A point-free relation-algebraic approach

to general topology

Gunther Schmidt

Fakultät für Informatik, Universität der Bundeswehr München Gunther.Schmidt@unibw.de

May 1, 2014

Contents

1. Motivation - my early topology
2. Topology
3. Interlude on prerequisites
4. Cryptomorphy of topology concepts
5. Continuity
6. Interlude on structure comparison
7. Interlude on the existential and inverse image
8. Relating continuity with the inverse image

Triangulation of the projective plane

Triangulation of the Csaszar polynomial

Triangulation of the Csaszar torus

Contents

1. Motivation - my early topology
2. Topology
3. Interlude on prerequisites
4. Cryptomorphy of topology concepts
5. Continuity
6. Interlude on structure comparison
7. Interlude on the existential and inverse image
8. Relating continuity with the inverse image

Topology - how it emerged

Leibniz:
the French:

"geometria situs"
"géométrie de position"

Topology - how it emerged

Leibniz:

the French:
Johann Benedict Listing 1847:
Karl von Staudt 1848:
others afterwards:
"geometria situs"
"géométrie de position"
"Topologie"
"Geometrie der Lage"
"analysis situs"

Topology - how it emerged

Leibniz:
the French:
Johann Benedict Listing 1847:
Karl von Staudt 1848:
others afterwards:
"geometria situs"
"géométrie de position"
"Topologie"
"Geometrie der Lage"
"analysis situs"

Definable via neighborhoods, open sets, open kernel, closed sets, etc.

Topology - how it emerged

Leibniz:
the French:
Johann Benedict Listing 1847:
Karl von Staudt 1848:
others afterwards:
"geometria situs"
"géométrie de position"
"Topologie"
"Geometrie der Lage"
"analysis situs"

Definable via
neighborhoods, open sets, open kernel, closed sets, etc.
Early in the twentieth century, topology has split into general or point set theory, mainly invented by Georg Cantor and later developed further by Felix Hausdorff, and what we today call algebraic topology, elaborated as Alexander Grothendieck's cathedral.

Topology as defined by Felix Hausdorff

A set X endowed with a system $\mathcal{U}(p)$ of subsets for every $p \in X$ is called a topological structure, provided

Topology as defined by Felix Hausdorff

A set X endowed with a system $\mathcal{U}(p)$ of subsets for every $p \in X$ is called a topological structure, provided
i) $p \in U$ for every neighborhood $U \in \mathcal{U}(p)$

Topology as defined by Felix Hausdorff

A set X endowed with a system $\mathcal{U}(p)$ of subsets for every $p \in X$ is called a topological structure, provided
i) $p \in U$ for every neighborhood $U \in \mathcal{U}(p)$
ii) If $U \in \mathcal{U}(p)$ and $V \supseteq U$, then $V \in \mathcal{U}(p)$

Topology as defined by Felix Hausdorff

A set X endowed with a system $\mathcal{U}(p)$ of subsets for every $p \in X$ is called a topological structure, provided
i) $p \in U$ for every neighborhood $U \in \mathcal{U}(p)$
ii) If $U \in \mathcal{U}(p)$ and $V \supseteq U$, then $V \in \mathcal{U}(p)$
iii) If $U_{1}, U_{2} \in \mathcal{U}(p)$, then $U_{1} \cap U_{2} \in \mathcal{U}(p)$ and $X \in \mathcal{U}(p)$

Topology as defined by Felix Hausdorff

A set X endowed with a system $\mathcal{U}(p)$ of subsets for every $p \in X$ is called a topological structure, provided
i) $p \in U$ for every neighborhood $U \in \mathcal{U}(p)$
ii) If $U \in \mathcal{U}(p)$ and $V \supseteq U$, then $V \in \mathcal{U}(p)$
iii) If $U_{1}, U_{2} \in \mathcal{U}(p)$, then $U_{1} \cap U_{2} \in \mathcal{U}(p)$ and $X \in \mathcal{U}(p)$
iv) For every $U \in \mathcal{U}(p)$ there exists a $V \in \mathcal{U}(p)$ such that $U \in \mathcal{U}(y)$ for all $y \in V$

Contents

1. Motivation - my early topology
2. Topology
3. Interlude on prerequisites
4. Cryptomorphy of topology concepts
5. Continuity
6. Interlude on structure comparison
7. Interlude on the existential and inverse image
8. Relating continuity with the inverse image

