RAMiCS 2014

Marienstatt im Westerwald, Germany, 27 Apr-01 May 2014

Parameterised Bisimulations: Some Applications

S. Arun-Kumar \& Divyanshu Bagga
\{sak, divyanshu\}@cse.iitd.ac.in
Department of Computer Science and Engineering I. I. T. Delhi, Hauz Khas, New Delhi 110016.

May 1, 2014

Outline-0

- Parameterised Bisimulations
- Applications to Compatible Relations
- Conclusions and Future Work

Outline-1

- Parameterised Bisimulations
- What are they?
- What do they generalise?
- Some previous results
- Applications to Compatible Relations
- Conclusions and Future Work

Outline-3

- Parameterised Bisimulations
- Applications to Compatible Relations
- Conclusions and Future Work

Parameterised Bisimulations

- [AK06]A small generalisation of the notion of bisimulations on LTSs.
- Let $\mathcal{L}=\langle\mathbf{P}, \mathcal{O}, \longrightarrow\rangle, \longrightarrow \subseteq \mathbf{P} \times \mathcal{O} \times \mathbf{P}$ be any LTS. Let $\rho, \sigma \subseteq$ $\mathcal{O} \times \mathcal{O} . R \subseteq \mathbf{P} \times \mathbf{P}$ is a (ρ, σ)-bisimulation if $p R q$ implies the following conditions for all $a, b \in \mathcal{O}$.

$$
\begin{aligned}
p \xrightarrow{a} p^{\prime} & \Rightarrow \exists b, q^{\prime}\left[a \rho b \wedge q \xrightarrow{b} q^{\prime} \wedge p^{\prime} R q^{\prime}\right] \\
q \xrightarrow{b} q^{\prime} & \Rightarrow \exists a, p^{\prime}\left[a \sigma b \wedge p \xrightarrow{a} p^{\prime} \wedge p^{\prime} R q^{\prime}\right]
\end{aligned}
$$

- The largest (ρ, σ)-bisimulation (under set containment) is called (ρ, σ)-bisimilarity and denoted $\square_{(\rho, \sigma)}$.
Notation. $R: p \square_{(\rho, \sigma)} q:$ " R is a (ρ, σ)-bisimulation containing (p, q) "

What do they generalise?

- Strong bisimilarity[Mil89]: $\sim=\underline{\square}_{(\equiv, \equiv)}$
- Efficiency Preorder[AKH92]: $\precsim=\square(\preceq, \preceq)$
- Elaboration Preorder[AKN95]: $\precsim=\square(\preceq, \widehat{=})$
- Weak bisimilarity[Mil89]: $\approx=\underline{\square}_{(\widehat{=}, \widehat{=})}$
where

$$
\begin{aligned}
& \equiv=\text { the identity relation on } A c t \text { or } A c t^{*} \\
& \preceq=\left\{\left(\tau^{k} a \tau^{l}, \tau^{m} a \tau^{n}\right) \mid k+l \geq m+n, a \in A c t\right\} \\
& \widehat{=}=\left\{(s, t) \mid \hat{s}=\hat{t}, s, t \in A c t^{*}\right\}
\end{aligned}
$$

The simulation preorder[Mi189], localities, bisimulation on speed[LV06], amortised bisimilarity[KAK05] etc. may be represented as $\square_{(\rho, \sigma)}$ for appropriately chosen ρ and σ.

Some previous results

Many of the nice algebraic properties of bisimularities are induced by the relations ρ and σ. In fact we have [AK06]

- Monotonicity. $(\rho, \sigma) \subseteq\left(\rho^{\prime}, \sigma^{\prime}\right) \Rightarrow \underline{\square}_{(\rho, \sigma)} \subseteq \underline{\square}_{\left(\rho^{\prime}, \sigma^{\prime}\right)}$.
- Preorders. $\square_{(\rho, \sigma)}$ is a preorder iff ρ and σ are both preorders.
- Equivalences. $\square_{(\rho, \sigma)}$ is an equivalence iff ρ and σ are both preorders and $\sigma=\rho^{-1}$.
- $\left\langle\mathrm{B}_{(\rho, \sigma)}, \cup \emptyset\right\rangle$ is a commutative submonoid of $\left\langle 2^{\mathbf{P} \times \mathbf{P}}, \cup, \emptyset\right\rangle$.
- $\underline{\square}_{(\rho, \sigma)}$ is a preorder if $\left\langle\mathrm{B}_{(\rho, \sigma)}, \circ, \equiv\right\rangle$ is a submonoid of $\left\langle 2^{\mathbf{P} \times \mathbf{P}}, \circ, \equiv\right\rangle$.

