Relation Algebra and RelView Applied to Approval Voting

Rudolf Berghammer, Nikita Danilenko and Henning Schnoor

Institut für Informatik
Christian-Albrechts-Universität zu Kiel

24. April 2014

Introduction

Voting procedures are used in situations if a group of individuals has to come to a common decision:

- Elections of political parliaments.
- Ballots in committees.
- Definition of winners in sports tournaments.
- Awarding of contracts.
- Granting of funds.
- . .
- What to do during the annual works outing?
- What language is used in the beginners lecture of Computer Science?
- ...

Common Background: Voting Systems

- There is a finite and non-empty set N of voters (agents, individuals, parties etc.). To simplify things one uses:

$$
N=\{1,2, \ldots, n\}
$$

- There is a finite and non-empty set A of alternatives (proposals, candidates etc.).
- Each voter i possesses an individual preference I_{i} in view of the given alternatives.
- There is a voting rule that specifies
- how to aggregate the voter's individual preferences to a collective preference,
- how then to get the set of winners.

Instances $\left(N, A,\left(I_{i}\right)_{i \in N}\right)$ are called elections.

Example: Approval Voting

- Here the individual preferences are sets of alternatives

$$
A_{i} \in 2^{A}
$$

and $a \in A_{i}$ is interpreted as "voter i approves alternative a ".

- The collective preference is specified via a dominance relation

$$
D: A \leftrightarrow A
$$

such that for all $a, b \in A$ it holds

$$
D_{a, b} \Longleftrightarrow\left|\left\{i \in N \mid a \in A_{i}\right\}\right| \geq\left|\left\{i \in N \mid b \in A_{i}\right\}\right| .
$$

- There always exist alternatives which dominate all alternatives; these are called the approval winners.

Weak dominance and multiple-winners condition.

Example: Condorcet Voting

- Here the individual preferences are linear strict-order relations

$$
>_{i}: A \leftrightarrow A
$$

and $a>_{i} b$ is interpreted as "voter i ranks alternative a better than b ".

- The collective preference is specified via a dominance relation

$$
D: A \leftrightarrow A,
$$

such that for all $a, b \in A$ it holds

$$
D_{a, b} \Longleftrightarrow\left|\left\{i \in N \mid a>_{i} b\right\}\right| \geq\left|\left\{i \in N \mid b>_{i} a\right\}\right| .
$$

- There is not always an alternative that dominates all alternatives; if such an alternative exists it is called the Condorcet winner.
- If there is no Condorcet winner, then the winners are specified via socalled choice sets (top cycle, uncovered set, Banks set etc.).

Example: Borda Voting

- Here the individual preferences are injective functions

$$
f_{i}: A \rightarrow\{0,1, \ldots,|A|-1\}
$$

and the value $f_{i}(a)$ is interpreted as "voter i assigns $f_{i}(a)$ points to alternative $a^{\prime \prime}$.

- The collective preference is specified via a dominance relation

$$
D: A \leftrightarrow A,
$$

such that for all $a, b \in A$ it holds

$$
D_{a, b} \Longleftrightarrow \sum_{i \in N} f_{i}(a) \geq \sum_{i \in N} f_{i}(b)
$$

- There always exist alternatives which dominate all alternatives; these are called the Borda winners.

Control of Elections

Here it is assumed that the authority conducting the election, called the chair, knows the individual preferences of the voters and is able

- to remove voters from the election (by dirty tricks, like mistimed meetings)
- to remove alternatives from the election (by excuses, like "too expensive" or "legally not allowed").

Using constructive control, the chair tries

- to make a specific alternative $a^{*} \in A$ to a winner by a removal of voters / of alternatives
- and (to hide his mind) to remove as few as possible voters / alternatives to reach this goal.

Using destructive control, with the same actions the chair tries to prevent a^{*} from winning.