Axioms

A heterogeneous relation algebra

- is a category wrt. composition "," and identities \mathbb{I},
- has as morphism sets complete atomic boolean lattices with $\cup, \cap,-, \Perp, \Pi, \subseteq$,
- obeys rules for transposition ${ }^{\top}$ in connection with the latter two that may be stated in either one of the following two ways:

Dedekind rule:
$R ; S \cap Q \subseteq\left(R \cap Q ; S^{\top}\right) ;\left(S \cap R^{\top} ; Q\right)$

Axioms

A heterogeneous relation algebra

- is a category wrt. composition "," and identities \mathbb{I},
- has as morphism sets complete atomic boolean lattices with $\cup, \cap,-, \Perp, \Pi, \subseteq$,
- obeys rules for transposition ${ }^{\top}$ in connection with the latter two that may be stated in either one of the following two ways:

Dedekind rule:
$R ; S \cap Q \subseteq\left(R \cap Q ; S^{\top}\right) ;\left(S \cap R^{\top} ; Q\right)$
Schröder equivalences:
$A ; B \subseteq C \quad \Longleftrightarrow \quad A^{\top} ; \bar{C} \subseteq \bar{B} \quad \Longleftrightarrow \quad \bar{C} ; B^{\top} \subseteq \bar{A}$

Residuals and the symmetric quotient

- $R \backslash S:=\overline{R^{\top} ; \bar{S}}$ left residuum

Residuals and the symmetric quotient

- $R \backslash S:=\overline{R^{\top} ; \bar{S}}$ left residuum The left residuum $R \backslash S$ sets into relation a column of R precisely to those columns of S containing it.

Residuals and the symmetric quotient

- $R \backslash S:=\overline{R^{\top} ; \bar{S}}$ left residuum The left residuum $R \backslash S$ sets into relation a column of R precisely to those columns of S containing it.
$-\operatorname{syq}(A, B):=\overline{A^{\top} ; \bar{B}} \cap \overline{\bar{A}^{\top} ; B}$ symmetric quotient

Residuals and the symmetric quotient

- $R \backslash S:=\overline{R^{\top} ; \bar{S}}$ left residuum The left residuum $R \backslash S$ sets into relation a column of R precisely to those columns of S containing it.
$-\operatorname{syq}(A, B):=\overline{A^{\top}, \bar{B}} \cap \overline{\bar{A}^{\top} ; B}$ symmetric quotient The symmetric quotient sets into relation equal columns.

Illustrating the left residuum

Left residua show how columns of the relation R below the fraction backslash are contained in columns of the relation S above

Illustrating the symmetric quotient

	くシOー
French	01000000010000000
German	001000011001010
British	0111000000100000
Spanish $\left(\begin{array}{llllllllllllllll}0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1\end{array}\right)$	
American 0000100111001000	
French 1000100010001	
$\underset{\text { Grman }}{\text { Gritish }}$	
Spanish $\left.\quad \begin{array}{llllllllllllll} \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right)$	
	R above $\quad S$ below

The symmetric quotient shows which columns of the upper are equal to columns of the lower relation

Set Comprehension

Finding equal columns i, k of relations R, S :
$\forall n: \quad(n, i) \in R \leftrightarrow(n, k) \in S$
$\forall n: \quad(n, i) \in R \rightarrow(n, k) \in S$

$$
(n, i) \in R \leftarrow(n, k) \in S
$$

$\forall n: \quad(n, i) \in R \rightarrow(n, k) \in S \quad$ and

$$
\forall n: \quad(n, i) \in R \leftarrow(n, k) \in S
$$

$\overline{\exists n: \quad(n, i) \in R \wedge(n, k) \notin S \quad \frac{\text { and }}{\exists n \quad(n, i) \notin R \wedge(n, k) \in S}}$
$(i, k) \in \overline{R^{\top} ; \bar{S}} \cap \overline{\bar{R}}^{\top} ; S$

Construction of domains

Given a relation algebra, we may extend it in several ways:

- direct product
- direct sum
- direct power
- quotient
- extrusion
- target permutation