Compatible Relations

- What about preorders or equivalences that are not necessarily precongruences or congruences resp.?
- Is a co-inductive characterisation possible for observational congruence?
- What about other operations such as recursion or substitutions that may not preserve preorders or equivalences?
\square \rightarrow \square

Our Contribution

- Observational Congruence is a parameterised bisimilarity
- Amortised bisimilarity [KAK05] is preserved under recursion
- Hyperbisimilarity in the Fusion calculus [Vic98] is a parameterised hyper-bisimilarity

44 $-$ \square \rightarrow \rightarrow RAMiCS-2014

Go вАск \qquad Full Scree
1 \qquad 9 of 28

Unifying Feature

They are all different!

- Observational Congruence : requires abstracting the transitions in the LTS generated by the operational semantics
- Amortised bisimilarity: requires transforming the LTS generated by the operational semantics
- Hyperbisimilarity: requires changing the operational semantics and generalising hyper-bisimilarity to a parameterised hyperbisimilarity that preserves substitution effects.
All the proofs are very technical and involved!
\square

Observational Congruence

- $\tau .0 \approx 0$. But $a .0+\tau .0 \not \approx a .0+\mathbf{0}$ for any $a \neq \tau$.
- Observational congruence is the largest symmetric relation $\left(\approx^{+}\right)$ on \mathbf{P} such that $p \approx^{+} q$ implies for all $\mu \in A c t$, if $p \xrightarrow{\mu} p^{\prime}$ then for some $q^{\prime}, m, n \geq 0, q \xrightarrow{\tau^{m} \mu \tau^{n}} q^{\prime}$ and $p^{\prime} \approx q^{\prime}$.
- $\tau .0 \approx 0$ but $\tau .0 \not \nsim^{+} 0$. However $\tau . \tau .0 \approx^{+} \tau .0$
$\bullet \approx^{+}$is always expressed in terms of \approx. There has been no coinductive characterisation of \approx^{+}.
\square
\square \rightarrow d

A Derived LTS

Let

- $\mathcal{L}=\langle\mathbf{P}, A c t, \longrightarrow\rangle$ be an LTS,
- $q \approx \xrightarrow{\tau} q^{\prime}$ denote $q \xrightarrow{\tau} q^{\prime}$ and $q \approx q^{\prime}$.

Define $\mathcal{L}_{\dagger}=\left\langle\mathbf{P}\right.$, Act. $\left.\tau^{*}, \longrightarrow_{\dagger}\right\rangle$ such that $p \xrightarrow{\mu \tau^{n}} \dagger p^{\prime}$ iff

- $p \xrightarrow{\mu} p_{0} \approx \xrightarrow{\tau} p_{1} \approx \xrightarrow{\tau} \cdots \approx \xrightarrow{\tau} p_{n} \equiv p^{\prime}$ and
- there does not exist any p_{n+1} such that $p^{\prime} \approx \stackrel{\tau}{\longrightarrow} p_{n+1}$.

No μ-derivative of any process in \mathcal{L}_{\dagger} has any τ-derivative that is weakly bisimilar to itself. Hence both $\tau .0$ and $\tau . \tau .0$ have 0 as their only τ-derivative in \mathcal{L}_{\dagger}.

