Fixed-point theory in the varieties D_{n}

Sabine Frittella and Luigi Santocanale

Laboratoire d'Informatique Fondamentale de Marseille, France

$$
\text { May 1, } 2014
$$

RAMiCS 2014, Marienstatt im Westerwald, Germany

Outline

(1) Lattices and fixed points
(2) The varieties \mathcal{D}_{n}
(3) Results

Lattices $(L, \perp, \top, \wedge, \vee)$

Let L be an ordered set s.t. :
$\forall x, y \in L \exists u, v \in L$ s.t.

$$
\begin{aligned}
u=x \vee y & =\text { the least upper bound } \\
& =\text { supremum } \\
v=x \wedge y & =\text { the greatest lower bound } \\
& =\text { infimum. }
\end{aligned}
$$

\perp : the smallest element of L.
T : the largest element of L.

Fixed points and lattices

Let

- (L, \leqslant) be a lattice,
- $f: L \rightarrow L$ increasing.
- $\operatorname{Fix}(f)=\{x \in L \mid f(x)=x\}$

Let's note :

$$
\mu_{x} \cdot f(x)=\bigwedge \operatorname{Fix}(f), \quad \nu_{x} \cdot f(x)=\bigvee \operatorname{Fix}(f)
$$

Theorem (Tarski '55)

If L is a complete lattice and f is increasing, then

$$
\begin{gathered}
\mu_{x} \cdot f(x)=\min F i x(f)=\text { the least fixed point of } f \\
\nu_{x} \cdot f(x)=\max F i x(f)=\text { the greatest fixed point of } f
\end{gathered}
$$

Algorithm to calculate fixed points

L complete lattice,
\perp the least element, T the largest element,
$f: L \rightarrow L$ increasing.

- The least fixed point :

$$
\perp \leqslant f(\perp) \leqslant f^{2}(\perp) \leqslant \ldots \leqslant f^{k}(\perp) \leqslant \ldots \leqslant f^{n}(\perp)=f^{n+1}(\perp)
$$

Here we have : $f^{n}(\perp)=\mu_{x} \cdot f(x)$.

- The greatest fixed point :

$$
\top \geqslant f(\top) \geqslant f^{2}(\top) \geqslant \ldots \geqslant f^{k}(\top) \geqslant \ldots \geqslant f^{n}(\top)=f^{n+1}(\top)
$$

Here we have: $f^{n}(T)=\nu_{x} \cdot f(x)$.

μ-calculus

Lattices μ-calculus :

$$
\phi=x|\perp| \top|\phi \wedge \phi| \phi \vee \phi\left|\quad \mu_{x} \phi(x)\right| \nu_{x} \phi(x)
$$

- $\mu_{x} \nu_{y} \phi(x, y)$: difficult to calculate

$$
\psi=\mu_{x_{d}} \cdot \nu_{y_{d}} \cdot \mu_{x_{d-1}} \cdot \nu_{y_{d-1}} \cdot \ldots \cdot \mu_{x_{1}} \cdot \nu_{y_{1}} \cdot \varphi\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{d}, y_{d}\right)
$$

with φ containing neither μ nor ν, complexity $(\psi)=d$.

Complexity of a formula $=$ number of blocks $\mu \nu$.

expressiveness : the alternation hierarchy of μ-calculus

The hierarchy
... is strict :
for all d there exists ψ with complexity $(\psi)=d$ such that

$$
\text { if complexity }(\phi)<d \text { then } \phi \not \equiv \psi
$$

... is degenerate :
there exists d such that if ψ verifies complexity $(\psi)>d$ then there exists ϕ with complexity $(\phi) \leq d$ and $\phi \equiv \psi$.

$$
\psi=\mu_{x_{d}} \cdot \nu_{y_{d}} \cdot \mu_{x_{d-1}} \cdot \nu_{y_{d-1}} \cdot \ldots . \mu_{x_{1}} \cdot \nu_{y_{1}} \cdot \varphi\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{d}, y_{d}\right)
$$

Can we simplify ψ ?