Construction of domains

Given any direct products by projections
$\pi: X \times Y \longrightarrow X, \quad \rho: X \times Y \longrightarrow Y$,
$\pi^{\prime}: U \times V \longrightarrow U, \quad \rho^{\prime}: U \times V \longrightarrow V$,
we define the Kronecker product, the fork-, and the join-operator:
i) $(A \otimes B):=\pi ; A ; \pi^{\prime \top} \cap \rho ; B ; \rho^{\prime \top}$
ii) $(C \otimes D):=C ; \pi^{\top} \cap D ; \rho^{\top}$
iii) $(E \oslash F):=\pi ; E \cap \rho ; F$

Direct power - up to isomorphism

Direct power - up to isomorphism

Any relation ε satisfying
$-\operatorname{syq}(\varepsilon, \varepsilon) \subseteq \mathbb{I}, \quad$ (i.e., in fact $\operatorname{syq}(\varepsilon, \varepsilon)=\mathbb{I})$

- $\operatorname{syq}(\varepsilon, R)$ is surjective for every relation R starting in X.
is called a
direct power
DirPow x
Member x
interpreted with \in-relation
$\mathcal{P}(X)$
$\varepsilon: X \longrightarrow \mathcal{P}(X)$

$$
\begin{aligned}
& \text { 分 } \\
& 0 \text { osisitetse }
\end{aligned}
$$

$$
\begin{aligned}
& \text { \& }
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon^{\prime}=\stackrel{\leftrightarrow}{\diamond} \stackrel{\substack{1 \\
\diamond}}{\stackrel{1}{1}} \mathbf{1}
\end{aligned}
$$

$$
P:=\operatorname{syq}\left(\varepsilon, \varepsilon^{\prime}\right) \quad \text { satisfies } \quad \varepsilon ; \operatorname{syq}\left(\varepsilon, \varepsilon^{\prime}\right)=\varepsilon^{\prime}
$$

$$
\begin{aligned}
& \% \\
& \text { SODON }
\end{aligned}
$$

Membership relations

Subset U and corresponding point e in the powerset via ε, Ω

Contents

1. Motivation - my early topology
2. Topology
3. Interlude on prerequisites
4. Cryptomorphy of topology concepts
5. Continuity
6. Interlude on structure comparison
7. Interlude on the existential and inverse image
8. Relating continuity with the inverse image

Topology as defined by Felix Hausdorff - recalled

A set X endowed with a system $\mathcal{U}(p)$ of subsets for every $p \in X$ is called a topological structure, provided

Topology as defined by Felix Hausdorff - recalled

A set X endowed with a system $\mathcal{U}(p)$ of subsets for every $p \in X$ is called a topological structure, provided
i) $p \in U$ for every neighborhood $U \in \mathcal{U}(p)$

Topology as defined by Felix Hausdorff - recalled

A set X endowed with a system $\mathcal{U}(p)$ of subsets for every $p \in X$ is called a topological structure, provided
i) $p \in U$ for every neighborhood $U \in \mathcal{U}(p)$
ii) If $U \in \mathcal{U}(p)$ and $V \supseteq U$, then $V \in \mathcal{U}(p)$

Topology as defined by Felix Hausdorff - recalled

A set X endowed with a system $\mathcal{U}(p)$ of subsets for every $p \in X$ is called a topological structure, provided
i) $p \in U$ for every neighborhood $U \in \mathcal{U}(p)$
ii) If $U \in \mathcal{U}(p)$ and $V \supseteq U$, then $V \in \mathcal{U}(p)$
iii) If $U_{1}, U_{2} \in \mathcal{U}(p)$, then $U_{1} \cap U_{2} \in \mathcal{U}(p)$ and $X \in \mathcal{U}(p)$

Topology as defined by Felix Hausdorff - recalled

A set X endowed with a system $\mathcal{U}(p)$ of subsets for every $p \in X$ is called a topological structure, provided
i) $p \in U$ for every neighborhood $U \in \mathcal{U}(p)$
ii) If $U \in \mathcal{U}(p)$ and $V \supseteq U$, then $V \in \mathcal{U}(p)$
iii) If $U_{1}, U_{2} \in \mathcal{U}(p)$, then $U_{1} \cap U_{2} \in \mathcal{U}(p)$ and $X \in \mathcal{U}(p)$
iv) For every $U \in \mathcal{U}(p)$ there exists a $V \in \mathcal{U}(p)$ such that $U \in \mathcal{U}(y)$ for all $y \in V$

