Endowing Concurrent Kleene Algebra with Communication Actions

14th International Conference on Relational and Algebraic Methods in Computer Science

Jason Jaskolka, Ridha Khedri, and Qinglei Zhang

Department of Computing and Software Faculty of Engineering McMaster University Hamilton, Ontario, Canada {jaskolj,khedri,zhangq33}@mcmaster.ca

April 28, 2014

Jason Jaskolka (Speaker), Ridha Khedri, and Qinglei Zhang RAMiCS 2014

Outline

1 Introduction and Motivation

- 2 The Proposed Framework
 - Structure of Agent Behaviours
 - Structure of External Stimuli
 - Communicating Concurrent Kleene Algebra (C²KA)
 - A Comment on a Model for C²KA
 - Specifying Systems of Communicating Agents with C²KA
 - C²KA and Orbits, Stabilisers, and Fixed Points
- 3 Conclusion and Outlook
- Questions

Outline

1 Introduction and Motivation

- The Proposed Framework
 - Structure of Agent Behaviours
 - Structure of External Stimuli
 - Communicating Concurrent Kleene Algebra (C²KA)
 - A Comment on a Model for C²KA
 - Specifying Systems of Communicating Agents with C²KA
 - C²KA and Orbits, Stabilisers, and Fixed Points
- 3 Conclusion and Outlook

Questions

Motivating Question

Question

How can we mathematically formulate the potential for communication condition for covert channel existence in systems of communicating agents?

- We required a formalism that would:
 - Provide a hybrid model for both communication and concurrency
 - 2 Lead to a mathematical formulation of the potential for communication

A Hybrid View of Agent Communication

RAMiCS 2014

크

イロト イヨト イヨト イヨト

What About Existing Formalisms?

- Looked at existing formalisms for communication and concurrency
 - Temporal Logics
 - Labelled Transition Systems
 - Petri Nets
 - Process Calculi (CCS, CSP, ACP, π-calculus)
- Interested in modelling the behaviour of a system in terms of:
 - Properties of its states, or
 - Observability of events
- Do not directly, if at all, provide a hybrid model of communication and concurrency that we are interested in

Is Concurrent Kleene Algebra the Answer?

- Concurrent Kleene Algebra (CKA) was perhaps the closest formalism to providing a hybrid model
- While CKA can be perceived as a hybrid model for concurrency, the same cannot be said for communication
- Communication in CKA is not directly captured
- CKA does not directly deal with describing how agent behaviours are influenced by external stimuli

- Specify communication in CKA without the need to articulate the state-based system of each action
 - i.e., at a convenient abstract level
- Express the influence of external stimuli on agent behaviours resulting from the occurrence of external events from
 - Communication among agents
 - Environment of a particular agent

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

Outline

Introduction and Motivation

- 2 The Proposed Framework
 - Structure of Agent Behaviours
 - Structure of External Stimuli
 - Communicating Concurrent Kleene Algebra (C²KA)
 - A Comment on a Model for C²KA
 - Specifying Systems of Communicating Agents with C²KA
 - C²KA and Orbits, Stabilisers, and Fixed Points
- 3 Conclusion and Outlook
- Questions

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

The Proposed Framework

- Propose a mathematical framework for communication and concurrency called Communicating Concurrent Kleene Algebra (C²KA)
 - Extends the algebraic model of CKA
 - Captures communication and concurrency of agents at the abstract algebraic level
 - Captures the influence of external stimuli on agent behaviour as well as communication through shared environments
 - Presents a different view of communication and concurrency than what was found with existing formalisms

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA C²KA and Orbits Stabilisers and Fixed Points

The Proposed Framework

- C²KA allows for the separation of communicating and concurrent behaviour in a system and its environment
- Can think about concurrent and communicating systems from two different perspectives:
 - Behavioural Perspective: influence of external stimuli as transformations of agent behaviours
 - External Event Perspective: influence of agent behaviours as transformations of external stimuli

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

Stimuli and Induced Behaviours Some Terminology

- Every external stimulus invokes a response from an agent
- An external stimulus *influences* the behaviour of an agent when the behaviour of then agent changes as a result of the response
- Set of possible influences that any given external stimulus may have on a particular agent are called the *induced behaviours* via external stimuli

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits Stabilisers and Fixed Points

A Simple Running Example: One-Place Buffer

- Suppose that a one-place buffer uses two flags to indicate its current status.
 - *flag*₁ denotes the empty/full status
 - *flag*₂ denotes the error status
- Assume that there are two basic system agents:
 - Agent **P** controls *flag*₁
 - Agent **Q** controls *flag*