Control may be hard or easy. E.g., in case of approval voting we have:

- Constructive control via the removal of voters is NP-hard.
- There are efficient algorithms for the constructive control via the removal of alternatives.
In case of plurality voting (another well-known voting system) the complexities change, i.e.:
- Constructive control via the removal of alternatives is NP- hard.
- There are efficient algorithms for the constructive control via the removal of voters.

Our goal: Use of relation algebra and the BDD-based tool ReLView

- for computing dominance relations and winners,
- for the solution of non-trivial instances of hard control problems.

Here: Approval voting and constructive control by a removal of voters.

Specific Relational Constructions

- The symmetric quotient of $R: X \leftrightarrow Y$ and $S: X \leftrightarrow Z$ is defined as $\operatorname{syq}(R, S)=\overline{R^{\top} ; \bar{S}} \cap \bar{R}^{\top} ; S: Y \leftrightarrow Z$ and from this we get:

$$
\operatorname{syq}(R, S)_{y, z} \Longleftrightarrow \forall x \in X: R_{x, y} \leftrightarrow S_{x, z}
$$

- If the target of a relation is a singleton set, here always $\mathbf{1}=\{\perp\}$, it is called a vector.
We denote vectors by small letters and write v_{x} instead of $v_{x, \perp}$.
A vector $v: X \leftrightarrow \mathbf{1}$ describes the subset $\left\{x \in X \mid v_{x}\right\}$ of its source.
- A point $p: X \leftrightarrow \mathbf{1}$ is a vector which describes a singleton subset $\{x\}$ of X.
We then say that it describes the element x of X.
- The membership relation $\mathrm{M}: X \leftrightarrow 2^{X}$ is defined as follows:

$$
\mathrm{M}_{x, Y} \Longleftrightarrow x \in Y
$$

- The size-comparison relation $S: 2^{X} \leftrightarrow 2^{X}$ is defined as follows:

$$
S_{Y, Z} \Longleftrightarrow|Y| \leq|Z|
$$

- The projection relations $\pi: X \times Y \leftrightarrow X$ and $\rho: X \times Y \leftrightarrow Y$ are defined as follows:

$$
\pi_{(x, y), z} \Longleftrightarrow x=z \quad \rho_{(x, y), z} \Longleftrightarrow y=z
$$

- The pairing (or fork) of $R: Z \leftrightarrow X$ and $S: Z \leftrightarrow Y$ is defined as the relation $\left[R, S \rrbracket=R ; \pi^{\top} \cap S ; \rho^{\top}: Z \leftrightarrow X \times Y\right.$ and from this we get:

$$
\left[R, S \rrbracket_{z,(x, y)} \Longleftrightarrow R_{z, x} \wedge S_{z, y}\right.
$$

All that is available in the programming language of RELVIEW.

A Relational Model of Approval Voting

- A relation $P: N \leftrightarrow A$ is called a relational model of $\left(N, A,\left(A_{i}\right)_{i \in N}\right)$ if for all $i \in N$ and $a \in A$

$$
P_{i, a} \Longleftrightarrow a \in A_{i} .
$$

- If $P: N \leftrightarrow A$ is a relational model, then we get

$$
\begin{aligned}
\left\{i \in N \mid P_{i, c}\right\}=Z & \Longleftrightarrow \forall i \in N: P_{i, c} \leftrightarrow i \in Z \\
& \Longleftrightarrow \forall i \in N: P_{i, c} \leftrightarrow \mathrm{M}_{i, Z} \\
& \Longleftrightarrow \operatorname{syq}(P, \mathrm{M})_{c, Z}
\end{aligned}
$$

for all $c \in A$ and $Z \in 2^{N}$ and this shows for the dominance relation

$$
D=\operatorname{syq}(P, \mathrm{M}) ; \mathrm{S}^{\top} ; \operatorname{syq}(P, \mathrm{M})^{\top}: A \leftrightarrow A .
$$

- The set of winners is described by the vector

$$
\operatorname{win}=\overline{\bar{D} ; \mathrm{L}}: A \leftrightarrow \mathbf{1} .
$$

An Example

- Relational model $P: N \leftrightarrow A$ as RelView-matrix:

$$
\text { Voters } N=\{1,2, \ldots, 12\}
$$

Alternatives $A=\{a, b, \ldots, h\}$

- Dominance relation $D: A \leftrightarrow A$ and vector win : $A \leftrightarrow \mathbf{1}$ as computed by RelView:

How many voters need to be removed such that, e.g., alternative e wins?