Topology — lifted

i) $p \in U$ for every neighborhood $U \in \mathcal{U}(p)$

$$
\mathcal{U} \subseteq \varepsilon
$$

Topology — lifted

i) $p \in U$ for every neighborhood $U \in \mathcal{U}(p)$

$$
\mathcal{U} \subseteq \varepsilon
$$

ii) If $U \in \mathcal{U}(p)$ and $V \supseteq U$, then $V \in \mathcal{U}(p)$

$$
\mathcal{U}: \Omega \subseteq \mathcal{U}
$$

Topology — lifted

i) $p \in U$ for every neighborhood $U \in \mathcal{U}(p)$

$$
\mathcal{U} \subseteq \varepsilon
$$

ii) If $U \in \mathcal{U}(p)$ and $V \supseteq U$, then $V \in \mathcal{U}(p)$

$$
\mathcal{U}: \Omega \subseteq \mathcal{U}
$$

iii) If $U_{1}, U_{2} \in \mathcal{U}(p)$, then $U_{1} \cap U_{2} \in \mathcal{U}(p)$ and $X \in \mathcal{U}(p)$

$$
(\mathcal{U} \otimes \mathcal{U}): \mathcal{M} \subseteq \mathcal{U} \quad \mathcal{U}: T=\pi
$$

Topology — lifted

i) $p \in U$ for every neighborhood $U \in \mathcal{U}(p)$

$$
\mathcal{U} \subseteq \varepsilon
$$

ii) If $U \in \mathcal{U}(p)$ and $V \supseteq U$, then $V \in \mathcal{U}(p)$

$$
\mathcal{U}: \Omega \subseteq \mathcal{U}
$$

iii) If $U_{1}, U_{2} \in \mathcal{U}(p)$, then $U_{1} \cap U_{2} \in \mathcal{U}(p)$ and $X \in \mathcal{U}(p)$

$$
(\mathcal{U} \otimes \mathcal{U}): \mathcal{M} \subseteq \mathcal{U} \quad \mathcal{U}: T=\pi
$$

iv) For every $U \in \mathcal{U}(p)$ there exists a $V \in \mathcal{U}(p)$ such that $U \in \mathcal{U}(y)$ for all $y \in V$

$$
\mathcal{U} \subseteq \mathcal{U} ; \overline{\varepsilon^{\top} \cdot \overline{\mathcal{U}}}
$$

The same with ε conceiving \mathcal{U} as a relation:

$$
\varepsilon: X \longrightarrow \mathbf{2}^{X} \quad \text { and } \quad \mathcal{U}: X \longrightarrow \mathbf{2}^{X}
$$

"For every $U \in \mathcal{U}(p)$ there exists a $V \in \mathcal{U}(p)$
such that $U \in \mathcal{U}(y)$ for all $y \in V^{\prime \prime}$

The same with ε conceiving \mathcal{U} as a relation:

$$
\varepsilon: X \longrightarrow \mathbf{2}^{X} \quad \text { and } \quad \mathcal{U}: X \longrightarrow \mathbf{2}^{X}
$$

"For every $U \in \mathcal{U}(p)$ there exists a $V \in \mathcal{U}(p)$
such that $U \in \mathcal{U}(y)$ for all $y \in V^{\prime \prime}$
$\forall p, U: U \in \mathcal{U}(p) \rightarrow(\exists V: V \in \mathcal{U}(p) \wedge(\forall y: y \in V \rightarrow U \in \mathcal{U}(y)))$

The same with ε conceiving \mathcal{U} as a relation:

$$
\varepsilon: X \longrightarrow \mathbf{2}^{X} \quad \text { and } \quad \mathcal{U}: X \longrightarrow \mathbf{2}^{X}
$$

"For every $U \in \mathcal{U}(p)$ there exists a $V \in \mathcal{U}(p)$
such that $U \in \mathcal{U}(y)$ for all $y \in V^{\prime \prime}$
$\forall p, U: U \in \mathcal{U}(p) \rightarrow(\exists V: V \in \mathcal{U}(p) \wedge(\forall y: y \in V \rightarrow U \in \mathcal{U}(y)))$
$\forall p, U: \mathcal{U}_{p U} \rightarrow\left(\exists V: \mathcal{U}_{p V} \wedge\left(\forall y: \varepsilon_{y V} \rightarrow \mathcal{U}_{y U}\right)\right)$

The same with ε conceiving \mathcal{U} as a relation:

$$
\varepsilon: X \longrightarrow \mathbf{2}^{X} \quad \text { and } \quad \mathcal{U}: X \longrightarrow \mathbf{2}^{X}
$$

