Choice-Free de Vries Duality

Guillaume Massas

UC Berkeley

August 9, 2022

- Stone's representation theorem for Boolean algebras (and therefore also Stone duality) relies on the Boolean Prime Ideal Theorem (BPI), a fragment of the Axiom of Choice.
- There exists a constructive, **pointfree** analogue of Stone duality: the Ω -*pt* adjunction between topological spaces and frames restricts to a duality between Stone spaces and **compact zero-dimensional frames**...

- Stone's representation theorem for Boolean algebras (and therefore also Stone duality) relies on the Boolean Prime Ideal Theorem (BPI), a fragment of the Axiom of Choice.
- There exists a constructive, **pointfree** analogue of Stone duality: the Ω -*pt* adjunction between topological spaces and frames restricts to a duality between Stone spaces and **compact zero-dimensional frames**... under BPI!

- Stone's representation theorem for Boolean algebras (and therefore also Stone duality) relies on the Boolean Prime Ideal Theorem (BPI), a fragment of the Axiom of Choice.
- There exists a constructive, **pointfree** analogue of Stone duality: the Ω -*pt* adjunction between topological spaces and frames restricts to a duality between Stone spaces and **compact zero-dimensional frames**... under BPI!
- More recently, Bezhanishvili and Holliday (2020) have developed a fully constructive duality between Boolean algebras and *UV*-spaces.
- Their approach has strong ties with **possibility semantics** for classical and modal logic, and the **Vietoris** hyperspace construction.
- Intuitively, it is a semi-pointfree approach, in which classical points are replaced by a partially ordered set of approximations.

- De Vries (1962) generalized Stone duality to a duality between compact Haudorff spaces and de Vries algebras, which are complete Boolean algebras endowed with a subordination relation. He also assumed BPI.
- Isbell (1972) showed that the Ω-pt adjunction restricts to a duality between compact Hausdorff spaces and compact regular frames...

- De Vries (1962) generalized Stone duality to a duality between compact Haudorff spaces and de Vries algebras, which are complete Boolean algebras endowed with a subordination relation. He also assumed BPI.
- Isbell (1972) showed that the Ω-pt adjunction restricts to a duality between compact Hausdorff spaces and compact regular frames... under BPI again.

- De Vries (1962) generalized Stone duality to a duality between compact Haudorff spaces and de Vries algebras, which are complete Boolean algebras endowed with a subordination relation. He also assumed BPI.
- Isbell (1972) showed that the Ω-pt adjunction restricts to a duality between compact Hausdorff spaces and compact regular frames... under BPI again.
- But the choice-free duality of Bezhanishvili and Holliday can be generalized to a duality between de Vries algebras and a category of de Vries spaces.
- This work extends the semi-pointfree approach, and is part of a larger research program in semi-constructive mathematics (*ZF* + *DC*).

Algebra	Point-set Topology	Pointfree Topology	Semi-Pointfree Topology
BA	Stone	KZFrm	UV
deV	KHaus	KRFrm	dVS

1 Background

2 Choice-Free Representation of de Vries Algebras

3 dV Spaces

4 Compact Regular Frames and the Vietoris Functor

5 Some Applications

A compingent algebra is a pair (B, \prec) such that B is a Boolean algebra with induced order \leq , and \prec is a relation on $B \times B$ satisfying the following set of axioms:

(A1) $1 \prec 1$; (A2) $a \prec b$ implies $a \leq b$; (A3) $a \leq b \prec c \leq d$ implies $a \prec d$; (A4) $a \prec b$ and $a \prec c$ together imply $a \prec b \land c$; (A5) $a \prec b$ implies $\neg b \prec \neg a$; (A6) $a \prec c$ implies that there is $b \in B$ such that $a \prec b \prec c$; (A7) $a \neq 0$ implies that there is $b \neq 0 \in B$ such that $b \prec a$.

