Relation Algebra and RELVIEW Applied to Approval Voting

Rudolf Berghammer, Nikita Danilenko and Henning Schnoor

Institut für Informatik Christian-Albrechts-Universität zu Kiel

24. April 2014

Berghammer et al. (CAU Kiel) Relations, RELVIEWand Approval Voting

A B b A B b

Introduction

Voting procedures are used in situations if a group of individuals has to come to a common decision:

- Elections of political parliaments.
- Ballots in committees.
- Definition of winners in sports tournaments.
- Awarding of contracts.
- Granting of funds.
- . . .
- What to do during the annual works outing?
- What language is used in the beginners lecture of Computer Science?

• . . .

Common Background: Voting Systems

• There is a finite and non-empty set *N* of **voters** (agents, individuals, parties etc.). To simplify things one uses:

$$N = \{1, 2, \ldots, n\}$$

- There is a finite and non-empty set A of **alternatives** (proposals, candidates etc.).
- Each voter *i* possesses an **individual preference** *I_i* in view of the given alternatives.
- There is a voting rule that specifies
 - how to aggregate the voter's individual preferences to a collective preference,
 - how then to get the set of winners.

Instances $(N, A, (I_i)_{i \in N})$ are called **elections**.

Example: Approval Voting

• Here the individual preferences are sets of alternatives

$$A_i \in 2^A$$

and $a \in A_i$ is interpreted as "voter *i* approves alternative *a*".

• The collective preference is specified via a dominance relation

$$D: A \leftrightarrow A$$
,

such that for all $a, b \in A$ it holds

$$D_{a,b} \iff |\{i \in N \mid a \in A_i\}| \ge |\{i \in N \mid b \in A_i\}|.$$

• There always exist alternatives which dominate all alternatives; these are called the **approval winners**.

Weak dominance and multiple-winners condition.

Example: Condorcet Voting

• Here the individual preferences are linear strict-order relations

 $>_i : A \leftrightarrow A$

and a >_i b is interpreted as "voter i ranks alternative a better than b".
The collective preference is specified via a dominance relation

 $D: A \leftrightarrow A$,

such that for all $a, b \in A$ it holds

 $D_{a,b} \iff |\{i \in N \mid a >_i b\}| \ge |\{i \in N \mid b >_i a\}|.$

- There is not always an alternative that dominates all alternatives; if such an alternative exists it is called the **Condorcet winner**.
- If there is no Condorcet winner, then the winners are specified via socalled **choice sets** (top cycle, uncovered set, Banks set etc.).

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Example: Borda Voting

• Here the individual preferences are injective functions

$$f_i: A \to \{0, 1, \dots, |A| - 1\}$$

and the value $f_i(a)$ is interpreted as "voter *i* assigns $f_i(a)$ points to alternative *a*".

• The collective preference is specified via a dominance relation

$$D: A \leftrightarrow A$$
,

such that for all $a, b \in A$ it holds

$$D_{a,b} \iff \sum_{i\in N} f_i(a) \ge \sum_{i\in N} f_i(b).$$

• There always exist alternatives which dominate all alternatives; these are called the **Borda winners**.

Control of Elections

Here it is assumed that the authority conducting the election, called the **chair**, knows the individual preferences of the voters and is able

- to remove voters from the election (by dirty tricks, like mistimed meetings)
- to remove alternatives from the election (by excuses, like "too expensive" or "legally not allowed").

Using constructive control, the chair tries

- to make a specific alternative a^{*} ∈ A to a winner by a removal of voters / of alternatives
- and (to hide his mind) to remove as few as possible voters / alternatives to reach this goal.

Using **destructive control**, with the same actions the chair tries to prevent a^* from winning.

メタト イヨト イヨト ニヨ

Control may be hard or easy. E.g., in case of **approval voting** we have:

- Constructive control via the removal of voters is NP-hard.
- There are efficient algorithms for the constructive control via the removal of alternatives.

In case of **plurality voting** (another well-known voting system) the complexities change, i.e.:

- Constructive control via the removal of alternatives is NP- hard.
- There are efficient algorithms for the constructive control via the removal of voters.

Our goal: Use of relation algebra and the BDD-based tool $\operatorname{ReLVIEW}$

- for computing dominance relations and winners,
- for the solution of non-trivial instances of hard control problems.

Here: Approval voting and constructive control by a removal of voters.

< □ > < □ > < □ > < □ > < □ > < □ >

Specific Relational Constructions

• The symmetric quotient of $R : X \leftrightarrow Y$ and $S : X \leftrightarrow Z$ is defined as $syq(R, S) = \overline{R^{\mathsf{T}}; \overline{S}} \cap \overline{R^{\mathsf{T}}; S} : Y \leftrightarrow Z$ and from this we get:

$$syq(R,S)_{y,z} \iff \forall x \in X : R_{x,y} \leftrightarrow S_{x,z}$$

• If the target of a relation is a singleton set, here always $\mathbf{1} = \{\bot\}$, it is called a **vector**.