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

イロト イヨト イヨト イヨト

Structure of Agent Behaviours

• Adopt the framework of CKA to describe agent behaviours

Definition (CKA)

A concurrent Kleene algebra (CKA) is a structure $(K, +, *, ;, *, \odot, 0, 1)$ such that (K, +, *, *, 0, 1) and $(K, +, ;, \odot, 0, 1)$ are Kleene algebras linked by the *exchange axiom* given by $(a * b); (c * d) \leq_{\mathcal{K}} (b; c) * (a; d)$.

a ≤_K b indicates that a is a sub-behaviour of b if and only if a + b = b

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

Structure of Agent Behaviours Running Example: One-Place Buffer

• Consider the following set of events:

$$\begin{array}{rcl} P_1 & \stackrel{\mathrm{def}}{=} & (\mathit{flag}_1 := \mathit{off}) & Q_1 & \stackrel{\mathrm{def}}{=} & (\mathit{flag}_2 := \mathit{off}) \\ P_2 & \stackrel{\mathrm{def}}{=} & (\mathit{flag}_1 := \mathit{on}) & Q_2 & \stackrel{\mathrm{def}}{=} & (\mathit{flag}_2 := \mathit{on}) \end{array}$$

- K is generated by the set of basic behaviours $\{P_1, P_2, Q_1, Q_2, 0, 1\}$
 - *Inactive agent* 0 is interpreted as abort
 - *Idle agent* 1 is interpreted as skip

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

イロト イヨト イヨト イヨト

Structure of External Stimuli

• Each discrete, observable event introduced to a system is considered to be an *external stimulus* which invokes a response from each system agent

Definition (Stimulus Structure)

Let $S \stackrel{\text{def}}{=} (S, \oplus, \odot, \mathfrak{d}, \mathfrak{n})$ be an idempotent semiring with a multiplicatively absorbing \mathfrak{d} and identity \mathfrak{n} . We call S a stimulus structure.

• $s \leq_{\mathcal{S}} t$ indicates that s is sub-stimulus of t if and only if $s \oplus t = t$

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

Structure of External Stimuli Running Example: One-Place Buffer

- Behaviour of each agent in the one-place buffer system is influenced by a number of external stimuli:
 - in places an item in the buffer
 - out removes an item from the buffer
 - error generates an error
- S is generated by the set of basic external stimuli {*in*, *out*, *error*, 0, n}
 - Deactivation stimulus \mathfrak{d} is interpreted as a kill signal
 - Neutral stimulus n is interpreted as any stimulus with no influence that belongs to the complement of the set of external stimuli which may be introduced to a system

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

(D) (A) (A) (A) (A)

Communicating Concurrent Kleene Algebra (C²KA)

Definition (C^2KA)

A Communicating Concurrent Kleene Algebra ($\mathbb{C}^2 \mathbb{K} \mathbb{A}$) is a system (S, \mathcal{K}) , where $S = (S, \oplus, \odot, \mathfrak{d}, \mathfrak{n})$ is a stimulus structure and $\mathcal{K} = (K, +, *, ;, \overset{\textcircled{(*)}}{, \mathfrak{o}}, \mathfrak{d}, \mathfrak{n})$ is a CKA such that $(_S K, +)$ is a unitary and zero-preserving *left S-semimodule* with mapping $\circ : S \times K \to K$ and $(S_{\mathcal{K}}, \oplus)$ is a unitary and zero-preserving *right K-semimodule* with mapping $\lambda : S \times K \to S$, and where the following axioms are satisfied for all $a, b, c \in K$ and $s, t \in S$: **1** $s \circ (a; b) = (s \circ a); (\lambda(s, a) \circ b)$ **2** $c \leq_{\mathcal{K}} a \vee (s \circ a); (\lambda(s, c) \circ b) = 0$

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

A B > A B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Communicating Concurrent Kleene Algebra (C²KA)

- A C²KA consists of two semimodules
 - $({}_{\mathcal{S}}K, +)$ describes how the stimulus structure \mathcal{S} acts upon the CKA \mathcal{K} via the *next behaviour mapping* \circ
 - $(S_{\mathcal{K}}, \oplus)$ describes how the CKA \mathcal{K} acts upon the stimulus structure S via the *next stimulus mapping* λ
- Together (_SK, +) and (S_K, ⊕) characterise the response invoked by an external stimulus on the behaviour of an agent as a next behaviour and a next stimulus

