BLAST/Chapman University, 2022

Directed Partial Orders and Birkhoff-Pierce Problem

The Story

1 > 0

Doubly conve

set

Schwartz-Yang Orders Directed Partial Orders and Birkhoff-Pierce Problem

Yuehui Zhang

Shanghai Jiao Tong University, China

BLAST(Chapman University) 2022.8.9

A simple question: Is 1 > 0?

Directed Partial Orders and Birkhoff-Pierce Problem

The Story

1 > 0

1 ≯ 0

Doubly converset

- Is 1 > 0 in \mathbb{C} ?
- Is always 1 > 0 in \mathbb{R} ?
- General question: Birkhoff-Pierce problem.
- More general question: Fuchs' problem.

Birkhoff-Pierce problem: Orders over C?

Directed Partial Orders and Birkhoff-Pierce Problem

The Story

1 > 0

DPO with 1 ≯ 0

Doubly converset

- 1956, Birkhoff-Pierce problem:
 - Does $\mathbb C$ admit any lattice orders?
- 1963, L. Fuchs:
 - Do \mathbb{R},\mathbb{H} admit any lattice orders besides the usual one?
- \blacksquare \mathbb{R} admits infinitely many lattice orders.
- Still open over \mathbb{C} and \mathbb{H} .

Positivity of 1 in \mathbb{C} or \mathbb{R} ?

Directed Partial Orders and Birkhoff-Pierce Problem

The Story

DPO with

1 ≯ 0 Doubly conv

Doubly convex set

- Is 1 always positive as a complex number?
- Very easy: No.
- Is 1 always positive in \mathbb{R} when lattice-ordered?
- Answer: No. (Wilson, 1976.)

Directed partial Orders (DPO)

Directed Partial Orders and Birkhoff-Pierce Problem

The Story

DPO with

1 ≯ 0

Doubly converset

- DPO = Directed partial Order: Every two elements *a*, *b* enjoy an upper bound and a lower bound.
- A lattice order is a DPO.

DPO – the "BEST" orders on \mathbb{C} ?

Directed Partial Orders and Birkhoff-Pierce Problem

The Story

DPO with

DPO with $1 \not > 0$

Doubly convex set

- A positive cone P of a po-ring R is a DPO if and only if it is a partial order and P P = R.
- Theorem(R. DeMarr, A. Steger, 1972). 1 $\mathbb C$ admits no DPO as an $\mathbb R$ algebra.

¹R.DeMarr, A.Steger, PAMS 31(1972).

The "BEST" orders on $\mathbb C$

Directed Partial Orders and Birkhoff-Pierce Problem

The Story

1 > 0

DPO with $1 \not \geqslant 0$

Doubly convex set

- Schwarz-Yang Theorem, $2011.^2$ The field $\mathbb C$ admits at least one DPO which is not a lattice order.
- \blacksquare Existence proof. None DPO on $\mathbb C$ is constructed so far.

²N. Schwartz, Y. Yang, *Fields with directed partial orders*, J. Algebra **336**(2011)342-348. (2011) 342-348.

Bounded semigroup

Directed Partial Orders and Birkhoff-Pierce Problem

The Stor

DPO with 1 > 0

DPO with $1 \not > 0$

Doubly convex set

Schwartz-Yang Orders ■ Let F be a non-archimedean o-field. A convex additive semigroup S of F^+ containing 0, 1 is called "bounded" if there exists $z \in F^+$ such that $s \ll z$ for all $s \in S$, written as $S \ll z$.

Let P be a DPO with 1 > 0 (i.e. $1 \in P$). Define

$$s(P) = \{x \in F^+ \mid x \le a, \forall a \in F^+ \text{ with } a + i \in P \}.$$

Then s(P) is a bounded semigroup of F^+ .

■ Let S be a bounded semigroup of F^+ . Define

$$p(S) = \{a + bi \mid a \in F^+, 0 \le sb \le a \text{ for all } s \in S\}.$$

Then p(S) is a DPO on C with 1 > 0.

