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Introduction

Voting procedures are used in situations if a group of individuals has to
come to a common decision:

Elections of political parliaments.
Ballots in committees.
Definition of winners in sports tournaments.
Awarding of contracts.
Granting of funds.
. . .
What to do during the annual works outing?
What language is used in the beginners lecture of Computer Science?
. . .
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Common Background: Voting Systems

There is a finite and non-empty set N of voters (agents, individuals,
parties etc.). To simplify things one uses:

N = {1, 2, . . . , n}

There is a finite and non-empty set A of alternatives (proposals,
candidates etc.).
Each voter i possesses an individual preference Ii in view of the
given alternatives.
There is a voting rule that specifies

I how to aggregate the voter’s individual preferences to a collective
preference,

I how then to get the set of winners.

Instances (N,A, (Ii)i∈N) are called elections.
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Example: Approval Voting

Here the individual preferences are sets of alternatives

Ai ∈ 2A

and a ∈ Ai is interpreted as “voter i approves alternative a”.
The collective preference is specified via a dominance relation

D : A↔A,

such that for all a, b ∈ A it holds

Da,b ⇐⇒ |{i ∈ N | a ∈ Ai}| ≥ |{i ∈ N | b ∈ Ai}|.

There always exist alternatives which dominate all alternatives; these
are called the approval winners.

Weak dominance and multiple-winners condition.
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Example: Condorcet Voting
Here the individual preferences are linear strict-order relations

>i : A↔A

and a >i b is interpreted as “voter i ranks alternative a better than b”.
The collective preference is specified via a dominance relation

D : A↔A,

such that for all a, b ∈ A it holds

Da,b ⇐⇒ |{i ∈ N | a >i b}| ≥ |{i ∈ N | b >i a}|.

There is not always an alternative that dominates all alternatives; if
such an alternative exists it is called the Condorcet winner.
If there is no Condorcet winner, then the winners are specified via so-
called choice sets (top cycle, uncovered set, Banks set etc.).
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Example: Borda Voting
Here the individual preferences are injective functions

fi : A→ {0, 1, . . . , |A| − 1}

and the value fi(a) is interpreted as “voter i assigns fi(a) points to
alternative a”.
The collective preference is specified via a dominance relation

D : A↔A,

such that for all a, b ∈ A it holds

Da,b ⇐⇒
∑
i∈N

fi(a) ≥
∑
i∈N

fi(b).

There always exist alternatives which dominate all alternatives; these
are called the Borda winners.
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Control of Elections
Here it is assumed that the authority conducting the election, called the
chair, knows the individual preferences of the voters and is able

to remove voters from the election (by dirty tricks, like mistimed
meetings)
to remove alternatives from the election (by excuses, like “too ex-
pensive” or “legally not allowed”).

Using constructive control, the chair tries
to make a specific alternative a∗ ∈ A to a winner by a removal of vo-
ters / of alternatives
and (to hide his mind) to remove as few as possible voters / alterna-
tives to reach this goal.

Using destructive control, with the same actions the chair tries to pre-
vent a∗ from winning.
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Control may be hard or easy. E.g., in case of approval voting we have:
Constructive control via the removal of voters is NP-hard.
There are efficient algorithms for the constructive control via the re-
moval of alternatives.

In case of plurality voting (another well-known voting system) the comp-
lexities change, i.e.:

Constructive control via the removal of alternatives is NP- hard.
There are efficient algorithms for the constructive control via the re-
moval of voters.

Our goal: Use of relation algebra and the BDD-based tool RelView
for computing dominance relations and winners,
for the solution of non-trivial instances of hard control problems.

Here: Approval voting and constructive control by a removal of voters.
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Specific Relational Constructions
The symmetric quotient of R : X↔Y and S : X↔Z is defined as
syq(R,S) = RT; S ∩ R T

; S : Y ↔Z and from this we get:

syq(R, S)y ,z ⇐⇒ ∀ x ∈ X : Rx ,y ↔ Sx ,z

If the target of a relation is a singleton set, here always
11 = {⊥}, it is called a vector.
We denote vectors by small letters and write vx instead of vx ,⊥.
A vector v : X↔ 11 describes the subset {x ∈ X | vx}
of its source.
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A point p : X↔ 11 is a vector which describes a single-
ton subset {x} of X .
We then say that it describes the element x of X .
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The membership relation M : X↔ 2X is defined as follows:

Mx ,Y ⇐⇒ x ∈ Y

The size-comparison relation S : 2X↔ 2X is defined as follows:

SY ,Z ⇐⇒ |Y | ≤ |Z |

The projection relations π : X×Y ↔X and ρ : X×Y ↔Y are defi-
ned as follows:

π(x ,y),z ⇐⇒ x = z ρ(x ,y),z ⇐⇒ y = z

The pairing (or fork) of R : Z↔X and S : Z↔Y is defined as the
relation [R,S]] = R;πT ∩ S; ρT : Z↔X×Y and from this we get:

[R, S]]z,(x ,y) ⇐⇒ Rz,x ∧ Sz,y

All that is available in the programming language of RelView.
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A Relational Model of Approval Voting
A relation P : N↔A is called a relational model of (N,A, (Ai)i∈N)
if for all i ∈ N and a ∈ A

Pi ,a ⇐⇒ a ∈ Ai .

If P : N↔A is a relational model, then we get

{i ∈ N | Pi ,c} = Z ⇐⇒ ∀ i ∈ N : Pi ,c ↔ i ∈ Z
⇐⇒ ∀ i ∈ N : Pi ,c ↔ Mi ,Z

⇐⇒ syq(P,M)c,Z

for all c ∈ A and Z ∈ 2N and this shows for the dominance relation

D = syq(P,M);ST; syq(P,M)T : A↔A.