An equivalent LTS

Since $A c t^{+}=\left(\text {Act. } \tau^{*}\right)^{+}$we may identify

$$
\mathcal{L}_{\dagger}=\left\langle\mathbf{P}, \text { Act. } \tau^{*}, \longrightarrow_{\dagger}\right\rangle \text { with } \mathcal{L}_{\dagger}^{+}=\left\langle\mathbf{P}, A c t^{+}, \longrightarrow_{\dagger}^{+}\right\rangle
$$

where $\longrightarrow_{\dagger}^{+}$denotes one or more transitions via $\longrightarrow_{\dagger}$.
Theorem 1 For divergence-free finite-state agents p, q,

1. For all $s \in A c t^{+}$, if $p \xrightarrow{s_{\dagger}^{+}} p^{\prime}$ then $p \xrightarrow{s} p^{\prime}$.
2. For all $s \in A c t^{+}$, if $p \xrightarrow{s} p^{\prime}$ then there exists $s^{\prime} \widehat{=} s$ such that $p \xrightarrow{s_{\rightarrow}^{\prime+}} p^{\prime \prime}$ and $p^{\prime} \approx p^{\prime \prime}$.
3. $p \underline{\square}_{\left(\hat{=}_{+}, \widehat{=}_{+}\right)}$q in $\mathcal{L}_{\dagger}^{+}$iff $p \approx^{+} q$, where $\widehat{=}_{+}$is the restriction of $\widehat{=}$ to $A c t^{+}$.

Amortised Bisimilarity

Introduced in [KAK05] in CCS - generalises and extends the "faster than" preorder defined by Lüttgen and Vogler in [LV06].

- Priced actions: $C A \cap A c t=\emptyset$
- Priced actions cannot be restricted or relabelled and do not have complements. Hence cannot take part in synchronization.
- $\mathcal{A}=A c t \cup C A$
- Cost function: $c: \mathcal{A} \rightarrow \mathbb{N}, c(\mu)=0$ for all $\mu \in A c t$
- $\rho \subseteq \mathcal{A} \times \mathcal{A}$ such that
$-\rho \upharpoonright A c t=\equiv_{A c t}$ and
$-\rho \backslash \equiv{ }_{A c t} \subseteq C A \times C A$
\square

Strong Amortised Bisimilarity

- A strong amortised bisimulation is a family of relations $\mathscr{R}=$ $\left\{R_{i} \mid i \in \mathbb{N}\right\}$ such that whenever $(p, q) \in R_{i}$ for some $i \in \mathbb{N}$,

$$
\begin{aligned}
& p \xrightarrow{a} p^{\prime} \Rightarrow \exists b, q^{\prime}\left[a \rho b \wedge q \xrightarrow{b} q^{\prime} \wedge p^{\prime} R_{j} q^{\prime}\right] \\
& q \xrightarrow{b} q^{\prime} \Rightarrow \exists a, p^{\prime}\left[a \rho b \wedge p \xrightarrow{a} p^{\prime} \wedge p^{\prime} R_{j} q^{\prime}\right]
\end{aligned}
$$

where $j=i+c(b)-c(a)$.

- p is amortised cheaper (more cost efficient) than $q\left(p \prec_{0}^{\rho} q\right.$ or simply $p \prec^{\rho} q$) if $p R_{0} q$ for some strong amortised ρ-bisimulation \mathscr{R}.
- p is amortised cheaper than q up to credit $i\left(p \prec_{i}^{\rho} q\right)$ if $p R_{i} q$. The index i gives the maximum credit which p requires to bisimulate q.

Compatibility with Recursion

- Milner's techniques not directly applicable to bisimulation defined as a family of relations.
- Necessary to "massage" the LTS generated by the operational semantics
- - Remember the cost of reaching a state.

$$
\begin{aligned}
-\mathcal{L}_{C} & =\left\langle\mathbb{N} \times \mathbf{P}, \mathcal{A} \times \mathbb{N}, \longrightarrow_{C}\right\rangle \text { is such that } \\
& \quad p \xrightarrow{a} p^{\prime} \Rightarrow m: p \xrightarrow{(a, n)} C \\
& n: p^{\prime}, \text { where } n=m+c(a)
\end{aligned}
$$

- Express amortised bisimulation as a parameterised bisimilarity.

Theorem 2 Let $\gamma_{\rho}=\{((a, m),(b, n)) \mid a \rho b, m \leq n\}$. Then
$m: p \underline{\square}_{\left(\gamma_{\rho}, \gamma_{\rho}\right)} m: q$ iff $p \prec_{0}^{\rho} q$, for all $m \in \mathbb{N}$.