Classification of DPOs with 1 > 0

Directed Partial Orders and Birkhoff-Pierce Problem

The Story
DPO with

1 > 0

DPO with 1 ≯ 0

Doubly convex set

Schwartz-Yang Orders ■ Theorem³. Let F be a non-archimedean o-field and C = F(i). Then there is a bijection between the set of DPOs with 1 > 0 over \mathbb{C} and the set of bounded semigroups of F.

 $^{^3}$ J. Ma, L. Wu, Y. Zhang, Directed Partial Orders on F(i) with 1>0, Order, 35(2018)3, 461-466.

Special convex subsets

Directed Partial Orders and Birkhoff-Pierce Problem

The Story DPO with

DPO with 1 ≯ 0

Doubly convex

set Schwartz-

Schwartz-Yang Orders

Definition

Let $\emptyset \neq V \subseteq F^+$. Then *V* is **special convex** if

- (1) V is convex in F^+ ;
- (2) $1 \ll V$, namely $1 \ll v$ for any $v \in V$;
- (3) If $a \sim b, a < b \in V$, then $a \in V$.

Correspondence

Directed Partial Orders and Birkhoff-Pierce Problem

The Stor

1 > 0

DPO with $1 \not> 0$

Doubly convex set

Schwartz-Yang Orders • Let V be a special convex subset of F^+ . Define

$$P_V = F^+\{a+i \mid a \in V\} = \{r(a+i) \mid \forall r \in F^+, \forall a \in V\}.$$

Then P_V is a DPO of C such that $1 \notin P_V$,

■ Let P be a DPO on C such that $1 \notin P$. Define

$$L(P) = \{ a \in F^+ \mid a + i \in P \}.$$

Then L(P) is a special convex subset of F^+ .

DPOs on C = F(i) with $1 \not> 0$

Directed Partial Orders and Birkhoff-Pierce Problem

The Story

1 > 0 DPO with

1 ≯ 0

Doubly convex

Doubly convex set

Schwartz-Yang Orders ■ Theorem⁴Let F be a non-archimedean o-field and C = F(i). Then there is a bijection between the set of DPOs with $1 \not> 0$ over $\mathbb C$ and the set of special convex sets of F.

 $^{^4}$ J. Ma, L. Wu, Y. Zhang, Directed partial orders on the field of generalized complex numbers with 1 \geq 0, Positivity, 2019(24)3,1001-1007.

Doubly convex set of non-archimedean o-field

Directed Partial Orders and Birkhoff-Pierce Problem

The Story

DPO with 1 > 0

DPO with 1 ≯ 0

Doubly convex set

Schwartz-Yang Orders

Definition

Let $\emptyset \neq V \subseteq F$. Then V is **doubly convex** if

- (1) $V \neq \{0\}$.
- (2) $|V| \ll 1$, namely $\forall v \in V, |v| \ll 1$.
- $(3) \, \forall a,b \in V, \forall r,s \in F^+ \text{ and } 1 \leq r+s \leq 2, \ ra+sb \in V.$
 - Remark. A doubly convex set of F is convex, and in general the inverse is not true.

DPO and doubly convex sets over F(i)

Directed Partial Orders and Birkhoff-Pierce Problem

The Stor

DPO with

Doubly convex

- Theorem⁵ Let F be a non-archimedean o-field and C = F(i). Then there is a bijection between the set of all DPOs over \mathbb{C} and the set of doubly convex sets of F.
- $lue{}$ Corollary. Suppose V is a doubly convex set of F. Then
 - 1. If $0 \in V$, then P_V is a DPO on C with 1 > 0.
 - 2. If $0 \notin V$, then P_V is a DPO on C with $1 \not> 0$.

⁵Zhipeng XU, Yuehui Zhang, Directed Partial Orders over Non-Archimedea o-Fields, Positivity, 24(2)2020, 1279 - 1291.

