ≥ |F|.

But ϕ(u) = c(y, x, u) is an injective function from S to C, so
|C| ≥ |S| and we are done.
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The first reformulation (antichains)

The SSP=RC conjecture would follow from the following one

Conjecture (a slight strenghtening of SSP=RC)

For an RC-lattice L, let a system of size k be an antichain x1, . . . , xk
together with the elements y1, . . . , yk where yi ≤ xi. Let us define
S =

⋃
[xi), and C =

⋃
{u | u ∧ xi = yi}.

Then |S| ≤ |C|.

We can now try to prove it for small k, and:
- for k = 1 it’s trivial, we have just proven it;
- for k = 2 it’s not hard (but we use a peculiar structural lemma);
- for k = 3 it’s true, but very hard to prove. The subject of this talk

is a subcase of this case, which is generic enough.

SSP
?
= RC 11 / 34



The structural lemma

Lemma (Corresponds to E2)

For arbitrary xa, v, xb ∈ L there are
elements v− and v+, v− ≤ v ≤ v+ such
that

v− ∨ xa = v ∨ xa = v+ ∨ xa,
v− ∧ xb = v ∧ xb = v+ ∧ xb,
v+ ∨ xb ≥ xa,
v− ∧ xa ≤ xb.

xb

xb ∧ v

xb ∨ v

xa

xa ∧ v

xa ∨ v

v

v+

v−

xb ∨ v+

xa ∧ v−
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The second reformulation: RC-graphs

An RC-graph (over an index set I = {a, b, c}) is “this”
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The extension conditions

(E1) For a black vertex u and a ∈ τ(u), there
is an a-edge from u to (a white vertex) x
with A ∈ τ(x);

This corresponds to the fact that if x ≥ xa
then u = c(ya, xa, u) is in Ca and joins xa to u.

(E2) For a white vertex x and a, b ∈ I, if
A ∈ τ(x) then there is a b-b-path from x
to (a white vertex) x+ such that 1)
A→ b ∈ τ(x+), and 2) Aτ(x+) ⊇ Aτ(x),
that is, τ(x+) has all arrows that τ(x)
has;

This is a somewhat special condition, and it
corresponds to a structural lemma about RC-
lattices.

a
a A

b b

A A→ b
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The second reformulation: RC-graphs

Conjecture (a big strenghtening of the antichain SSP=RC)

For an RC-graph it holds |S| ≤ |C|.

Now, if k = |I|, then
- for k = 1 it’s trivial;
- for k = 2 it’s easy - by a straightforward use of (E2);
- for k = 3 it’s true, but complicated (the definition of an RC-graph

should be modified);
- for k = 5 it’s false!

So the last conjecture is false, and to make use of this approach, we
have to reformulate it as

Lemma (Graph SSPk=RCk ⇒ SSPk=RCk)

For a fixed k, if for any I, |I| ≤ k, and for any Γ over I it holds
|SΓ| ≤ |CΓ|, then for any finite RC lattice L and any F ⊆ L such that
min (L− Sh(F )) has at most k elements, then |Sh(F )| ≥ |F |.
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Proof strategy: An RC-graph Γ

Consider black vertices with types to be fixed, and white ones as
varying.
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An arrow structure AΓ of Γ

For any u ∈ S, any a ∈ τ(u), and any b ∈ I − a there is an u
a−b−−→ v

arrow (formally, a tuple (u, a, b, v)) such that b ∈ τ(v).
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The free RRC-graph FA of A = AΓ

Assumed simplification: trivial closures - there is exactly one top black
element t, τ(t) = abc, and the types of all other black elements are
one-element sets.
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The image of FA under a congruence Θ
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Proof strategy: collapsing white vertices in FA

1 We want to prove that |S| ≤ ‖Θ‖;
2 There is at least one stage-1 vertex for every black vertex, so if

none of them are collapsed, we’re already done. And it’s not easy
to collpase them, but sometimes they do;

3 Also, there is a lot of stage-2 vertices, but they are easily
collapsible;

4 So, we will track the special cases when stage-1 vertices collapse.
These situations will force some stage-2 vertices to be hard to
collapse. We will track those, and ignore all others.

The special cases when stage-1 vertices collapse are triangles and
pyramids.
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An arrow structure AΓ of Γ

We will look for special patterns: triangles and pyramids.
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Stage-1 and principal stage-2 vertices of FA
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For a congruence Θ of FA, |S| ≤ ‖Θ‖
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- We (temporarily) ignore the top vertex t.

- There are r triangles, p pyramids, and s singletones, i.e. non-top
black vertices not in a triangle or in a base of a pyramid. Then
|S| = 3r + 2p+ s+ 1;

- Triangles and pyramids produce one stage-1 vertex each, so there are
r + p+ s stage-1 verticies after contraction. Also, they produce 6 and 2
principal stage-2 vertices respectively;

- All white vertices produced this way are incomparable (almost, some
trickery about special stage-2 vertices is done here);

- Principal stage-2 vertices can contract, but at most in pairs. So, we
get at least r + p+ s+ (6r + 2p)/2 = 4r + 2p+ s white elements.
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For a congruence Θ of FA, |S| ≤ ‖Θ‖

We are almost done: we want to prove that |S| ≤ ‖Θ‖, but we know
that |S| = 3r + 2p+ s+ 1 and 4r + 2p+ s ≤ ‖Θ‖. So the only possible
“bad situation” can happen if r = 0, and

|S| = 2p+ s+ 1 > 2p+ s = ‖Θ‖.

But also notice that the lower bound for Θ is acheivable only if we
ignore all arrows from t, all non-principal stage-2 vertices, and only if
all principal stage-2 vertices collapse precisely in pairs. That is, the
fact that it’s acheived gives us a lot of structural information. Then,
consequtively, we get:

- there are no triangles;

- no arrow in A goes to the top;

- there are no pyramids;

After that we reach a contradiction because the stage-1 elements of t
cannot be contracted with anything.
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A counterexample for k = 5 (I = {a, b, c, d, e})
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A related question

Question. Let k > 0, and let Gk be a “normal” graph with
VGk

= {(a, b) | a 6= b} and EGk
= {(a1, b1), (a2, b2) | b1 6= a2, b2 6= a1},

with a, b ∈ k. What is the clique covering number of Gk?

In the construction of Gk vertices are all stage-2 vertices of a
“generalized triangle”, and edges capture the compatibility relation,
that is, which edges can be contracted to which. In particular, the
counterexample above comes from the fact that for k = 5 there is a
clique covering if size 4, namely:

(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), and (2, 5);

(1, 2), (3, 2), (3, 5), (4, 2), and (4, 5);

(2, 1), (3, 1), (3, 4), (5, 1), and (5, 4);

(4, 1), (4, 3), (5, 2), and (5, 3).
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Thank you!
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