We denote vectors by small letters and write v_x instead of $v_{x,\perp}$. A vector $v : X \leftrightarrow \mathbf{1}$ describes the subset $\{x \in X \mid v_x\}$ of its source.

 A point p : X ↔ 1 is a vector which describes a singleton subset {x} of X.

We then say that it **describes** the element x of X.

13 14 15

18 19 20 • The membership relation $M : X \leftrightarrow 2^X$ is defined as follows:

$$\mathsf{M}_{x,Y}\iff x\in Y$$

• The size-comparison relation $S : 2^X \leftrightarrow 2^X$ is defined as follows:

$$S_{Y,Z} \iff |Y| \le |Z|$$

The projection relations π : X×Y ↔ X and ρ : X×Y ↔ Y are defined as follows:

$$\pi_{(x,y),z} \iff x = z \qquad \qquad \rho_{(x,y),z} \iff y = z$$

• The **pairing** (or fork) of $R : Z \leftrightarrow X$ and $S : Z \leftrightarrow Y$ is defined as the relation $[R, S] = R; \pi^T \cap S; \rho^T : Z \leftrightarrow X \times Y$ and from this we get:

$$\llbracket R,S\rrbracket_{z,(x,y)} \iff R_{z,x} \land S_{z,y}$$

10 / 18

All that is available in the programming language of $\operatorname{ReLVIEW}$.

Berghammer et al. (CAU Kiel) Relations, RELVIEWand Approval Voting 24. April 2014

A Relational Model of Approval Voting

A relation P : N ↔ A is called a relational model of (N, A, (A_i)_{i∈N}) if for all i ∈ N and a ∈ A

$$P_{i,a} \iff a \in A_i.$$

• If $P: N \leftrightarrow A$ is a relational model, then we get

$$\{i \in N \mid P_{i,c}\} = Z \iff \forall i \in N : P_{i,c} \leftrightarrow i \in Z$$
$$\iff \forall i \in N : P_{i,c} \leftrightarrow M_{i,Z}$$
$$\iff syq(P, M)_{c,Z}$$

for all $c \in A$ and $Z \in 2^N$ and this shows for the **dominance relation**

$$D = syq(P, M); S^{\mathsf{T}}; syq(P, M)^{\mathsf{T}} : A \leftrightarrow A.$$

The set of winners is described by the vector

win =
$$\overline{\overline{D}}$$
; L : A \leftrightarrow **1**.

An Example

• Relational model $P : N \leftrightarrow A$ as RELVIEW-matrix:

Voters $N = \{1, 2, ..., 12\}$

Alternatives $A = \{a, b, \ldots, h\}$

Image: A matrix a

12 / 18

 Dominance relation D : A ↔ A and vector win : A ↔ 1 as computed by RELVIEW:

How many voters need to be removed such that, e.g., alternative *e* wins?

The answer to the last question for all alternatives a, b, ..., h as computed and shown in a column-wise fashion by RELVIEW (in the same order):

- Positions 2, 6, 7 and 8: No voter needs to be removed to ensure win for *b*, *f*, *g* and *h*.
- Position 4 and 5: Voter 10 needs to be removed to ensure win for *d* and *e*.
- Position 1: Two voters need to be removed to ensure win for *a*, viz. 2,11 or 5,11 or 6,11.
- Position 3: Four voters need to be removed to ensure win for *c* and there are 12 possibilities for this.

Relational Control of Approval Voting

We assume that $P : N \leftrightarrow A$ is a model of $(N, A, (A_i)_{i \in N})$ and $a^* \in A$ shall win, where the point $p : N \leftrightarrow \mathbf{1}$ describes a^* . Our solution of the control problem consists of three steps:

- Formulation as maximization-problem: Compute a maximum X ∈ 2^N such that a* wins in the restricted election (X, A, (A_i)_{i∈X}). Then all alternatives from N \ X are to remove.
- Relation-algebraic specification of the vector of candidetes sets

cand :
$$2^N \leftrightarrow \mathbf{1}$$

such that $cand_X$ iff a^* wins in $(X, A, (A_i)_{i \in X})$.