Motivations

Lattices μ-calculus :
$\phi=x|\perp| \top|\phi \wedge \phi| \phi \vee \phi\left|\quad \mu_{x} \phi(x)\right| \nu_{x} \phi(x)$
$\psi=\mu_{x_{d}} \cdot \nu_{y_{d}} \cdot \mu_{x_{d-1}} \cdot \nu_{y_{d-1}} \cdot \ldots . \mu_{x_{1}} \cdot \nu_{y_{1}} \cdot \varphi\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{d}, y_{d}\right)$
The alternation hierarchy of μ-calculus:

- strict: lattices [San02]
- degenerate: distributive lattices

$$
\mu_{x} \phi(x)=\phi(\perp) \text { and } \nu_{x} \phi(x)=\phi(\top)
$$

- Varieties of lattices \mathcal{D}_{n}, with $n \in \mathbb{N}$ [Nat90], [Sem05].

Examples:

- $\mathcal{D}_{0}=$ distributive lattices
- lattices of permutations: $S_{n} \in \mathcal{D}_{n-2}$

Characterization of the varieties \mathcal{D}_{n}

\mathcal{D}_{n} : defined via equations of a weaker version of distributivity

Lattices in \mathcal{D}_{n} are locally finite
$\mathcal{D}_{n} \cap$ finite lattices: combinatorial characterization

OD-graph of a finite lattice $L: G(L):=\langle J(L), \leq, \mathcal{M}\rangle$
(1) $J(L)$: join-irreducible elements $(j=a \vee b$ iff $j=a$ or $j=b)$
© \leq : order restricted to $J(L)$

- $\mathcal{M}: J(L) \longrightarrow \mathcal{P} \mathcal{P} J(L)$: minimal covers

The OD-graph of a lattice

$$
\langle J(L), \leq, \mathcal{M}\rangle \text { with } \mathcal{M}: J(L) \rightarrow \mathcal{P}(\mathcal{P}(J(L)))
$$

(1) C is a cover of $j: j \leq \bigvee C$
(2) order $<\subseteq \subseteq \mathcal{P} L \times \mathcal{P} L$: $A \ll B$ iff $\downarrow A \subseteq \downarrow B$.

- C is a minimal cover of j if
- C is a cover of j,
- C is a \leq-antichain,
- for any \leq-antichain $D \subseteq L$, ($j \leq \bigvee D$ and $D \ll C$) imply $D=C$.
- $\mathcal{M}(j)=$ minimal covers of j
(1) $b \leq \bigvee\{b\}$ trivial cover
(2) $b \leq \bigvee\{d\}=\bigvee\{c, b\}$ minimal covers are subsets of $J(L)$
(0) $b \leq \bigvee\{c, e\}$ minimal

Finite lattices and their OD-graphs

L a finite lattice and $G(L):=\langle J(L), \leq, \mathcal{M}\rangle$ its OD-graph.

$$
(L, \leqslant) \rightsquigarrow G(L)=\langle J(L), \leqslant J(L), \mathcal{M}\rangle \rightsquigarrow(\mathfrak{L}(G(L)), \subseteq)
$$

$G(L)$ is similar to a neighborhood frame.

- Language on $L: \phi:=\perp|\top| \phi \wedge \phi \mid \phi \vee \phi$
- Logic on the frame $G(L): \phi:=\perp|\top| \phi \wedge \phi \mid(\exists \forall)(\phi \vee \phi)$ \rightsquigarrow monotone modal logic, let $a \in L$ and v an assignment, let the valuation v^{\prime} be as follows: $v^{\prime}(j)=\downarrow j$, we have:

$$
a \leq v(\phi) \quad \text { iff } \quad \forall j \leq a, \quad G(L), j \vdash_{v^{\prime}} \tau(\phi)
$$

$G(L), j \vdash_{v^{\prime}}(\exists \forall)(\phi \vee \psi) \quad$ iff $\quad \exists C \in \mathcal{M}(j), \forall c \in C$, $G(L), c \vdash_{v^{\prime}} \phi$ or $G(L), c \vdash_{v^{\prime}} \psi$

Finite lattices in \mathcal{D}_{n}

L a finite lattice in \mathcal{D}_{n} and $G(L):=\langle J(L), \leq, \mathcal{M}\rangle$ its OD-graph.

```
The relation \(D\)
Let \(j, k \in J(L), j D k\) if \(j \neq k\) and \(\exists C \in \mathcal{M}(j)\) s.t. \(k \in C\)
```

the class of finite lattices in \mathcal{D}_{n}
A finite lattice $L(\langle J(L), \leq, \mathcal{M}\rangle)$ belongs to the class \mathcal{D}_{n} iff any path $j_{0} D j_{1} D \ldots D j_{k}$ has length at most n.