A compingent algebra is a pair (B, \prec) such that B is a Boolean algebra with induced order \leq , and \prec is a relation on $B \times B$ satisfying the following set of axioms:

(A1)
$$1 \prec 1$$
;
(A2) $a \prec b$ implies $a \leq b$;
(A3) $a \leq b \prec c \leq d$ implies $a \prec d$;
(A4) $a \prec b$ and $a \prec c$ together imply $a \prec b \land c$;
(A5) $a \prec b$ implies $\neg b \prec \neg a$;
(A6) $a \prec c$ implies that there is $b \in B$ such that $a \prec b \prec c$;
(A7) $a \neq 0$ implies that there is $b \neq 0 \in B$ such that $b \prec a$.

- A de Vries algebra is a compingent algebra $V = (B, \prec)$ such that B is a complete Boolean algebra.
- It is zero-dimensional if for any $a \prec b \in V$ there is $c \in V$ such that $a \prec c \prec c \prec b$.

• The regular open sets of any compact Hausdorff space form a de Vries algebra, with the subordination relation ≺ given by

$$U \prec V \Leftrightarrow \overline{U} \subseteq V.$$

The regular open sets of any **Stone space** form a zero-dimensional de Vries algebra.

• The regular open sets of any compact Hausdorff space form a de Vries algebra, with the subordination relation ≺ given by

$$U \prec V \Leftrightarrow \overline{U} \subseteq V.$$

The regular open sets of any **Stone space** form a zero-dimensional de Vries algebra.

Theorem (de Vries 1962)

Every de Vries algebra is isomorphic to the regular open sets of a compact Hausdorff space.

Definition

Let $V = (B, \prec)$ be a de Vries algebra. For any filter F on B, let $\uparrow F = \{a \in F \mid \exists b \in F : b \prec a\}$. A concordant filter on V is a filter F such that $\uparrow F = F$. An end is a maximal concordant filter.

- The dual Stone space of a Boolean algebra *B* is constructed by endowing the set X_B of all ultrafilters on *B* with the topology generated by the sets $\hat{a} = \{p \in X_B \mid a \in p\}$ for any $a \in B$.
- De Vries constructed the dual compact Hausdorff space of a de Vries algebra V by taking the set of ends of V, which are its maximal concordant filters.

- The dual Stone space of a Boolean algebra B is constructed by endowing the set X_B of all ultrafilters on B with the topology generated by the sets *a* = {p ∈ X_B | a ∈ p} for any a ∈ B.
- De Vries constructed the dual compact Hausdorff space of a de Vries algebra V by taking the set of ends of V, which are its maximal concordant filters.
- By contrast, the dual *UV* space of *B* is obtained by taking the set of all filters on *B* endowed with the same Stone-like topology.
- So it is natural to expect our choice-free duals of a de Vries algebra V to be given by the set of all concordant filters on V.

- The dual Stone space of a Boolean algebra B is constructed by endowing the set X_B of all ultrafilters on B with the topology generated by the sets *a* = {p ∈ X_B | a ∈ p} for any a ∈ B.
- De Vries constructed the dual compact Hausdorff space of a de Vries algebra V by taking the set of ends of V, which are its maximal concordant filters.
- By contrast, the dual *UV* space of *B* is obtained by taking the set of all filters on *B* endowed with the same Stone-like topology.
- So it is natural to expect our choice-free duals of a de Vries algebra V to be given by the set of all concordant filters on V.
- Intuition: "Points" in a semi-pointfree context are coarse approximations of classical points.

Let $V = (B, \prec)$ be a de Vries algebra. The dual filter space of V is the topological space (S_V, σ) , where:

- S_V is the set of all concordant filters on V;
- σ is the Stone-like topology generated by $\{\widehat{a} = \{F \in S_V \mid a \in F\} \mid a \in V\}$.
- The specialization order \leq induced by σ coincides with the inclusion ordering on S_V . For any $U \subseteq S_V$, let $\downarrow U = \{F \in S_V \mid \exists G \supseteq F : G \in U\}$ and define:

$$U \ll V \Leftrightarrow \overline{U} \subseteq \downarrow V$$

Let $V = (B, \prec)$ be a de Vries algebra. The dual filter space of V is the topological space (S_V, σ) , where:

- S_V is the set of all concordant filters on V;
- σ is the Stone-like topology generated by $\{\widehat{a} = \{F \in S_V \mid a \in F\} \mid a \in V\}$.
- The specialization order \leq induced by σ coincides with the inclusion ordering on S_V . For any $U \subseteq S_V$, let $\downarrow U = \{F \in S_V \mid \exists G \supseteq F : G \in U\}$ and define:

$$U \ll V \Leftrightarrow \overline{U} \subseteq \downarrow V$$

Theorem (M.)