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

Image: A math a math

Initiating Agent Behaviours

- Agent behaviour can be initiated in two ways:
 - Reactivation: A C²KA is with reactivation if s ∘ 1 ≠ 1 for some s ∈ S \ { ∂ }
 - Passive idle agent may be influenced to behave as any active agent
 - Stimulus Initiation: a ∈ K \ {0,1} is a stimulus initiator if and only if λ(n, a) ≠ n
 - May generate a new stimulus without outside influence

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

Isotonicity Laws

Proposition

Let
$$(S, \mathcal{K})$$
 be a C²KA. For all $a, b \in K$ and $s, t \in S$:

$$\mathbf{1} \ \mathsf{a} \leq_{\mathcal{K}} \mathsf{b} \ \land \ \mathsf{s} \leq_{\mathcal{S}} \mathsf{t} \implies \mathsf{s} \circ \mathsf{a} \leq_{\mathcal{K}} \mathsf{t} \circ \mathsf{b}$$

$$2 a \leq_{\mathcal{K}} b \land s \leq_{\mathcal{S}} t \implies \lambda(s,a) \leq_{\mathcal{S}} \lambda(t,b)$$

Corollary

In a C^2KA where the underlying CKA and stimulus structure are built up from quantales, the following laws hold:

Jason Jaskolka (Speaker), Ridha Khedri, and Qinglei Zhang

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

Image: A math a math

A Comment on a Model for C²KA Structure of Agent Behaviours

$$(PR(EV), \cup, *, ;, \circledast, \odot, \emptyset, \{\emptyset\})$$
 is a CKA.

- A CKA can be modelled as sets of programs and traces
- EV is a set of event occurrences
- A trace is a set of events and a program is a set of traces
- $TR(EV) \stackrel{\text{def}}{=} \mathcal{P}(EV)$ denotes the set of all traces over EV
- $PR(EV) \stackrel{\text{def}}{=} \mathcal{P}(TR(EV))$ denotes the set of all programs

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

Image: A math a math

A Comment on a Model for C²KA Structure of External Stimuli

 $(\mathcal{P}(\Lambda), \cup, \bullet, \emptyset, \{\epsilon\})$ is a stimulus structure.

- A stimulus structure can be modelled by sets of strings
- Λ is a set of alphabet symbols
- • denotes set concatenation
- ϵ is the empty string

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C^2KA) A Comment on a Model for C^2KA Specifying Systems of Communicating Agents with C^2KA C^2KA and Orbits, Stabilisers, and Fixed Points

イロト イヨト イヨト イヨト

A Comment on a Model for C^2KA

 $(Q, \Sigma, \Theta, F, G)$ is a C²KA.

- A C^2KA can be modelled as a Mealy automaton
- The set of states Q is a subset of PR(EV) (i.e., the set K)
- The input alphabet Σ and output alphabet Θ are given by the stimulus structure such that $\Sigma = \Theta = S$
- The transition function F : Σ × Q → Q corresponds to the next behaviour mapping ∘ : S × K → K
- The output function G : Σ × Q → Θ corresponds to the next stimulus mapping λ : S × K → S

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C^2KA) A Comment on a Model for C^2KA Specifying Systems of Communicating Agents with C^2KA C^2KA and Orbits, Stabilisers, and Fixed Points

A Comment on a Model for C^2KA

- Proposed model is also equipped with two operations:
 - Operation ; is associative
 - Cascading Product of Mealy automata
 - Operation + is associative, idempotent, and commutative
 - Full Direct Product of Mealy automata

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C⁺KA and Orbits, Stabilisers, and Fixed Points

Specifying Systems of Communicating Agents with C²KA

- Three levels of specification:
 - Stimulus-Response Specification of Agents
 - Abstract Behaviour Specification
 - Oncrete Behaviour Specification
- Context of the given problem helps to dictate at which level we need to work

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

Stimulus-Response Specification

Running Example: One-Place Buffer

$$\mathbf{P} \stackrel{\text{def}}{=} P_1 + P_2$$

$$\mathbf{Q} \stackrel{\mathrm{def}}{=} Q_1 + Q_2$$

イロト イヨト イヨト イヨト

∘р	n	in	out	error	୍ଦ	n	in	out	error
<i>P</i> ₁	<i>P</i> ₁	P_2	P_1	P_1	Q_1	Q_1	Q_1	Q_1	<i>Q</i> ₂
<i>P</i> ₂	<i>P</i> ₂	P_2	P_1	P_2	Q_2	Q_2	Q_2	Q_2	Q_2
λ_{P}	n	in	out	error	λ_{Q}	n	in	out	error
P_1	n	n	error	n	Q_1	n	n	n	n
<i>P</i> ₂	n	error	n	n	<i>Q</i> ₂	n	n	n	n