Name-passing Calculi

- Substitutions are an integral part of name-passing calculi
- Names may be identified by some synchronization
- Under CCS-like synchronization dynamic conflation of names (passed as parameters) does not propagate without the metaoperation of substitution

$$
\bar{u} x \cdot \bar{x} \cdot p|u(y) \cdot y \cdot q \xrightarrow{\tau} \bar{x} \cdot p| x \cdot\{x / y\} \cdot q
$$

- Further bisimilarity is not preserved under parallel composition in name-passing calculi, because of the possibilities of synchronization.

Fusion Calculus

Why not the π-calculus?

- Symmetry between input and output.
- Properly contains the π-calculus.
- Explicit identification of names (fusions) as a global equivalence relation (restricted only by scope of application).
- There is only one meaningful notion of bisimilarity in the Fusion calculus (c.f. early and late bisimulations in the π-calculus).
- Substitutions are not symmetric, but fusions are. Makes it possible to give a generalised theory of parameterised bisimulations that respects the dynamic equivalence generated by fusions.

Man, It is still not that easy!

- In the presence of a relation ρ if $x \rho y$ and y is "fused" with z then we require $x \rho z$ to hold too!
- We need to dynamically remember what names are "equivalent", which the original semantics of the fusion calculus fails to provide.
- Change the operational semantics to have an environment ψ of name identifications.

Operational Semantics

Pref

$$
\alpha \cdot p \xrightarrow{\alpha} p
$$

$\operatorname{SUML} \frac{p \xrightarrow{\alpha} p^{\prime}}{p+q \xrightarrow{\alpha} p^{\prime}}$
$\operatorname{PARL} \frac{p \xrightarrow{\alpha} p^{\prime}}{\alpha}$

$$
\overline{p\left|q \xrightarrow{\alpha} p^{\prime}\right| q}
$$

$\operatorname{PASL} \frac{p \xrightarrow{\alpha} p^{\prime}}{(z) p \xrightarrow{\alpha}(z) p^{\prime}}, z \notin n(\alpha)$
$\mathrm{SCL} \xrightarrow{p \xrightarrow{\varphi} p^{\prime}, z \varphi x, x \neq z}$

$$
(z) p \xrightarrow{\varphi \backslash z}\{x / z\} p^{\prime}
$$

$$
\overline{(\psi, \alpha . p) \stackrel{\alpha}{\longrightarrow}(\psi \oplus \psi(\alpha), p)}
$$

$\operatorname{SUMR} \frac{(\psi, p) \xrightarrow{\alpha}\left(\psi^{\prime}, p^{\prime}\right)}{(\psi, p+q) \xrightarrow{\alpha}\left(\psi^{\prime}, p^{\prime}\right)}$
$\operatorname{PARR} \xrightarrow{(\psi, p) \xrightarrow{\alpha}\left(\psi^{\prime}, p^{\prime}\right)}$

$$
\overline{(\psi, p \mid q) \xrightarrow{\alpha}\left(\psi^{\prime}, p^{\prime} \mid q\right)}
$$

$\operatorname{PASR} \frac{(\psi, p) \xrightarrow{\alpha}\left(\psi^{\prime}, p^{\prime}\right)}{(\psi,(z) p) \xrightarrow{\alpha}\left(\psi^{\prime},(z) p^{\prime}\right)}, z \notin n(\alpha)$

$$
\operatorname{SCR} \frac{(\psi, p) \xrightarrow{\varphi}\left(\psi \oplus \varphi, p^{\prime}\right), z \varphi x, x \neq z}{(\psi,(z) p) \xrightarrow{\varphi \backslash z}\left(\psi \oplus(\varphi \backslash z),\{x / z\} p^{\prime}\right)}
$$

Operational Semantics (contd.)