DPO over H = F + Fi + Fj + Fk

Directed Partial Orders and Birkhoff-Pierce Problem

The Story

1 > 0

1 ≯ 0

Doubly convex set

Schwartz-Yang

Definition

A subset $\emptyset \neq V \subseteq F^3$ is **doubly convex** provided

- (1) V contains at least 2 linearly independent elements.
- (2) $|V| \ll 1$, that is $\forall \alpha = (a_1, a_2, a_3) \in V, |\alpha| \ll 1$.
- (3) V is convex, i.e. $\forall \alpha, \beta \in V$, $\forall r, s \in F^+, r+s=1$, then $r\alpha + s\beta \in V$.
- (4) $\forall \alpha, \beta \in V, \frac{\alpha + \beta + \alpha \times \beta}{1 \alpha \cdot \beta} \in V, \frac{\alpha + \beta \alpha \times \beta}{1 \alpha \cdot \beta} \in V.$

DPO and Doubly convex sets over H = F + Fi + Fj + Fk, Xu-Z, 2020

Directed Partial Orders and Birkhoff-Pierce Problem

The Stor

1 > 0

DPO with 1 ≯ 0

Doubly convex set

Schwartz-Yang

Theorem

Let $\mathcal V$ be the set of all doubly convex sets of F^3 . Let $\mathcal P$ be the set of all directed partial orders on H. Then there is a bijection between $\mathcal V$ and $\mathcal P$.

Schwartz-Yang orders

Directed Partial Orders and Birkhoff-Pierce Problem

The Stor

1 > 0

DPO with $1 \not > 0$

Doubly convex set

Schwartz-Yang Orders

- Let F be a non-archimedean o-field, K a directed extension field of F with $F^+ = K^+ \cap F$.
- Let $\sigma \in K, \sigma \geq 1$. Define

$$K[x]_{\sigma}^{+} = \{ \sum_{i=0}^{n} a_{i}x^{i} \mid \text{if } a_{i} > 0, i \geq 1, \text{then } \sigma a_{i} \ll a_{i-1} \}.$$

Schwartz-Yang's Theorem⁶. $K[x]_{+}^{+}$ defines a DPO over K[x].

⁶N. Schwartz, Y. Yang, *Fields with directed partial orders*, J. Algebra **336**(2011)342-348. (2011) 342-348

\mathbb{C} has a DPO

Directed Partial Orders and Birkhoff-Pierce Problem

The Story

DPO with

Doubly convex

Schwartz-

Yang Orders ■ Lemma. Let $F \subseteq K$ be fields as above. If $K \subseteq L$ is an algebraic extension then there is a DPO L^+ on L such that $L^+ \cap K = K^+$.

- Corollary. If *L* is any field that has transcendence degree at least 1 over $\mathbb O$ then *L* has a DPO.
- Schwartz-Yang's Theorem⁷.
 The field ℂ of complex numbers has a DPO.

⁷N. Schwartz, Y. Yang, *Fields with directed partial orders*, J. Algebra **336**(2011)342-348. (2011) 342-348

Schwartz-Yang orders and doubly convex sets

Directed Partial Orders and Birkhoff-Pierce Problem

The Story

1 > 0

DPO witl 1 ≯ 0

Doubly converset

- Let $D_{\sigma} = \{ s \in F | 1 + sx \in F[x]_{\sigma}^+ \}.$
- Theorem (Dong-Xu-Zhang, 2022). D_{σ} is a doubly convex set of F.
- Schwartz-Yang orders can be realized by doubly convex sets.

References

Directed
Partial Orders
and BirkhoffPierce
Problem

The Story

DPO with

Doubly convex

- 1. G.Birkhoff, R.S.Pierce, An. Acad. Brasil. Cienc. 28(1956).
- 2. R.DeMarr, A.Steger, PAMS 31(1972).
- 3. N.Schwartz, Y.Yang, JA 336(2011).
- 4. Y.Yang, JA, 2006
- 5. W.Rump, Y.Yang, JA, 2014
- 6. MWZ, DPO on NA Fields, Order, 2017
- 7. MWZ, DPO on F(i) with 1 > 0, Order, 2018
- 8. MWZ, DPO on F(i) with $1 \ge 0$, Positivity, 2019
- 9. XZ, Directed Partial Orders on Non-Archimedean *o*-Fields, Positivity, 2020

Directed Partial Orders and Birkhoff-Pierce Problem

The Story

1 > 0

DPO with

oubly convex et

Schwartz-Yang Orders Thank you for your attention!