 $\forall (P_i, Q_i \mid 1 \leq i \leq 2 : \mathfrak{d} \circ P_i = \mathfrak{0} \land \mathfrak{d} \circ Q_i = \mathfrak{0} \land \lambda(\mathfrak{d}, P_i) = \mathfrak{d} \land \lambda(\mathfrak{d}, Q_i) = \mathfrak{d})$

Buffer
$$\stackrel{\text{def}}{=}$$
 P; Q = (P₁ + P₂); (Q₁ + Q₂)

Jason Jaskolka (Speaker), Ridha Khedri, and Qinglei Zhang

RAMiCS 2014

크

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA **Specifying Systems of Communicating Agents with C²KA** C⁺KA and Orbits, Stabilisers, and Fixed Points

イロト イポト イヨト イヨト

Abstract Behaviour Specification Running Example: One-Place Buffer

- Consider the following context:
 - Buffer can only behave as empty or full
 - Buffer may only be influenced by *in* and *out* stimuli
 - error is an uncontrollable stimulus

 $(in \oplus out) \circ (P_1; Q_1 + P_2; Q_1)$

 $= in \circ (P_1; Q_1) + out \circ (P_1; Q_1) + in \circ (P_2; Q_1) + out \circ (P_2; Q_1)$

- $= (in \circ P_1); (\lambda(in, P_1) \circ Q_1) + (out \circ P_1); (\lambda(out, P_1) \circ Q_1) + (in \circ P_2); (\lambda(in, P_2) \circ Q_1) + (out \circ P_2); (\lambda(out, P_2) \circ Q_1)$
- $= P_2; Q_1 + P_1; Q_2 + P_2; Q_2 + P_1; Q_1$

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

イロト イヨト イヨト

Concrete Behaviour Specification Running Example: One-Place Buffer

EMPTY	$\stackrel{\text{def}}{=}$	P_1 ; Q_1	=	$(\mathit{flag}_1 := \mathit{off}$;	$flag_2 := off$
FULL	$\stackrel{\text{def}}{=}$	$P_2; Q_1$	=	$(\mathit{flag}_1 := \mathit{on}$;	$\mathit{flag}_2 := \mathit{off}$)
UNDERFLOW	$\stackrel{\text{def}}{=}$	$P_1; Q_2$	=	$(\mathit{flag}_1 := \mathit{off}$;	$\mathit{flag}_2 := \mathit{on})$
OVERFLOW	$\stackrel{\text{def}}{=}$	$P_2; Q_2$	=	$(\mathit{flag}_1 := \mathit{on}$;	$\mathit{flag}_2 := \mathit{on}$)

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

C²KA and Orbits, Stabilisers, and Fixed Points

- Orbits, stabilisers, and fixed points allow us to:
 - Perceive a kind of topology of a system
 - Gain some insight into the communication channels that can be established
 - Model the possible reactions of a system to a stimulus
 - Alleviate the state explosion problem in model checking

30 / 42

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

Image: A math the second se

C²KA and Orbits, Stabilisers, and Fixed Points

- Two complementary notions of orbits, stabilisers, and fixed points
- Can think about concurrent and communicating systems from two different perspectives:
 - Behavioural Perspective: action of external stimuli on agent behaviours described by (_SK, +)
 - ② External Event Perspective: action of agent behaviours on external stimuli described by (S_K, ⊕)

|--|

Orbits

Definition (Orbit)

The **orbit** of *a* in S is the set $Orb(a) = \{s \circ a \mid s \in S\}$.

- \bullet Set of all possible behavioural responses from an agent to any external stimulus from ${\mathcal S}$
 - Set of all possible future behaviours
- Running Example:

Orb(empty) = {empty, full, underflow, overflow} Orb(overflow) = {underflow, overflow}

・ロト ・回ト ・ヨト ・ヨト

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

イロト イヨト イヨト イヨト

Another Interpretation of Orbits

Definition (Induced Behaviour)

Let $a, b \in K$ be agent behaviours such that $a \neq b$. We say that b is induced by a via external stimuli (denoted by $a \triangleleft b$) if and only if $\exists (s \mid s \in S : s \circ a = b)$.

