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Motivation

◦ algebras for program analysis and correctness

◦ Kleene algebra with tests1 (partial correctness)
◦ demonic refinement algebra2 (total correctness)

◦ reference formalisation in Isabelle/HOL3

◦ verification of program equivalences

◦ program construction and refinement

◦ verification with Hoare logic

Isabelle offers unique balance of expressivity/automation

1
D. Kozen. Kleene algebra with tests. ACM TOCL, 1997.

2
J. von Wright. Towards a refinement algebra, SCP, 2004.

3
http://afp.sourceforge.net/entries/KAT_and_DRA.shtml

http://afp.sourceforge.net/entries/KAT_and_DRA.shtml


Motivation

Benefits of algebra

◦ program analysis by simple equational reasoning

◦ fits well with automated theorem proving

◦ separation of concerns (control flow vs data flow)

◦ data flow can be analysed by other means

How can algebras be integrated into program analysis tools?



Contributions

◦ formalisation of demonic refinement algebra in Isabelle/HOL

◦ 3 different axiomatisations for Kleene algebra with tests

◦ large libraries for KAT and DRA

◦ proof of classical program transformation examples

◦ Back’s atomicity refinement theorem
◦ Kozen’s loop transformation theorem

◦ computational models for KAT/DRA

◦ binary relations
◦ conjunctive/disjunctive predicate transformers

◦ principled approach to verification/refinement tools

◦ tools are themselves correct by construction



Kleene Algebras

Definition
KA is a structure (K ,+, ·,∗ , 0, 1) where

◦ (K ,+, ·, 0, 1) is a idempotent semiring, or dioid,

◦ with order defined by x ≤ y ←→ x + y = y

◦ the following fixpoint axioms hold for ∗

1 + x∗x ≤ x∗ z + yx ≤ y → zx∗ ≤ y

1 + xx∗ ≤ x∗ z + xy ≤ y → x∗z ≤ y



Kleene Algebras with Tests

Definition
KAT is a structure (K ,B,+, ·,∗ , , 0, 1) where

◦ (K ,+, ·,∗ , 0, 1) is a KA

◦ (B,+, ·, , 0, 1) is a BA with B ⊆ K

Algebraic programs semantics

if p then x else y fi = px + py

while p do x od = (px)∗p

Theorem
binary relations form KATs



Demonic Refinement Algebras

Definition
DRA is a structure (K ,+, ·,∗ ,∞ , 0, 1) where

◦ (K ,+, ·,∗ , 0, 1) is almost a KA

◦ x0 = 0 fails

◦ the following axioms hold for ∞

1 + xx∞ ≤ x∞ y ≤ xy + z → y ≤ x∞z

x∞ = x∗ + x∞0



Demonic Refinement Algebras

Possibly infinite loop

while p do x od = (px)∞p

Theorem
conjunctive/disjunctive predicate transformers form DRAs

Notation
refinement community uses u, ;, ω, >, ⊥, and v



Kozen’s Loop Transformation Theorem

Theorem
every sequential while program, appropriately augmented with
subprograms of the form z(pq + pq), can be viewed as a while
program with at most one loop under certain preservation
assumptions 12.

1
D. Kozen. Kleene algebra with tests. ACM TOCL, 1997.

2
K. Solin. Normal forms in total correctness for while programs and action systems. JLAP, 2011.



Kozen’s Loop Transformation Theorem

what do ∗ and ∞ have in common?

Definition
a pre-Conway algebra is a dioid (without x0 = 0) where

(x + y)† = (x†y)†x†

(xy)† = 1 + x(yx)†y

zx ≤ yz → zx† ≤ y †z

Remark
adding 1† = 1 yields KA

Theorem
Kozen’s transformation theorem holds in pre-Conway algebras
(hence in KAT and DRA)



Verification Tool
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principled approach based on algebra



Propositional Hoare Logic

Validity of Hoare triple

` {p} x {q} ⇔ pxq = 0

Theorem
inference rules of propositional Hoare logic are theorems of KAT

` {p} skip {p}
p ≤ p′ ∧ q′ ≤ q ∧ ` {p′} x {q′} ⇒ ` {p} x {q}

` {p} x {r} ∧ ` {r} y {q} ⇒ ` {p} x ; y {q}
` {pb} x {q} ∧ ` {pb} y {q} ⇒ ` {p} if b then x else y fi {q}