$\mathrm{OPL} \xrightarrow{p \xrightarrow{(\tilde{y}) a \tilde{x}} p^{\prime}, z \in \tilde{x}-\tilde{y}, a \notin\{z, \bar{z}\}}\left((z) p \xrightarrow{(z \tilde{y}) a \tilde{x}} p^{\prime}\right.$
$\left.\operatorname{OPR} \xrightarrow\left[{(\psi, p) \xrightarrow{(\tilde{y}) a \tilde{x}}\left(\psi, p^{\prime}\right), z \in \tilde{x}-\tilde{y}, a \notin\{z, \bar{z}}\right\}\right]{(\psi,(z) p) \xrightarrow{(z \tilde{y}) a \tilde{x}}\left(\psi, p^{\prime}\right)}$
$\operatorname{COML} \xrightarrow{p \xrightarrow{u \tilde{x}} p^{\prime}, q \xrightarrow{\tilde{u} \tilde{y}} q^{\prime},|\tilde{x}|=|\tilde{y}|} \underset{p\left|q \xrightarrow{\{\tilde{x}=\tilde{y}\}} p^{\prime}\right| q^{\prime}}{\text { 位 }}$
$\operatorname{ComR} \xrightarrow{(\psi, p) \xrightarrow{u \tilde{x}}\left(\psi, p^{\prime}\right),(\psi, q) \xrightarrow{\bar{v} \tilde{y}}\left(\psi, q^{\prime}\right),|\tilde{x}|=|\tilde{y}|, u \psi v} \underset{(\psi, p \mid q) \xrightarrow{\{\tilde{x}=\tilde{y}\}}\left(\psi \oplus\{\tilde{x}=\tilde{y}\}, p^{\prime} \mid q^{\prime}\right)}{ }$

Substitution Effects

- Every action has a "side-effect" viz. the creation of an equivalence on names. On sequences $\boldsymbol{\alpha}$ of actions this effect is

$$
E(\boldsymbol{\alpha})= \begin{cases}\varphi \oplus E\left(\boldsymbol{\alpha}^{\prime}\right) & \text { if } \boldsymbol{\alpha}=\varphi \cdot \boldsymbol{\alpha}^{\prime} \\ E\left(\boldsymbol{\alpha}^{\prime}\right) & \text { if } \boldsymbol{\alpha}=\alpha \cdot \boldsymbol{\alpha}^{\prime} \\ \mathbf{1} & \text { if } \boldsymbol{\alpha}=\epsilon\end{cases}
$$

where $\varphi \oplus \varphi^{\prime}$ is the smallest equivalence containing both φ and φ^{\prime}.

- A relation ρ is conservative iff $\forall \boldsymbol{\alpha}, \boldsymbol{\beta}$ if $\boldsymbol{\alpha} \rho \boldsymbol{\beta}$ then $E(\boldsymbol{\alpha})=$ $E(\boldsymbol{\beta})$. It is substitution-closed iff $\forall x, y, \boldsymbol{\alpha}, \boldsymbol{\beta}$ if $\boldsymbol{\alpha} \rho \boldsymbol{\beta}$ then $(\{x / y\} \boldsymbol{\alpha}) \rho(\{x / y\} \boldsymbol{\beta})$.

Generalised (ρ, σ)-bisimulation

- For any $\rho, \sigma \subseteq A c t^{2}$, a relation $\mathcal{G} \subseteq(E n v \times \mathbf{P})^{2}$ is a generalised (ρ, σ)-bisimulation if $(\psi, p) \mathcal{G}(\omega, q)$ implies for all $\boldsymbol{\alpha}_{\mathbf{1}}, \boldsymbol{\beta}_{\mathbf{2}} \in A c t^{*}$,

$$
\begin{aligned}
&(\psi, p) \xrightarrow{\boldsymbol{\alpha}_{\mathbf{1}}}\left(\psi^{\prime}, p^{\prime}\right) \Rightarrow \exists \boldsymbol{\alpha}_{\mathbf{2}}: \boldsymbol{\alpha}_{\mathbf{1}} \rho^{\prime} \boldsymbol{\alpha}_{\boldsymbol{2}},\left(\omega^{\prime}, q^{\prime}\right):(\omega, q) \xrightarrow{\boldsymbol{\alpha}_{\mathbf{2}}}\left(\omega^{\prime}, q^{\prime}\right) \wedge \\
&(\omega, q) \xrightarrow{\boldsymbol{\beta}_{\mathbf{2}}}\left(\omega^{\prime}, q^{\prime}\right) \Rightarrow \overrightarrow{\left.\psi^{\prime}\right) \mathcal{G}\left(\omega^{\prime}, q^{\prime}\right)} \boldsymbol{\exists \boldsymbol { \beta } _ { \mathbf { 1 } } : \boldsymbol { \beta } _ { \mathbf { 1 } } \sigma ^ { \prime } \boldsymbol { \beta } _ { \mathbf { 2 } } , (\psi ^ { \prime } , p ^ { \prime }) : (\psi , p) \xrightarrow { \boldsymbol { \beta } _ { \mathbf { 1 } } } (\psi ^ { \prime } , p ^ { \prime }) \wedge} \begin{aligned}
\left(\psi^{\prime}, p^{\prime}\right) \mathcal{G}\left(\omega^{\prime}, q^{\prime}\right)
\end{aligned}
\end{aligned}
$$