For any de Vries algebra $V = (B, \prec)$, the Stone map $a \mapsto \hat{a}$ is an isomorphism between V and $RO(S_V, \ll)$.

1 Background

2 Choice-Free Representation of de Vries Algebras

3 dV Spaces

4 Compact Regular Frames and the Vietoris Functor

5 Some Applications

UV-spaces

 Given a topological space (X, τ) with specialization order ≤, let ↓ and ↑ be the closure and interior operator in the upset topology induced by ≤, and let RO(X) = {U ⊆ X | U = ↑↓U}.

Definition

A topological space (X, τ) is a UV-space if it satisfies the following conditions:

- (X, τ) is compact and T_0 ;
- **2** CO $\mathcal{RO}(X)$ is closed under \cap and $-\downarrow$ and forms a basis for τ ;
- Any filter on CORO(X) is $CORO(x) = \{U \in CORO(X) \mid x \in U\}$ for some $x \in X$.

UV-spaces

 Given a topological space (X, τ) with specialization order ≤, let ↓ and ↑ be the closure and interior operator in the upset topology induced by ≤, and let RO(X) = {U ⊆ X | U = ↑↓U}.

Definition

A topological space (X, τ) is a UV-space if it satisfies the following conditions:

- **1** (X, τ) is compact and T_0 ;
- **2** CO $\mathcal{RO}(X)$ is closed under \cap and $-\downarrow$ and forms a basis for τ ;
- Any filter on CORO(X) is $CORO(x) = \{U \in CORO(X) \mid x \in U\}$ for some $x \in X$.

Theorem (Bezhanishvili and Holliday 2020)

For any UV space (X, τ) the compact open order-regular opens CORO(X) form a Boolean algebra. Conversely, the filter space of any Boolean algebra is a UV space.

A topological space (X, τ) is order-normal if for any closed set A and any regular closed set B such that A is disjoint from \hat{D}_{A} , there are disjoint open sets U and V such that $A \subseteq \downarrow U$ and $\hat{D}_{A} \subseteq V$.

• Order-normality is a straightforward generalization of the usual **normality** axiom stating that any two disjoint closed sets can be separated by disjoint open neighborhoods.

A topological space (X, τ) is order-normal if for any closed set A and any regular closed set B such that A is disjoint from \hat{D}_{A} , there are disjoint open sets U and V such that $A \subseteq \downarrow U$ and $\hat{D}_{A} \subseteq V$.

 Order-normality is a straightforward generalization of the usual normality axiom stating that any two disjoint closed sets can be separated by disjoint open neighborhoods.

Lemma

Let (X, τ) be an order-normal space such that $RO(X) \subseteq \mathcal{RO}(X)$. For any $U, V \in RO(X)$, let $U \ll V$ iff $\overline{U} \subseteq \downarrow V$. Then $(RO(X), \ll)$ is a de Vries algebra.

A de Vries space (dV space for short) is a topological space (X, τ) satisfying the following conditions:

- (X, τ) is T_0 , compact and order-normal;
- **2** RO(X) is a basis for τ and RO(X) $\subseteq \mathcal{RO}(X)$;
- **●** For every $x \in X$, $RO(x) = \{U \in RO(X) \mid x \in U\}$ is a concordant filter on RO(X), and for every filter *F* on RO(X), there is $x \in X$ such that $\uparrow F = RO(x)$.

A de Vries space (dV space for short) is a topological space (X, τ) satisfying the following conditions:

- (X, τ) is T_0 , compact and order-normal;
- **2** RO(X) is a basis for τ and RO(X) $\subseteq \mathcal{RO}(X)$;
- **②** For every $x \in X$, $RO(x) = \{U \in RO(X) | x \in U\}$ is a concordant filter on RO(X), and for every filter *F* on RO(X), there is $x \in X$ such that $\uparrow F = RO(x)$.