"For every $U \in \mathcal{U}(p)$ there exists a $V \in \mathcal{U}(p)$
such that $U \in \mathcal{U}(y)$ for all $y \in V^{\prime \prime}$
$\forall p, U: U \in \mathcal{U}(p) \rightarrow(\exists V: V \in \mathcal{U}(p) \wedge(\forall y: y \in V \rightarrow U \in \mathcal{U}(y)))$
$\forall p, U: \mathcal{U}_{p U} \rightarrow\left(\exists V: \mathcal{U}_{p V} \wedge\left(\forall y: \varepsilon_{y V} \rightarrow \mathcal{U}_{y U}\right)\right)$
$\forall p, U: \mathcal{U}_{p U} \rightarrow\left(\exists V: \mathcal{U}_{p V} \wedge \overline{\exists y: \varepsilon_{y V} \wedge \overline{\mathcal{U}_{y U}}}\right)$

The same with ε conceiving \mathcal{U} as a relation:

$$
\varepsilon: X \longrightarrow \mathbf{2}^{X} \quad \text { and } \quad \mathcal{U}: X \longrightarrow \mathbf{2}^{X}
$$

"For every $U \in \mathcal{U}(p)$ there exists a $V \in \mathcal{U}(p)$
such that $U \in \mathcal{U}(y)$ for all $y \in V^{\prime \prime}$
$\forall p, U: U \in \mathcal{U}(p) \rightarrow(\exists V: V \in \mathcal{U}(p) \wedge(\forall y: y \in V \rightarrow U \in \mathcal{U}(y)))$
$\forall p, U: \mathcal{U}_{p U} \rightarrow\left(\exists V: \mathcal{U}_{p V} \wedge\left(\forall y: \varepsilon_{y V} \rightarrow \mathcal{U}_{y U}\right)\right)$
$\forall p, U: \mathcal{U}_{p U} \rightarrow\left(\exists V: \mathcal{U}_{p V} \wedge \overline{\exists y: \varepsilon_{y V} \wedge \overline{\mathcal{U}_{y U}}}\right)$
$\forall p, U: \mathcal{U}_{p U} \rightarrow\left(\exists V: \mathcal{U}_{p V} \wedge{\left.\overline{\varepsilon^{\top}} \overline{\overline{\mathcal{U}}}_{V U}\right)}\right.$

The same with ε conceiving \mathcal{U} as a relation:

$$
\varepsilon: X \longrightarrow \mathbf{2}^{X} \quad \text { and } \quad \mathcal{U}: X \longrightarrow \mathbf{2}^{X}
$$

"For every $U \in \mathcal{U}(p)$ there exists a $V \in \mathcal{U}(p)$ such that $U \in \mathcal{U}(y)$ for all $y \in V^{\prime \prime}$

$$
\begin{aligned}
& \forall p, U: U \in \mathcal{U}(p) \rightarrow(\exists V: V \in \mathcal{U}(p) \wedge(\forall y: y \in V \rightarrow U \in \mathcal{U}(y))) \\
& \forall p, U: \mathcal{U}_{p U} \rightarrow\left(\exists V: \mathcal{U}_{p V} \wedge\left(\forall y: \varepsilon_{y V} \rightarrow \mathcal{U}_{y U}\right)\right) \\
& \forall p, U: \mathcal{U}_{p U} \rightarrow\left(\exists V: \mathcal{U}_{p V} \wedge \overline{\exists y: \varepsilon_{y V} \wedge \overline{\mathcal{U}_{y U}}}\right) \\
& \forall p, U: \mathcal{U}_{p U} \rightarrow\left(\exists V: \mathcal{U}_{p V} \wedge \overline{\left.\varepsilon^{\top} ; \overline{\mathcal{U}}_{V U}\right)}\right. \\
& \forall p, U: \mathcal{U}_{p U} \rightarrow\left(\mathcal{U}_{i} \cdot \overline{\varepsilon^{\top} ; \overline{\mathcal{U}}}\right)_{p U}
\end{aligned}
$$

The same with ε conceiving \mathcal{U} as a relation:

$$
\varepsilon: X \longrightarrow \mathbf{2}^{X} \quad \text { and } \quad \mathcal{U}: X \longrightarrow \mathbf{2}^{X}
$$