The answer to the last question for all alternatives a, b, \ldots, h as computed and shown in a column-wise fashion by RelView (in the same order):

- Positions 2, 6, 7 and 8: No voter needs to be removed to ensure win for b, f, g and h.
- Position 4 and 5: Voter 10 needs to be removed to ensure win for d and e.
- Position 1: Two voters need to be removed to ensure win for a, viz. 2,11 or 5,11 or 6,11 .
- Position 3: Four voters need to be removed to ensure win for c and there are 12 possibilities for this.

Relational Control of Approval Voting

We assume that $P: N \leftrightarrow A$ is a model of $\left(N, A,\left(A_{i}\right)_{i \in N}\right)$ and $a^{*} \in A$ shall win, where the point $p: N \leftrightarrow \mathbf{1}$ describes a^{*}. Our solution of the control problem consists of three steps:

- Formulation as maximization-problem: Compute a maximum $X \in 2^{N}$ such that a^{*} wins in the restricted election $\left(X, A,\left(A_{i}\right)_{i \in X}\right)$. Then all alternatives from $N \backslash X$ are to remove.
- Relation-algebraic specification of the vector of candidetes sets

$$
\text { cand : } 2^{N} \leftrightarrow \mathbf{1}
$$

such that cand ${ }_{X}$ iff a^{*} wins in $\left(X, A,\left(A_{i}\right)_{i \in X}\right)$.

- Relation-algebraic specification of the vector of solutions

$$
\text { sol }=\text { cand } \cap \overline{\overline{\mathrm{S}}^{\top} ; \text { cand }: 2^{N} \leftrightarrow \mathbf{1}}
$$

that describes the maximum sets in the set of sets described by cand.

Specification of the Vector of Candidates Sets

Let an arbitrary set $X \in 2^{N}$ be given. Since

$$
(P ; p)_{i} \Longleftrightarrow \exists a \in A: P_{i, a} \wedge p_{a} \Longleftrightarrow \exists a \in A: P_{i, a} \wedge a=a^{*} \Longleftrightarrow P_{i, a^{*}}
$$ for all $i \in N$, we get for all $Y \in 2^{N}$ that

$$
\begin{array}{rlr}
& \left\{i \in X \mid a^{*} \in A_{i}\right\}=Y & \\
\Longleftrightarrow & \left\{i \in X \mid P_{i, a^{*}}\right\}=Y & P \text { model } \\
\Longleftrightarrow & \forall i \in N:\left(i \in X \wedge P_{i, a^{*}}\right) \leftrightarrow i \in Y & \\
\Longleftrightarrow & \forall i \in N:\left(i \in X \wedge(P ; p)_{i}\right) \leftrightarrow i \in Y & \text { see above } \\
\Longleftrightarrow & \forall i \in N:\left(\mathrm{M}_{i, X} \wedge(P ; p ; \mathrm{L})_{i, X} \leftrightarrow \mathrm{M}_{i, Y}\right. & \text { definition M } \\
\Longleftrightarrow & \forall i \in N:(\mathrm{M} \cap P ; p ; \mathrm{L})_{i, X} \leftrightarrow \mathrm{M}_{i, Y} & \\
\Longleftrightarrow & \underbrace{\operatorname{syq}(\mathrm{M} \cap P ; p ; \mathrm{L}, \mathrm{M})}_{E} X, Y & \text { property syq }
\end{array}
$$

