Lattices and fixed points

The varieties $\mathcal{D}_{\boldsymbol{n}}$

Results

Fixed-point theory in the varieties D_n

Sabine Frittella and Luigi Santocanale

Laboratoire d'Informatique Fondamentale de Marseille, France

May 1, 2014

RAMiCS 2014, Marienstatt im Westerwald, Germany

The varieties \mathcal{D}_n

Results

Outline

Lattices and fixed points •00000 The varieties \mathcal{D}_{n}

Results

Lattices $(L, \bot, \top, \land, \lor)$

Let *L* be an ordered set s.t. : $\forall x, y \in L \exists u, v \in L$ s.t.

 $u = \mathbf{x} \lor \mathbf{y} =$ the least upper bound

= supremum

 $v = x \land y =$ the greatest lower bound = infimum.

- \perp : the smallest element of *L*.
- \top : the **largest element** of *L*.

Fixed points and lattices

Let

- (L, \leqslant) be a lattice,
- $f: L \rightarrow L$ increasing.
- $Fix(f) = \{ x \in L \mid f(x) = x \}$

Let's note :

$$\mu_x.f(x) = \bigwedge Fix(f), \quad \nu_x.f(x) = \bigvee Fix(f).$$

Theorem (Tarski '55)

If L is a complete lattice and f is increasing, then

 $\mu_{x}.f(x) = \min Fix(f) = the least fixed point of f$

 $\nu_x f(x) = max Fix(f) = the greatest fixed point of f$

Algorithm to calculate fixed points

- L complete lattice,
- \perp the least element, \top the largest element,
- $f: L \rightarrow L$ increasing.
 - The least fixed point :

$$\bot \leqslant f(\bot) \leqslant f^2(\bot) \leqslant ... \leqslant f^k(\bot) \leqslant ... \leqslant f^n(\bot) = f^{n+1}(\bot)$$

Here we have : $f^n(\bot) = \mu_x . f(x)$.

• The greatest fixed point :

$$op \geqslant f(op) \geqslant f^2(op) \geqslant ... \geqslant f^k(op) \geqslant ... \geqslant f^n(op) = f^{n+1}(op)$$

Here we have : $f^n(\top) = \nu_x f(x)$.

μ -calculus

Lattices μ -calculus :

 $\phi = x \mid \perp \mid \top \mid \phi \land \phi \mid \phi \lor \phi \mid \ \mu_{\mathsf{X}} \phi(\mathsf{X}) \mid \nu_{\mathsf{X}} \phi(\mathsf{X})$

• $\mu_x \nu_y \phi(x, y)$: difficult to calculate

 $\psi = \mu_{x_d} . \nu_{y_d} . \mu_{x_{d-1}} . \nu_{y_{d-1}} \mu_{x_1} . \nu_{y_1} . \varphi(x_1, y_1, x_2, y_2, ..., x_d, y_d)$

with φ containing neither μ nor ν , complexity $(\psi) = d$.

Complexity of a formula = number of blocks $\mu\nu$.

expressiveness : the alternation hierarchy of μ -calculus

The hierarchy ... is strict : for all d there exists ψ with $complexity(\psi) = d$ such that $if \ complexity(\phi) < d$ then $\phi \neq \psi$.

... is degenerate : there exists d such that if ψ verifies $complexity(\psi) > d$ then there exists ϕ with $complexity(\phi) \le d$ and $\phi \equiv \psi$.

$$\psi = \mu_{x_d} \cdot \nu_{y_d} \cdot \mu_{x_{d-1}} \cdot \nu_{y_{d-1}} \cdot \dots \cdot \mu_{x_1} \cdot \nu_{y_1} \cdot \varphi(x_1, y_1, x_2, y_2, \dots, x_d, y_d)$$

Can we simplify ψ ?