• Relation-algebraic specification of the vector of solutions

$$\mathsf{sol} = \mathsf{cand} \cap \overline{\overline{\mathsf{S}}^{\mathsf{T}}}; \mathsf{cand} : 2^{\mathsf{N}} \leftrightarrow \mathbf{1}$$

that describes the maximum sets in the set of sets described by cand.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Specification of the Vector of Candidates Sets

Let an arbitrary set $X \in 2^N$ be given. Since

 $(P;p)_i \iff \exists a \in A : P_{i,a} \land p_a \iff \exists a \in A : P_{i,a} \land a = a^* \iff P_{i,a^*}$

for all $i \in N$, we get for all $Y \in 2^N$ that

$$\{i \in X \mid a^* \in A_i\} = Y$$

$$\iff \{i \in X \mid P_{i,a^*}\} = Y$$

$$P \text{ model}$$

$$\iff \forall i \in N : (i \in X \land P_{i,a^*}) \leftrightarrow i \in Y$$

$$\iff \forall i \in N : (i \in X \land (P; p)_i) \leftrightarrow i \in Y$$

$$\iff \forall i \in N : (M_{i,X} \land (P; p; L)_{i,X}) \leftrightarrow M_{i,Y}$$

$$\iff \forall i \in N : (M \cap P; p; L)_{i,X} \leftrightarrow M_{i,Y}$$

$$\iff \underbrace{syq(M \cap P; p; L, M)}_{E}_{X,Y} \qquad \text{property syq}$$

... and for all $Z \in 2^N$ and $b \in A$ that

$$Z = \{i \in X \mid b \in A_i\}$$

$$\iff Z = \{i \in X \mid P_{i,b}\}$$

$$\implies P \text{ model}$$

$$\iff \forall i \in N : i \in Z \Leftrightarrow (i \in X \land P_{i,b})$$

$$\iff \forall i \in N : M_{i,Z} \leftrightarrow (M_{i,X} \land P_{i,b})$$

$$\iff \forall i \in N : M_{i,Z} \leftrightarrow [M, P]_{i,(X,b)}$$

$$property tupling$$

$$\iff \underbrace{syq(M, [M, P])}_{F}_{i,(X,b)} Z_{i,(X,b)}$$

$$property syq$$

yielding the relations

$$E = syq(\mathsf{M} \cap P; p; \mathsf{L}, \mathsf{M}) : 2^{\mathsf{N}} \leftrightarrow 2^{\mathsf{N}},$$

where L : $\mathbf{1} \leftrightarrow 2^N$, and

$$F = syq(\mathsf{M}, \llbracket \mathsf{M}, P \rrbracket) : 2^N \leftrightarrow 2^N \times A$$

э

. . . and

$$a^{*} \text{ wins in } (X, A, (A_{i})_{i \in X})$$

$$\Leftrightarrow \forall b \in A : |\{i \in X \mid a^{*} \in A_{i}\}| \ge |\{i \in X \mid b \in A_{i}\}|$$

$$\Leftrightarrow \neg \exists b \in A : |\{i \in X \mid a^{*} \in A_{i}\}| < |\{i \in X \mid b \in A_{i}\}|$$

$$\Leftrightarrow \neg \exists b \in A : (E; \overline{S}^{\mathsf{T}}; F)_{X,(X,b)}$$

$$\Leftrightarrow \neg \exists U \in 2^{N}, b \in A : (E; \overline{S}^{\mathsf{T}}; F)_{X,(U,b)} \land U = X$$

$$\Leftrightarrow \neg \exists U \in 2^{N}, b \in A : (E; \overline{S}^{\mathsf{T}}; F)_{X,(U,b)} \land \pi_{(U,b),X}$$

$$\Leftrightarrow \neg \exists U \in 2^{N}, b \in A : (E; \overline{S}^{\mathsf{T}}; F)_{X,(U,b)} \land \pi_{(U,b),X}$$

$$\Leftrightarrow \neg \exists U \in 2^{N}, b \in A : (E; \overline{S}^{\mathsf{T}}; F \cap \pi^{\mathsf{T}})_{X,(U,b)} \land \mathsf{L}_{(U,b)}$$

$$\Leftrightarrow \underbrace{(E; \overline{S}^{\mathsf{T}}; F \cap \pi^{\mathsf{T}}); \mathsf{L}}_{cand}$$

yielding the vector

$$\mathit{cand} = (\mathit{E}; \cap \overline{\mathsf{S}}^\mathsf{T}; \mathit{F} \cap \pi^\mathsf{T}); \mathsf{L} : 2^\mathsf{N} \leftrightarrow \mathbf{1},$$

where L : $2^N \times A \leftrightarrow \mathbf{1}$.

Berghammer et al. (CAU Kiel) Relations, RELVIEWand Approval Voting

2

A D N A B N A B N A B N

Concluding Remarks

Present and future work:

- Investigation of further voting systems.
 - Condorcet voting (AAMAS 2014, May 2014).
 - Plurality voting (CASC 2014, submitted).

۱...

- Investigation of further types of manipulation.
 - Control by partition.
 - Bribery.
 - ▶ ...
- Investigation of further methods of solutions.
 - Functional programming.
 - Constraint programming.
 - Binary integer programming.
 - Bio-inspired techniques.
 - Heuristics
 - ▶

通 ト イ ヨ ト イ ヨ ト