Lemma

For any de Vries algebra V, its dual space (S_V, τ) is a dV space. Moreover, any dV space is homeomorphic to the dual space of its de Vries algebra of regular open sets.

Let $V_1 = (B_1, \prec_1)$ and $V_2 = (B_2, \prec_2)$ be de Vries algebras. A de Vries morphism from V_1 to V_2 is a function $h: B_1 \to B_2$ satisfying the following set of conditions:

(V1)
$$h(0) = 0;$$

(V2) $h(a \land b) = h(a) \land h(b);$
(V3) $a \prec_1 b$ implies $\neg h(\neg a) \prec_2 h(b);$
(V4) $h(a) = \bigvee \{h(b) \mid b \prec_1 a\}.$

Given two de Vries morphisms $h: V_1 \to V_2$ and $k: V_2 \to V_3$, their composition $k \star h: V_1 \to V_3$ is defined as the map $a \mapsto \bigvee \{kh(b) : b \prec_1 a\}$.

Let $V_1 = (B_1, \prec_1)$ and $V_2 = (B_2, \prec_2)$ be de Vries algebras. A de Vries morphism from V_1 to V_2 is a function $h: B_1 \to B_2$ satisfying the following set of conditions:

(V1)
$$h(0) = 0;$$

(V2) $h(a \land b) = h(a) \land h(b);$
(V3) $a \prec_1 b$ implies $\neg h(\neg a) \prec_2 h(b);$
(V4) $h(a) = \bigvee \{h(b) \mid b \prec_1 a\}.$

Given two de Vries morphisms $h: V_1 \to V_2$ and $k: V_2 \to V_3$, their composition $k \star h: V_1 \to V_3$ is defined as the map $a \mapsto \bigvee \{kh(b) : b \prec_1 a\}$.

Definition

Let (X, τ_1) and (Y, τ_2) be dV spaces, and let \leq_1 and \leq_2 be the specialization orders induced by τ_1 and τ_2 respectively. A **de Vries map** (dV map for short) $f : X \to Y$ is a **continuous** function that is also **weakly dense**, i.e., is such that for any $x \in X$, if $f(x) \leq_2 y$ for some $y \in Y$, then there is $x' \geq_1 x$ such that $y \leq_2 f(x')$.

Duality

Lemma

- For any de Vries morphism $h: V_1 \to V_2$, the map $\Lambda(h): S_{V_2} \to S_{V_1}$ given by $F \mapsto \uparrow h^{-1}[F]$ is a dV map.
- Conversely, given a dV map f : (X, τ₁) → (Y, τ₂), the map U ↦ (f⁻¹[U])^{⊥⊥} induces a de Vries morphism Φ(f) : RO(Y) → RO(X).
- We can therefore define contravariant functors $\Lambda: deV \to dVS$ and $\Phi: dVS \to deV.$

Duality

Lemma

- For any de Vries morphism $h: V_1 \to V_2$, the map $\Lambda(h): S_{V_2} \to S_{V_1}$ given by $F \mapsto \uparrow h^{-1}[F]$ is a dV map.
- Conversely, given a dV map f : (X, τ₁) → (Y, τ₂), the map U ↦ (f⁻¹[U])^{⊥⊥} induces a de Vries morphism Φ(f) : RO(Y) → RO(X).
- We can therefore define contravariant functors $\Lambda: deV \to dVS$ and $\Phi: dVS \to deV.$

Theorem (M.)

The functors Φ and Λ establish a dual equivalence between the categories deV and dVS.

2 Choice-Free Representation of de Vries Algebras

3 dV Spaces

4 Compact Regular Frames and the Vietoris Functor

5 Some Applications

- A frame L is compact if 1_L = ∨ B for some B ⊆ L implies 1 = ∨ B' for some finite B' ⊆ B.
- For any a, b ∈ L, a is way below b, (a ≺ b), if b ∨ ¬a = 1_L. A compact regular frame is a compact frame L such that for any a ∈ L, a = V{b ∈ L | b ≺ a}.