"For every $U \in \mathcal{U}(p)$ there exists a $V \in \mathcal{U}(p)$ such that $U \in \mathcal{U}(y)$ for all $y \in V^{\prime \prime}$

$$
\begin{aligned}
& \forall p, U: U \in \mathcal{U}(p) \rightarrow(\exists V: V \in \mathcal{U}(p) \wedge(\forall y: y \in V \rightarrow U \in \mathcal{U}(y))) \\
& \forall p, U: \mathcal{U}_{p U} \rightarrow\left(\exists V: \mathcal{U}_{p V} \wedge\left(\forall y: \varepsilon_{y V} \rightarrow \mathcal{U}_{y U}\right)\right) \\
& \forall p, U: \mathcal{U}_{p U} \rightarrow\left(\exists V: \mathcal{U}_{p V} \wedge \overline{\left.\exists y: \varepsilon_{y V} \wedge \overline{\overline{\mathcal{U}_{y U}}}\right)}\right. \\
& \forall p, U: \mathcal{U}_{p U} \rightarrow\left(\exists V: \mathcal{U}_{p V} \wedge \overline{\varepsilon^{\top}: \overline{\mathcal{U}}_{V U}}\right) \\
& \forall p, U: \mathcal{U}_{p U} \rightarrow\left(\overline{\mathcal{U}} \overline{\varepsilon^{\top} \cdot \overline{\mathcal{U}}}\right)_{p U} \\
& \mathcal{U} \subseteq \mathcal{U}: \overline{\varepsilon^{\top} \cdot \overline{\mathcal{U}}}
\end{aligned}
$$

A neighborhood topology and the basis of its open sets

A relation $\mathcal{U}: X \longrightarrow \mathbf{2}^{X}$ will be called a neighborhood topology if the following properties are satisfied:
i) $\mathcal{U} i \pi=\pi \quad$ and $\quad \mathcal{U} \subseteq \varepsilon$,
ii) $\mathcal{U}: \Omega \subseteq \mathcal{U}$,
iii) $(\mathcal{U} \otimes \mathcal{U}): \mathcal{M} \subseteq \mathcal{U}$,
iv) $\mathcal{U} \subseteq \mathcal{U}: \varepsilon^{\top} \cdot \overline{\mathcal{U}}$.

A neighborhood topology and the basis of its open sets

A relation $\mathcal{U}: X \longrightarrow \mathbf{2}^{X}$ will be called a neighborhood topology if the following properties are satisfied:
i) $\mathcal{U}: \pi=\pi \quad$ and $\quad \mathcal{U} \subseteq \varepsilon$,
ii) $\mathcal{U}: \Omega \subseteq \mathcal{U}$,
iii) $(\mathcal{U} \otimes \mathcal{U}): \mathcal{M} \subseteq \mathcal{U}$,
iv) $\mathcal{U} \subseteq \mathcal{U}: \overline{\varepsilon^{\top}} \overline{\mathcal{U}}$.

$$
\begin{aligned}
& \mathcal{U}=\begin{array}{l}
a \\
b \\
c \\
c \\
d
\end{array}\left(\begin{array}{lllllllllllllll}
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Topology given by transition to the open kernel

We call a relation $\mathcal{K}: \mathbf{2}^{X} \longrightarrow \mathbf{2}^{X}$ a mapping-to-open-kernel topology, if
i) \mathcal{K} is a kernel forming, i.e.,

$$
\mathcal{K} \subseteq \Omega^{\top}, \quad \Omega: \mathcal{K} \subseteq \mathcal{K} ; \Omega, \quad \mathcal{K} ; \mathcal{K} \subseteq \mathcal{K},
$$

Topology given by transition to the open kernel

We call a relation $\mathcal{K}: \mathbf{2}^{X} \longrightarrow \mathbf{2}^{X}$ a mapping-to-open-kernel topology, if
i) \mathcal{K} is a kernel forming, i.e.,

$$
\begin{array}{lcl}
\mathcal{K} \subseteq \Omega^{\top}, & \Omega: \mathcal{K} \subseteq \mathcal{K} ; \Omega, & \mathcal{K} ; \mathcal{K} \subseteq \mathcal{K} \\
\text { contracting } & \text { isotonic } & \text { idempotent }
\end{array}
$$

ii) $\varepsilon ; \mathcal{K}^{\top}$ is total,
iii) $(\mathcal{K} \otimes \mathcal{K}): \mathcal{M} \subseteq \mathcal{M} ; \mathcal{K} ; \Omega^{\top}, \quad$ in fact $\quad(\mathcal{K} \otimes \mathcal{K}) \mathcal{M}=\mathcal{M} ; \mathcal{K}$.