The set of winners is described by the vector

win = D ; L : A↔ 11.
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An Example

Relational model P : N↔A as RelView-matrix:
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Voters N = {1, 2, . . . , 12}

Alternatives A = {a, b, . . . , h}

Dominance relation D : A↔A and vector win : A↔ 11 as computed
by RelView:
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How many voters need to be removed such that, e.g., alternative e wins?
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The answer to the last question for all alternatives a, b, . . . , h as computed
and shown in a column-wise fashion by RelView (in the same order):
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a b c d e f g h
Positions 2, 6, 7 and 8: No voter needs to be removed to ensure win
for b, f , g and h.
Position 4 and 5: Voter 10 needs to be removed to ensure win for d
and e.
Position 1: Two voters need to be removed to ensure win for a, viz.
2, 11 or 5, 11 or 6, 11.
Position 3: Four voters need to be removed to ensure win for c and
there are 12 possibilities for this.
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Relational Control of Approval Voting
We assume that P : N↔A is a model of (N,A, (Ai)i∈N) and a∗ ∈ A shall
win, where the point p : N↔ 11 describes a∗. Our solution of the control
problem consists of three steps:

Formulation as maximization-problem: Compute a maximum X ∈ 2N

such that a∗ wins in the restricted election (X ,A, (Ai)i∈X ). Then all
alternatives from N \ X are to remove.
Relation-algebraic specification of the vector of candidetes sets

cand : 2N↔ 11

such that candX iff a∗ wins in (X ,A, (Ai)i∈X ).
Relation-algebraic specification of the vector of solutions

sol = cand ∩ S T
; cand : 2N↔ 11

that describes the maximum sets in the set of sets described by cand .
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Specification of the Vector of Candidates Sets
Let an arbitrary set X ∈ 2N be given. Since

(P; p)i ⇐⇒ ∃ a ∈ A : Pi ,a ∧ pa ⇐⇒ ∃ a ∈ A : Pi ,a ∧ a = a∗ ⇐⇒ Pi ,a∗

for all i ∈ N, we get for all Y ∈ 2N that

{i ∈ X | a∗ ∈ Ai} = Y
⇐⇒ {i ∈ X | Pi ,a∗} = Y P model
⇐⇒ ∀ i ∈ N : (i ∈ X ∧ Pi ,a∗)↔ i ∈ Y
⇐⇒ ∀ i ∈ N : (i ∈ X ∧ (P; p)i)↔ i ∈ Y see above
⇐⇒ ∀ i ∈ N : (Mi ,X ∧ (P; p; L)i ,X )↔ Mi ,Y definition M
⇐⇒ ∀ i ∈ N : (M ∩ P; p; L)i ,X ↔ Mi ,Y

⇐⇒ syq(M ∩ P; p; L,M)︸ ︷︷ ︸ X ,Y property syq

E
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. . . and for all Z ∈ 2N and b ∈ A that

Z = {i ∈ X | b ∈ Ai}
⇐⇒ Z = {i ∈ X | Pi ,b} P model
⇐⇒ ∀ i ∈ N : i ∈ Z ↔ (i ∈ X ∧ Pi ,b)

⇐⇒ ∀ i ∈ N : Mi ,Z ↔ (Mi ,X ∧ Pi ,b) definition M
⇐⇒ ∀ i ∈ N : Mi ,Z ↔ [M,P]]i ,(X ,b) property tupling
⇐⇒ syq(M, [M,P]])︸ ︷︷ ︸ Z ,(X ,b) property syq

F

yielding the relations

E = syq(M ∩ P; p; L,M) : 2N↔ 2N ,

where L : 11↔ 2N , and

F = syq(M, [M,P]]) : 2N↔ 2N×A
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. . . and

a∗ wins in (X ,A, (Ai)i∈X )

⇐⇒ ∀ b ∈ A : |{i ∈ X | a∗ ∈ Ai}| ≥ |{i ∈ X | b ∈ Ai}|
⇐⇒ ¬∃ b ∈ A : |{i ∈ X | a∗ ∈ Ai}| < |{i ∈ X | b ∈ Ai}|

⇐⇒ ¬∃ b ∈ A : (E ; S T
;F )X ,(X ,b)

⇐⇒ ¬∃U ∈ 2N , b ∈ A : (E ; S T
;F )X ,(U,b) ∧ U = X

⇐⇒ ¬∃U ∈ 2N , b ∈ A : (E ; S T
;F )X ,(U,b) ∧ π(U,b),X

⇐⇒ ¬∃U ∈ 2N , b ∈ A : (E ; S T
;F ∩ πT)X ,(U,b) ∧ L(U,b)

⇐⇒ (E ; S T
;F ∩ πT); L︸ ︷︷ ︸ X

cand

yielding the vector

cand = (E ;∩S T
;F ∩ πT); L : 2N↔ 11,

where L : 2N×A↔ 11.
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Concluding Remarks

Present and future work:
Investigation of further voting systems.

I Condorcet voting (AAMAS 2014, May 2014).
I Plurality voting (CASC 2014, submitted).
I . . .

Investigation of further types of manipulation.
I Control by partition.
I Bribery.
I . . .

Investigation of further methods of solutions.
I Functional programming.
I Constraint programming.
I Binary integer programming.
I Bio-inspired techniques.
I Heuristics
I . . .
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