- Equivalently, $a \triangleleft b \iff b \in \operatorname{Orb}(a)$ for $a \neq b$
- Running Example:
 - EMPTY \triangleleft UNDERFLOW via the external stimulus *out*
 - EMPTY \lhd OVERFLOW via the external stimulus in \odot in

	Outline
Introduction and	Motivation
The Proposed	Framework
Conclusion a	nd Outlook
	Questions

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

イロト イヨト イヨト イヨト

Strong Orbits

Definition (Strong Orbit)

The **strong orbit** of *a* in S is the set $Orb_S(a) = \{b \in K \mid Orb(b) = Orb(a)\}.$

- Two agents are in the same strong orbit $(a \sim_{\mathcal{K}} b)$ if and only if their orbits are identical
- If $a \sim_{\mathcal{K}} b$, then $\exists (s, t \mid s, t \in S : s \circ a = b \land t \circ b = a)$

• s and t can be perceived as *inverses* of one another

• Running Example: We have two strong orbits: {EMPTY, FULL} and {UNDERFLOW, OVERFLOW}

	Outline
ntroduction and	Motivation
The Proposed	Framework
Conclusion a	nd Outlook
	Questions

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

Image: A math the second se

Stabilisers

Definition (Stabiliser)

The **stabiliser** of *a* in S is the set $Stab(a) = \{s \in S \mid s \circ a = a\}$.

- Set of external stimuli which have no observable influence (or act as neutral stimuli) on an agent
- **Running Example**: Stab(EMPTY) is generated by {*error*, *in* ⊙ *out*}

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

イロト イヨト イヨト イヨト

Fixed Point Behaviours

Definition (Fixed Point)

An element $a \in K$ is a **fixed point** if $\forall (s \mid s \in S \setminus \{0\} : s \circ a = a)$.

- \bullet Not influenced by any external stimulus other than the deactivation stimulus ϑ
- May be any number of fixed points with respect to \circ
- When $a \in K$ is a fixed point, $Orb(a) = \{0, a\}$ and $Stab(a) = S \setminus \{0\}$
- **Running Example**: With regard to the specification, the behaviour *Q*₂ is a fixed point

Structure of Agent Behaviours Structure of External Stimuli Communicating Concurrent Kleene Algebra (C²KA) A Comment on a Model for C²KA Specifying Systems of Communicating Agents with C²KA C²KA and Orbits, Stabilisers, and Fixed Points

イロト イポト イヨト イヨト

Topological Insights and Induced Behaviours

Proposition

Let $a, b, c \in K$ be agent behaviours.

$$\textcircled{0} a \text{ is a fixed point } \Longrightarrow \ \forall (b \mid b \in K \land b \neq 0 \land b \neq a : \neg (a \lhd b))$$

$$2$$
) a $\sim_{\mathcal{K}}$ b \implies a \lhd b \land b \lhd a

$$3 a \sim_{\mathcal{K}} b \implies (a \triangleleft c \iff b \triangleleft c)$$

Outline

Introduction and Motivation

- 2 The Proposed Framework
 - Structure of Agent Behaviours
 - Structure of External Stimuli
 - Communicating Concurrent Kleene Algebra (C²KA)
 - A Comment on a Model for C²KA
 - Specifying Systems of Communicating Agents with C²KA
 - C²KA and Orbits, Stabilisers, and Fixed Points
- 3 Conclusion and Outlook

Questions

Conclusion

- C²KA extends the algebraic setting of CKA to capture the influence of external stimuli on the behaviour of system agents
- C²KA supports the ability to work in either a state-based or event-based model for both the specification of communicating and concurrent behaviour
- To the best of our knowledge, such a formalism does not currently exist in the literature
 - Required for studying the necessary conditions for covert channel existence

Current and Future Work

- Developed a formulation of the potential for communication condition for covert channels using C²KA
- Prototype tool to support the automated computation and specification of systems of communicating agents using C²KA
- Adapt C²KA for solving interface equations
- Use C²KA to capture and explain the influence of external stimuli on agent behaviour in social networking environments

Outline

Introduction and Motivation

- 2 The Proposed Framework
 - Structure of Agent Behaviours
 - Structure of External Stimuli
 - Communicating Concurrent Kleene Algebra (C²KA)
 - A Comment on a Model for C^2KA
 - Specifying Systems of Communicating Agents with C²KA
 - C²KA and Orbits, Stabilisers, and Fixed Points
- 3 Conclusion and Outlook

Questions

Questions?

Jason Jaskolka (Speaker), Ridha Khedri, and Qinglei Zhang RAMiCS 2014

æ

・ロト ・回ト ・ヨト ・ヨト