` {pb} x {p} ⇒ ` {p} while b do x od {bp}



Store and Assignments

Store in Isabelle

◦ store S is implemented as record of program variables

◦ works for any type of data value

◦ each variable has a retrieve and an update function

◦ a state σ is an element of the store

Definition
Assignment statements are formalised as

(x := e) = {(σ, x update σ e) | σ ∈ S}



Hoare Logic

Theorem
Hoare’s assignment rule is derivable in relational KAT

P ⊆ Q[e/x ] ⇒ ` {P} (x := e) {Q}

where Q[e/x ] denotes substitution of x by e in Q



Verification Tool

Control Flow

◦ Isabelle libraries for KAT include Hoare rules

◦ hoare tactic generates verification conditions

◦ these blast away control structure

Data Flow

◦ modelled in relational KAT

◦ integrates Isabelle libraries for data domains

◦ analysed with ATP systems and SMT solvers

◦ all proofs are internally reconstructed by Isabelle



Verification of Insertion Sort

lemma insertion_sort:

‘i := 1;

while {| ‘i < |‘A| |}
do
‘j := ‘i;

while {| 0 < ‘j ∧ ‘A ! ‘j < ‘A ! (‘j-1) |}

do
‘k := ‘A ! ‘j;

‘A ! ‘j := ‘A ! (‘j-1);

‘A ! (‘j-1) := ‘k;

‘j := ‘j-1

od;
‘i := ‘i+1

od



Verification of Insertion Sort

lemma insertion_sort: "` {| |Ao| > 0 ∧ ‘A=Ao |}
‘i := 1;

while {| ‘i < |‘A| |}
do
‘j := ‘i;

while {| 0 < ‘j ∧ ‘A ! ‘j < ‘A ! (‘j-1) |}

do
‘k := ‘A ! ‘j;

‘A ! ‘j := ‘A ! (‘j-1);

‘A ! (‘j-1) := ‘k;

‘j := ‘j-1

od;
‘i := ‘i+1

od
{| sorted ‘A ∧ ‘A ∼π Ao |}"



Verification of Insertion Sort

lemma insertion_sort: "` {| |Ao| > 0 ∧ ‘A=Ao |}
‘i := 1;

while {| ‘i < |‘A| |} inv {| sorted (take ‘i ‘A) ∧ ‘A ∼π Ao |}
do
‘j := ‘i;

while {| 0 < ‘j ∧ ‘A ! ‘j < ‘A ! (‘j-1) |}
inv {| (sorted_but (take (‘i+1) ‘A) ‘j) ∧ (‘i < |‘A|)
∧ (‘j ≤ ‘i) ∧ (‘j6=‘i −→ ‘A ! ‘j ≤ ‘A ! (‘j+1))

∧ (‘A ∼π Ao) |}
do
‘k := ‘A ! ‘j;

‘A ! ‘j := ‘A ! (‘j-1);

‘A ! (‘j-1) := ‘k;

‘j := ‘j-1

od;
‘i := ‘i+1

od
{| sorted ‘A ∧ ‘A ∼π Ao |}"



Verification of Insertion Sort

apply (hoare, auto)

hoare tactic generates 8 subgoals

apply (metis One_nat_def take_sorted_butE_0)

apply (metis take_sorted_butE_n One_nat_def ...)

apply (metis One_nat_def Suc_eq_plus1 le_less_linear ...)

apply (unfold sorted_equals_nth_mono sorted_but_def)

apply (smt nth_list_update)

apply (metis One_nat_def perm.trans perm_swap_array)

apply (smt nth_list_update)

by (smt perm.trans perm_swap_array)



Morgan’s Refinement Calculus

Specification Statement

one single axiom added to KAT

` {p} x {q} ⇔ x ≤ [p, q]

Theorem
Morgan’s refinement laws become derivable

p ≤ q ⇒ [p, q] v skip

p′ ≤ p ∧ q ≤ q′ ⇒ [p, q] v [p′, q′]

[0, 1] v x

x v [1, 0]

[p, q] v [p, r ]; [r , q]

[p, q] v if b then [pb, q] else [bp, q] fi

[p, bp] v while b do [bp, p] od



Morgan’s Refinement Calculus

Theorem
refinement laws for assignment are derivable in relational model

P ⊆ Q[e/x ]⇒ [P,Q] v (x := e)

Q ′ ⊆ Q[e/x ]⇒ [P,Q] v [P,Q ′]; (x := e)

P ′ ⊆ P[e/x ]⇒ [P,Q] v (x := e); [P ′;Q]