where $\rho^{\prime}=\psi \circ \rho \circ \omega$ and $\sigma^{\prime}=\psi \circ \sigma \circ \omega$.

- A generalised (ρ, σ)-bisimulation \mathcal{G} is a (ρ, σ)-bisimulation if for all $\psi, \omega \in E n v$ and $p, q \in \mathbf{P},(\psi, p) \mathcal{G}(\omega, q)$ implies $\psi=\omega$.
- $\square_{(\rho, \sigma)}$ is the largest (ρ, σ)-bisimulation.

${ }_{(\rho, \sigma) \text {-hyperbisimulation }}$

- $\mathscr{H} \subseteq \mathbf{P}^{2}$ is a (ρ, σ)-hyperbisimulation if $p \mathscr{H} q$ implies for every $\psi \in E n v$, there exists $\mathcal{G}:(\psi, p) \square_{(\rho, \sigma)}(\psi, q)$
- $\underline{\square}_{(\rho, \sigma)}$ is (ρ, σ)-hyperbisimilarity.
- If ρ and σ are both conservative and substitution closed relations on actions then for all $\psi \in E n v$ and θ such that θ is a substitutive effect of ψ we have $(\psi, p) \square_{(\rho, \sigma)}(\psi, q)$ if and only if $(\mathbf{1}, \theta p) \square_{(\rho, \sigma)}(\mathbf{1}, \theta q)$.
- Furthermore if $p \square_{(\rho, \sigma)} q$ then for all substitutions θ we have $\theta p \square_{(\rho, \sigma)} \theta q$.
- $\underline{\square}_{(\equiv, \equiv)}$ coincides with the strong hyper-bisimilarity of the Fusion Calculus.

Conclusions and Open Questions

Contributions:

- A generalisation of the notion of bisimulation from which certain other bisimulation theories may be derived.
- Coinductive characterisations of some (pre-)congruence relations which were not defined coinductively before.
- The inheritance properties may also be generalised to hyperbisimulations and similar "hyper" versions of the "vanilla"flavoured relations may be obtained.

Open Questions

- How do these parameterisations fit within a categorical framework?
- What kind of algorithms may be designed for checking (ρ, σ) -hyper-bisimilarity?

References
[AKH92] Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Informatica 29, 737-760 (1992)
[AKN95] Arun-Kumar, S., Natarajan, V.: Conformance: A precongruence close to bisimilarity. In: Structures in Concurrency Theory, pp. 55-68. Springer (1995)
[AK06] Arun-Kumar, S.: On bisimilarities induced by relations on actions. In: Software Engineering and Formal Methods, 2006. SEFM 2006. Fourth IEEE International Conference on, pp. 41-49. IEEE (2006)
[KAK05] Kiehn, A., Arun-Kumar, S.: Amortised bisimulations. In: Formal Techniques for Networked and Distributed Systems-FORTE 2005, pp. 320-334. Springer (2005)
[LV06] Lüttgen, G., Vogler, W.: Bisimulation on speed: A unified approach. Theoretical Computer Science 360, 209-227 (2006)
[Mil89] Milner, R.: Communication and concurrency. Prentice-Hall, Inc. (1989)

[Vic98] Victor, B.: The fusion calculus: Expressiveness and symmetry in mobile processes. PhD thesis, Uppsala University (1998)

Thank You!
 Any Questions?