Motivations

Lattices μ -calculus : $\phi = x \mid \perp \mid \top \mid \phi \land \phi \mid \phi \lor \phi \mid \mu_x \phi(x) \mid \nu_x \phi(x)$ $\psi = \mu_{x_d} \cdot \nu_{y_d} \cdot \mu_{x_{d-1}} \cdot \nu_{y_{d-1}} \cdot \dots \cdot \mu_{x_1} \cdot \nu_{y_1} \cdot \varphi(x_1, y_1, x_2, y_2, \dots, x_d, y_d)$ The alternation hierarchy of μ -calculus :

- strict: lattices [San02]
- degenerate: distributive lattices

$$\mu_x \phi(x) = \phi(\perp)$$
 and $\nu_x \phi(x) = \phi(\top)$

- Varieties of lattices D_n, with n ∈ N [Nat90], [Sem05].
 Examples :
 - $\mathcal{D}_0 = \text{distributive lattices}$
 - lattices of permutations: $S_n \in \mathcal{D}_{n-2}$

Characterization of the varieties \mathcal{D}_n

 $\mathcal{D}_{\textit{n}}:$ defined via equations of a weaker version of distributivity

Lattices in \mathcal{D}_n are locally finite

 $\mathcal{D}_n \cap$ finite lattices: combinatorial characterization

OD-graph of a finite lattice *L*: $G(L) := \langle J(L), \leq, \mathcal{M} \rangle$

- J(L): join-irreducible elements $(j = a \lor b \text{ iff } j = a \text{ or } j = b)$
- $2 \leq :$ order restricted to J(L)

Lattices and fixed points

Results

The OD-graph of a lattice

 $\langle J(L), \leq, \mathcal{M} \rangle$ with $\mathcal{M} : J(L) \to \mathcal{P}(\mathcal{P}(J(L)))$

• C is a cover of $j : j \leq \bigvee C$

- **2** order $\ll \subseteq \mathcal{P}L \times \mathcal{P}L$:
 - $A \ll B$ iff $\downarrow A \subseteq \downarrow B$.
- C is a minimal cover of j if
 - C is a cover of j,
 - C is a \leq -antichain,
 - for any \leq -antichain $D \subseteq L$,
 - $(j \leq \bigvee D \text{ and } D \ll C) \text{ imply } D = C.$

• $\mathcal{M}(j) = \text{minimal covers of } j$

- $b \leq \bigvee \{b\}$ trivial cover
- **②** $b ≤ ∨{d} = ∨{c, b}$ minimal covers are subsets of J(L)
- 3 $b \leq \bigvee \{c, e\}$ minimal

Finite lattices and their OD-graphs

L a finite lattice and $G(L) := \langle J(L), \leq, \mathcal{M} \rangle$ its OD-graph.

$$(L,\leqslant) \rightsquigarrow G(L) = \langle J(L), \leqslant_{J(L)}, \mathcal{M} \rangle \rightsquigarrow (\mathfrak{L}(G(L)), \subseteq)$$

G(L) is similar to a neighborhood frame.

- Language on L: $\phi := \bot | \top | \phi \land \phi | \phi \lor \phi$
- Logic on the frame G(L): φ := ⊥ | ⊤ | φ ∧ φ | (∃∀)(φ ∨ φ)
 → monotone modal logic,

let $a \in L$ and v an assignment, let the valuation v' be as follows: $v'(j) = \downarrow j$, we have:

 $\begin{aligned} \mathsf{a} &\leq \mathsf{v}(\phi) \quad \text{iff} \quad \forall j \leq \mathsf{a}, \quad \mathsf{G}(L), j \vdash_{\mathsf{v}'} \tau(\phi) \\ \mathsf{G}(L), j \vdash_{\mathsf{v}'} (\exists \forall) (\phi \lor \psi) \quad \text{iff} \quad \exists C \in \mathcal{M}(j), \ \forall c \in C, \\ \mathsf{G}(L), c \vdash_{\mathsf{v}'} \phi \text{ or } \mathsf{G}(L), c \vdash_{\mathsf{v}'} \psi \end{aligned}$

Finite lattices in \mathcal{D}_n

L a finite lattice in \mathcal{D}_n and $G(L) := \langle J(L), \leq, \mathcal{M} \rangle$ its OD-graph.