Results

for each variety \mathcal{D}_{n} with $n \in \mathbb{N}$:
(1) Upper bound on the approximations chain :

The μ-calculus hierarchy on \mathcal{D}_{n} is degenerate

$$
\mathcal{D}_{n} \vDash \mu_{x} \cdot \phi(x)=\phi^{n+1}(\perp) \text { and } \mathcal{D}_{n} \vDash \nu_{x} \cdot \phi(x)=\phi^{n+1}(\top)
$$

(2) Lower bound:

On the lattices in \mathcal{D}_{n} the value $n+1$ is optimal.
(3) Lower bound:

On the atomistic lattices in \mathcal{D}_{n} the value $n+1$ is optimal.
(c) Lower bound:

On the lattices in $\mathcal{D}_{n} \cap \mathcal{D}_{n}^{o p}$ the value $n+1$ is optimal.

Upper bound for the operator ν on the varieties \mathcal{D}_{n}

Upper bound $=n+1$

For the variety \mathcal{D}_{n} with $n \in \mathbb{N}$, the hierarchy of the μ-calculus is degenerated (upper bound) :
$\mathcal{D}_{n} \vDash \mu_{x} \cdot \phi(x)=\phi^{n+1}(\perp)$ and $\mathcal{D}_{n} \vDash \nu_{x} \cdot \phi(x)=\phi^{n+1}(\top)$
Sketch of proof: $\mathcal{D}_{n} \vDash \nu_{x} \cdot \phi(x)=\phi^{n+1}(T)$
$\Leftrightarrow \mathcal{D}_{n} \cap$ finite $\vDash \nu_{x} \cdot \phi(x)=\phi^{n+1}(\top) \quad$ (Nation '90: locally finite)
$\Leftrightarrow \mathcal{D}_{n} \cap$ finite $\vDash \phi^{n+1}(\top)=\phi^{n+2}(\top)$
$\Leftrightarrow \mathcal{D}_{n} \cap$ finite $\vDash \phi^{n+2}(T) \leqslant \phi^{n+1}(\top)$ and $\phi^{n+1}(T) \leqslant \phi^{n+2}(T)$
$\Leftrightarrow \mathcal{D}_{n} \cap$ finite $\vDash \phi^{n+1}(T) \leqslant \phi^{n+2}(T)$
Tool: game semantic on the OD-graph

Game semantic

$\mathcal{D}_{n} \cap$ finite $\vDash \phi^{n+1}(T) \leqslant \phi^{n+2}(T)$
\Leftrightarrow for any finite lattice L in $\mathcal{D}_{n}, \quad L \vDash \phi^{n+1}(\top) \leqslant \phi^{n+2}(\top)$
\Leftrightarrow for any finite lattice L in \mathcal{D}_{n}, for any closed valuation v, for any $j \in J(L)$,

$$
G(L), j \vDash_{v} \tau\left(\phi^{n+1}(T)\right) \text { implies } G(L), j \vDash_{v} \tau\left(\phi^{n+2}(\top)\right)
$$

we define a finite 2 player game such that: player A has a winning strategy from the position (j, ψ) iff $G(L), j \vDash \psi$.

Results

For variety \mathcal{D}_{n} with $n \in \mathbb{N}$:
(1) The hierarchy of the μ-calculus is degenerated (upper bound) :

$$
\mathcal{D}_{n} \vDash \mu_{x} \cdot \phi(x)=\phi^{n+1}(\perp) \text { and } \mathcal{D}_{n} \vDash \nu_{x} \cdot \phi(x)=\phi^{n+1}(\top)
$$

(2) Optimality:

$$
\mathcal{D}_{n} \not \models \mu_{x} \cdot \phi(x)=\phi^{n}(\perp) \text { and } \mathcal{D}_{n} \not \models \nu_{x} \cdot \phi(x)=\phi^{n}(\top)
$$

open problems and outlook

- \exists ? a term t_{ϕ} "simpler" than $\phi^{n+1}(\perp)$ s.t. $\mathcal{D}_{n} \vDash \mu_{x} \phi(x)=t_{\phi}$
- links between lattice theory and modal logic?
- similar results on fixed points for modal logic ?

Références I

圊 J. B. Nation.
An approach to lattice varieties of finite height.
Algebra Universalis, 27(4):521-543, 1990.
Euigi Santocanale.
The alternation hierarchy for the theory of μ-lattices.
Theory Appl. Categ., 9:166-197, 2001/02.
CT2000 Conference (Como).
國 M. V. Semënova.
On lattices that are embeddable into lattices of suborders. Algebra Logika, 44(4):483-511, 514, 2005.