\ldots and for all $Z \in 2^{N}$ and $b \in A$ that

$$
\begin{array}{rlr}
& Z=\left\{i \in X \mid b \in A_{i}\right\} & \\
\Longleftrightarrow & Z=\left\{i \in X \mid P_{i, b}\right\} & P \text { model } \\
\Longleftrightarrow & \forall i \in N: i \in Z \leftrightarrow\left(i \in X \wedge P_{i, b}\right) & \\
\Longleftrightarrow & \forall i \in N: \mathrm{M}_{i, Z} \leftrightarrow\left(\mathrm{M}_{i, X} \wedge P_{i, b}\right) & \text { definition M } \\
\Longleftrightarrow & \forall i \in N: \mathrm{M}_{i, Z} \leftrightarrow\left[\mathrm{M}, P \rrbracket_{i,(X, b)}\right. & \text { property tupling } \\
\Longleftrightarrow & \underbrace{\operatorname{syq}(\mathrm{M},[\mathrm{M}, P \rrbracket)}_{F} Z,(X, b) & \text { property syq }
\end{array}
$$

yielding the relations

$$
E=\operatorname{syq}(\mathrm{M} \cap P ; p ; \mathrm{L}, \mathrm{M}): 2^{N} \leftrightarrow 2^{N}
$$

where $L: \mathbf{1} \leftrightarrow 2^{N}$, and

$$
F=\operatorname{syq}\left(\mathrm{M},[\mathrm{M}, P \rrbracket): 2^{N} \leftrightarrow 2^{N} \times A\right.
$$

... and

$$
\begin{aligned}
& a^{*} \text { wins in }\left(X, A,\left(A_{i}\right)_{i \in X}\right) \\
\Longleftrightarrow & \forall b \in A:\left|\left\{i \in X \mid a^{*} \in A_{i}\right\}\right| \geq\left|\left\{i \in X \mid b \in A_{i}\right\}\right| \\
\Longleftrightarrow & \neg \exists b \in A:\left|\left\{i \in X \mid a^{*} \in A_{i}\right\}\right|<\left|\left\{i \in X \mid b \in A_{i}\right\}\right| \\
\Longleftrightarrow & \neg \exists b \in A:\left(E ; \overline{\mathrm{S}}^{\top} ; F\right)_{X,(X, b)} \\
\Longleftrightarrow & \neg \exists U \in 2^{N}, b \in A:\left(E ; \bar{S}^{\top} ; F\right)_{X,(U, b)} \wedge U=X \\
\Longleftrightarrow & \neg \exists U \in 2^{N}, b \in A:\left(E ; \overline{\mathrm{S}}^{\top} ; F\right)_{X,(U, b)} \wedge \pi_{(U, b), X} \\
\Longleftrightarrow & \neg \exists U \in 2^{N}, b \in A:\left(E ; \overline{\mathrm{S}}^{\top} ; F \cap \pi^{\top}\right)_{X,(U, b)} \wedge \mathrm{L}_{(U, b)} \\
\Longleftrightarrow & \underbrace{\left(E ; \overline{\mathrm{S}}^{\top} ; F \cap \pi^{\top}\right) ; \mathrm{L}}_{\text {cand }} x
\end{aligned}
$$

yielding the vector

$$
\text { cand }=\overline{\left(E ; \cap \overline{\mathrm{S}}^{\top} ; F \cap \pi^{\top}\right) ; \mathrm{L}}: 2^{N} \leftrightarrow \mathbf{1},
$$

where $\mathrm{L}: 2^{N} \times A \leftrightarrow \mathbf{1}$.

Concluding Remarks

Present and future work:

- Investigation of further voting systems.
- Condorcet voting (AAMAS 2014, May 2014).
- Plurality voting (CASC 2014, submitted).
- ...
- Investigation of further types of manipulation.
- Control by partition.
- Bribery.
- Investigation of further methods of solutions.
- Functional programming.
- Constraint programming.
- Binary integer programming.
- Bio-inspired techniques.
- Heuristics
- ...