Theorem (Isbell 1972)

The Ω -pt adjunction between frames and topological spaces restricts to a duality between compact Hausdorff spaces and compact regular frames.

- A frame L is compact if 1_L = ∨ B for some B ⊆ L implies 1 = ∨ B' for some finite B' ⊆ B.
- For any a, b ∈ L, a is way below b, (a ≺ b), if b ∨ ¬a = 1_L. A compact regular frame is a compact frame L such that for any a ∈ L, a = V{b ∈ L | b ≺ a}.

Theorem (Isbell 1972)

The Ω -pt adjunction between frames and topological spaces restricts to a duality between compact Hausdorff spaces and compact regular frames.

- Isbell's duality relies on BPI.
- One can show however purely constructively that the category **KRFrm** of compact regular frames is equivalent to **deV**.

- Let V = (B, ≺) be a de Vries algebra. A set I ⊆ B is a round ideal iff
 I^δ = {¬a | a ∈ I} is a concordant filter. The frame of round ideals of V is denoted ℜ(V).
- Let L be a compact regular frame. An element a of L is regular if a ¬¬a. The Booleanization of L, denoted B(L), is the subframe {a ∈ L | ¬¬a = a}.

- Let V = (B, ≺) be a de Vries algebra. A set I ⊆ B is a round ideal iff
 I^δ = {¬a | a ∈ I} is a concordant filter. The frame of round ideals of V is denoted ℜ(V).
- Let L be a compact regular frame. An element a of L is regular if a ¬¬a. The Booleanization of L, denoted B(L), is the subframe {a ∈ L | ¬¬a = a}.

Lemma (Banaschewski, Bezhanishvili)

- For any de Vries algebra V, $\mathfrak{R}(V)$ is a compact regular frame, and $V \simeq B(\mathfrak{R}(V))$.
- For any compact regular frame L, (B(L), ≺) is a de Vries algebra, and L ≃ ℜ(B(L)).

An open set U in a dV space (X, τ) is well-rounded if order-normality holds for -U, i.e., for any closed set $A \subseteq \downarrow U$, there are disjoint open sets V_1 and V_2 such that $A \subseteq \downarrow V_1$ and $X = V_2 \cup \downarrow U$.

Lemma

The lattice wORO(X) of well-rounded order-regular open subsets of a dV space X is isomorphic to $\Re(RO(X), \ll)$.

- This induces a functor $wO\mathcal{RO} : dVS \rightarrow KRFrm$.
- What about in the other direction?

Let *L* be a compact regular frame. The **upper Vietoris space** of *L* is the topological space $\Xi(L) = (L^-, \tau_{\Box})$, where τ_{\Box} is the topology generated by the sets $\Box a = \{b \in L^- \mid a \lor b = 1_L\}$ for any $a \in L$.

Lemma

For any compact regular frame L, $\Xi(L)$ is a dV space, and $(RO(\Xi(L)), \ll) \simeq (B(L), \prec)$.

Let *L* be a compact regular frame. The **upper Vietoris space** of *L* is the topological space $\Xi(L) = (L^-, \tau_{\Box})$, where τ_{\Box} is the topology generated by the sets $\Box a = \{b \in L^- \mid a \lor b = 1_L\}$ for any $a \in L$.

Lemma

For any compact regular frame L, $\Xi(L)$ is a dV space, and $(RO(\Xi(L)), \ll) \simeq (B(L), \prec)$.

Corollary

The functors wORO and Ξ establish an equivalence between **dVS** and **KRFrm**.

 Moreover, assuming BPI, the dual dV space of a de Vries algebra is homeomorphic to the Upper Vietoris hyperspace of its dual compact Hausdorff space.

2 Choice-Free Representation of de Vries Algebras

3 dV Spaces

4 Compact Regular Frames and the Vietoris Functor

5 Some Applications

- It is well known that Tychonoff's Theorem relies on the BPI. In fact, Tychonoff's Theorem for compact Hausdorff spaces is equivalent to BPI.
- By contrast, the coproduct of the frames of opens of a family of compact Hausdorff spaces is always compact...