Refinement of Insertion Sort

[[ |Ao| > 0 ∧ ‘A=Ao, sorted ‘A ∧ ‘A ∼π Ao]]

v

‘i := 1;

while {|‘i < |‘A||} do
[[ sorted (take ‘i ‘A) ∧ ‘i < |‘A| ∧ ‘A ∼π Ao,

sorted (take (‘i+1) ‘A) ∧ (‘i+1) ≤ |‘A| ∧ ‘A ∼π Ao]];
‘i := ‘i+1

od
by refinement



Refinement of Insertion Sort

v
‘i := 1;

while {|‘i < |‘A||} do
while {| ‘j 6=0 ∧ ‘A ! ‘j < ‘A ! (‘j-1) |} do

[[ ‘j ≤ ‘i ∧ sorted_but (take (‘i+1) ‘A) ‘j

∧ (‘j6=‘i −→ ‘A ! ‘j ≤ ‘A ! (‘j+1)) ∧ ‘A ∼π Ao

∧ (‘i+1) ≤ |‘A| ∧ ‘j6=0 ∧ ‘A ! ‘j < ‘A ! (‘j-1),

‘j-1 ≤ ‘i ∧ sorted_but (take (‘i+1) ‘A) (‘j-1)

∧ (‘j-1 6=‘i −→ ‘A ! (‘j-1) ≤ ‘A ! ‘j) ∧ ‘j 6=0

∧ (‘i+1) ≤ |‘A| ∧ ‘A ∼π Ao]];
‘j := ‘j-1

od;
‘i := ‘i+1

od



Refinement of Insertion Sort

[[ ‘j ≤ ‘i ∧ sorted_but (take (‘i+1) ‘A) ‘j

∧ (‘j6=‘i −→ ‘A ! ‘j ≤ ‘A ! (‘j+1)) ∧ ‘A ∼π Ao

∧ (‘i+1) ≤ |‘A| ∧ ‘j 6=0 ∧ ‘A ! ‘j < ‘A ! (‘j-1),

‘j-1 ≤ ‘i ∧ sorted_but (take (‘i+1) ‘A) (‘j-1)

∧ (‘j-1 6=‘i −→ ‘A ! (‘j-1) ≤ ‘A ! ‘j) ∧ ‘j 6=0

∧ (‘i+1) ≤ |‘A| ∧ ‘A ∼π Ao]]

v

‘k := ‘A ! ‘j;

‘A ! ‘j := ‘A ! (‘j-1);

‘A ! (‘j-1) := ‘k



Refinement of Insertion Sort

[[ |Ao| > 0 ∧ ‘A=Ao, sorted ‘A ∧ ‘A ∼π Ao]]

v

‘i := 1;

while {|‘i < |‘A||} do
while {| ‘j 6=0 ∧ ‘A ! ‘j < ‘A ! (‘j-1) |} do

‘k := ‘A ! ‘j;

‘A ! ‘j := ‘A ! (‘j-1);

‘A ! (‘j-1) := ‘k;

‘j := ‘j-1

od;
‘i := ‘i+1

od

termination remains to be shown . . .



Conclusion

Work so far

◦ formalisation of KAT and DRA in Isabelle/HOL

◦ basis for program verification and correctness

◦ reference formalisation with large libraries (50 pages A4)

◦ integration into simple verification and refinement tools

◦ full Isabelle code is available online1

please ask me for a demo

1
Armstrong, Gomes, Struth. Kleene algebras with tests and demonic refinement algebras. AFP, 2014.

http://afp.sourceforge.net/entries/KAT_and_DRA.shtml

http://afp.sourceforge.net/entries/KAT_and_DRA.shtml


Conclusion

Related work in Isabelle/HOL

◦ verification with Hoare logic1

◦ flowchart equivalence proofs and Hoare logic in SKAT23

◦ rely/guarantee based concurrency verification4

Extensions

◦ wlp based reasoning with modal KA

◦ total correctness with DRA and predicate transformers

◦ concurrency verification with CKA

1
Nipkow. Winskel is (almost) right: towards a mechanized semantics textbook. FSTTCS, 1996.

2
Angus, Kozen. Kleene algebra with tests and program schematology. 2001.

3
Armstrong, Struth, Weber. Program analysis and verification based on KA in Isabelle/HOL, ITP, 2013.

4
Armstrong, Gomes, Struth. Algebraic principles for RG style concurrency verification tools. FM, 2014.



Verification in RA

◦ reference formalisation of RA in Isabelle integrates KA

◦ integrating KAT requires interpreting tests

◦ this suffices for verification/refinement with RA

◦ for heterogeneous relations better use Coq



KAT vs SKAT

◦ SKAT is KAT plus assignment axioms

◦ these have been formalised in Coq and Isabelle

◦ we can derive assignment axioms in relational KAT

◦ verification with SKAT in Isabelle seems more tedious



Algebras in the Archive

◦ already there:
variants of KA, KAT, DRA, RA, other regular algebras

◦ in the near future:
modal KA, CKA, quantales and fixpoint laws

please contribute . . .