The relation D

Let $j, k \in J(L)$, jDk if $j \neq k$ and $\exists C \in \mathcal{M}(j)$ s.t. $k \in C$

the class of finite lattices in \mathcal{D}_n

A finite lattice $L(\langle J(L), \leq, \mathcal{M} \rangle)$ belongs to the class \mathcal{D}_n iff any path $j_0 D j_1 D \dots D j_k$ has length at most n.

for each variety \mathcal{D}_n with $n \in \mathbb{N}$:

 Upper bound on the approximations chain : The μ-calculus hierarchy on D_n is degenerate

 $\mathcal{D}_n \vDash \mu_x.\phi(x) = \phi^{n+1}(\bot) \text{ and } \mathcal{D}_n \vDash \nu_x.\phi(x) = \phi^{n+1}(\top)$

Output Lower bound :

On the lattices in \mathcal{D}_n the value n + 1 is optimal.

- Lower bound : On the atomistic lattices in D_n the value n + 1 is optimal.
- Question Lower bound : On the lattices in D_n ∩ D_n^{op} the value n + 1 is optimal.

Upper bound for the operator u on the varieties \mathcal{D}_n

Upper bound = n + 1

For the variety \mathcal{D}_n with $n \in \mathbb{N}$, the hierarchy of the μ -calculus is degenerated (upper bound) : $\mathcal{D}_n \models \mu_x.\phi(x) = \phi^{n+1}(\bot)$ and $\mathcal{D}_n \models \nu_x.\phi(x) = \phi^{n+1}(\top)$

Sketch of proof: $\mathcal{D}_n \vDash \nu_x . \phi(x) = \phi^{n+1}(\top)$ $\Leftrightarrow \mathcal{D}_n \cap finite \vDash \nu_x . \phi(x) = \phi^{n+1}(\top)$ (Nation '90 : locally finite) $\Leftrightarrow \mathcal{D}_n \cap finite \vDash \phi^{n+1}(\top) = \phi^{n+2}(\top)$ $\Leftrightarrow \mathcal{D}_n \cap finite \vDash \phi^{n+2}(\top) \leqslant \phi^{n+1}(\top) \text{ and } \phi^{n+1}(\top) \leqslant \phi^{n+2}(\top)$ $\Leftrightarrow \mathcal{D}_n \cap finite \vDash \phi^{n+1}(\top) \leqslant \phi^{n+2}(\top)$

Tool: game semantic on the OD-graph

Game semantic

$$\mathcal{D}_n \cap \textit{finite} \vDash \phi^{n+1}(\top) \leqslant \phi^{n+2}(\top)$$

 \Leftrightarrow for any finite lattice L in \mathcal{D}_n , $L \vDash \phi^{n+1}(\top) \leqslant \phi^{n+2}(\top)$

 \Leftrightarrow for any finite lattice L in \mathcal{D}_n , for any closed valuation v, for any $j \in J(L)$,

$$G(L), j \vDash_{v} \tau(\phi^{n+1}(\top)) \text{ implies } G(L), j \vDash_{v} \tau(\phi^{n+2}(\top))$$

we define a finite 2 player game such that: player A has a winning strategy from the position (j, ψ) iff $G(L), j \models \psi$.

For variety \mathcal{D}_n with $n \in \mathbb{N}$:

- The hierarchy of the μ -calculus is degenerated (upper bound) : $\mathcal{D}_n \vDash \mu_x.\phi(x) = \phi^{n+1}(\bot)$ and $\mathcal{D}_n \vDash \nu_x.\phi(x) = \phi^{n+1}(\top)$
- **Optimality** : $\mathcal{D}_n \nvDash \mu_x.\phi(x) = \phi^n(\bot) \text{ and } \mathcal{D}_n \nvDash \nu_x.\phi(x) = \phi^n(\top)$

open problems and outlook

- \exists ? a term t_{ϕ} "simpler" than $\phi^{n+1}(\bot)$ s.t. $\mathcal{D}_n \vDash \mu_x \phi(x) = t_{\phi}$
- links between lattice theory and modal logic ?
- similar results on fixed points for modal logic ?

Références I

J. B. Nation.

An approach to lattice varieties of finite height. *Algebra Universalis*, 27(4):521–543, 1990.

Luigi Santocanale.

The alternation hierarchy for the theory of μ -lattices. *Theory Appl. Categ.*, 9:166–197, 2001/02. CT2000 Conference (Como).

M. V. Semënova.

On lattices that are embeddable into lattices of suborders. *Algebra Logika*, 44(4):483–511, 514, 2005.