- It is well known that Tychonoff's Theorem relies on the BPI. In fact, Tychonoff's Theorem for compact Hausdorff spaces is equivalent to BPI.
- By contrast, the coproduct of the frames of opens of a family of compact Hausdorff spaces is always compact...
- ...but it may fail to be spatial in the absence of BPI.

- It is well known that Tychonoff's Theorem relies on the BPI. In fact, Tychonoff's Theorem for compact Hausdorff spaces is equivalent to BPI.
- By contrast, the coproduct of the frames of opens of a family of compact Hausdorff spaces is always compact...
- ...but it may fail to be spatial in the absence of BPI.

Let $\{(X_i, \tau_i)\}_{i \in I}$ be a family of compact Hausdorff spaces. The semi-pointfree product of this family is the *dV*-space $\Xi(\bigoplus_{i \in I} \Omega(X_i))$.

Theorem

The semi-pointfree product of a family of compact Hausdorff spaces $\{(X_i, \tau_i)\}_{i \in I}$ is compact. Moreover, under (BPI), it is homeomorphic to the upper-Vietoris space of $\prod_{i \in I} (X_i, \tau_i)$.

- Bezhanishvili et al. (2019) have used de Vries duality to show that the Symmetric Strong Implication Calculus S²IC is sound and complete with respect to the class of compact Hausdorff spaces.
- This calculus is obtained by adding a strong implication connective →, which can be interpreted on any contact algebra (B, ≺) by a → b = 1 if a ≺ b and a → b = 0 otherwise.

- Bezhanishvili et al. (2019) have used de Vries duality to show that the Symmetric Strong Implication Calculus S²IC is sound and complete with respect to the class of compact Hausdorff spaces.
- This calculus is obtained by adding a strong implication connective →, which can be interpreted on any contact algebra (B, ≺) by a → b = 1 if a ≺ b and a → b = 0 otherwise.
- We can use dV spaces to provide an alternative, choice-free semantics for S²IC.

A de Vries topological model is a triple (X, τ, V) such that (X, τ) is a *dV*-space, and *V* is a valuation such that for any formulas φ , ψ of S²IC:

- If φ is propositional letter p, then $V(\varphi) \in RO(X)$;
- $V(\neg \varphi) = V(\varphi)^{\perp}$ and $V(\varphi \land \psi) = V(\varphi) \cap V(\psi);$
- $V(\varphi \rightsquigarrow \psi) = X$ if $\overline{V(\varphi)} \subseteq \downarrow V(\psi)$ and $V(\varphi \rightsquigarrow \psi) = \emptyset$ otherwise.

A formula φ is valid on a *dV*-space (X, τ) iff $V(\varphi) = X$ for any de Vries topological model (X, τ, V) .

Theorem (ZF)

The system S^2IC is sound and complete with respect to the class of all dV-spaces.

A de Vries topological model is a triple (X, τ, V) such that (X, τ) is a *dV*-space, and *V* is a valuation such that for any formulas φ , ψ of S²IC:

- If φ is propositional letter p, then $V(\varphi) \in RO(X)$;
- $V(\neg \varphi) = V(\varphi)^{\perp}$ and $V(\varphi \land \psi) = V(\varphi) \cap V(\psi);$
- $V(\varphi \rightsquigarrow \psi) = X$ if $\overline{V(\varphi)} \subseteq \downarrow V(\psi)$ and $V(\varphi \rightsquigarrow \psi) = \emptyset$ otherwise.

A formula φ is valid on a *dV*-space (X, τ) iff $V(\varphi) = X$ for any de Vries topological model (X, τ, V) .

Theorem (ZF)

The system S^2IC is sound and complete with respect to the class of all dV-spaces.

• We can think of our choice-free de Vries duality as providing a **possibility semantics** for logics of region-based theories of space, just like choice free Stone duality serves as a categorical foundation for possibility semantics for classical and modal logic. Thank you!