Topology given by transition to the open kernel

We call a relation $\mathcal{K}: \mathbf{2}^{X} \longrightarrow \mathbf{2}^{X}$ a mapping-to-open-kernel topology, if
i) \mathcal{K} is a kernel forming, i.e.,

$$
\begin{array}{lcl}
\mathcal{K} \subseteq \Omega^{\top}, & \Omega: \mathcal{K} \subseteq \mathcal{K} ; \Omega, & \mathcal{K} ; \mathcal{K} \subseteq \mathcal{K} \\
\text { contracting } & \text { isotonic } & \text { idempotent }
\end{array}
$$

ii) $\varepsilon ; \mathcal{K}^{\top}$ is total,
iii) $(\mathcal{K} \otimes \mathcal{K}): \mathcal{M} \subseteq \mathcal{M} ; \mathcal{K} ; \Omega^{\top}, \quad$ in fact $\quad(\mathcal{K} \otimes \mathcal{K}) \mathcal{M}=\mathcal{M} ; \mathcal{K}$.
kernel forming commutes with intersection

A topology in different forms

$\varepsilon \quad \mathcal{U} \quad \varepsilon_{\mathcal{O}}:=\varepsilon \cap \pi_{i} \mathcal{O}_{V}^{\top}=\varepsilon ; \mathcal{K} \cap \varepsilon$

$\left.\begin{array}{rllllllllllllllll}\} \\ \{\mathrm{a}\} \\ \{\mathrm{b}\} \\ \left\{\begin{array}{lllllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$\left\{\begin{array}{c}\text { c }\}\end{array} 0 \begin{array}{llllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0\right.$
$\{\mathrm{a}, \mathrm{c}\} \quad\left[\begin{array}{llllllllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0\right.$ $\{\mathrm{b}, \mathrm{c}\} \quad \begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

$\{d\}\left[\begin{array}{llllllllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0\right.$ $\{\mathrm{a}, \mathrm{d}\} \quad \begin{array}{lllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$ $\{\mathrm{b}, \mathrm{d}\}$ \{a,b,d\} $\{\mathrm{c}, \mathrm{d}\} \quad \begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}$
$\left\{\begin{array}{llllllllllllllll}\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}\end{array} \mathrm{O}\right.$ $\{\mathrm{b}, \mathrm{c}, \mathrm{d}\},\left[\begin{array}{llllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 1\right.$

$\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right)$
$\mathcal{K}:=\operatorname{syq}(\mathcal{U}, \varepsilon)$ indicating \mathcal{O}_{D} as diagonal \mathcal{O}_{V}

Non-topological kernel-forming

Kernel-forming that is not a topology, since not intersection-closed

(

$$
\begin{aligned}
& \mathrm{a}\left(\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\mathrm{~d} \\
\mathrm{~d} & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Cryptomorphy of diverse topology concepts
$\mathcal{U} \quad \mapsto \mathcal{K}:=\operatorname{syq}(\mathcal{U}, \varepsilon): \mathbf{2}^{X} \longrightarrow \mathbf{2}^{X}$
$\mathcal{K} \mapsto \mathcal{U}:=\varepsilon ; \mathcal{K}^{\top}: X \longrightarrow \mathbf{2}^{X}$.
$\mathcal{O}_{D} \quad \mapsto \quad \mathcal{U}:=\varepsilon ; \mathcal{O}_{D} ; \Omega$
$\mathcal{K}, \mathcal{U} \quad \mapsto \quad \mathcal{O}_{D}:=\mathbb{I} \cap \overline{\varepsilon^{\top} \cdot \overline{\mathcal{U}}}=\mathcal{K}^{\top} ; \mathcal{K}$

Cryptomorphy of diverse topology concepts

$\mathcal{U} \mapsto \mathcal{K}:=\operatorname{syq}(\mathcal{U}, \varepsilon): \mathbf{2}^{X} \longrightarrow \mathbf{2}^{X}$
$\mathcal{K} \mapsto \mathcal{U}:=\varepsilon_{i} \mathcal{K}^{\top}: X \longrightarrow \mathbf{2}^{X}$.
$\mathcal{O}_{D} \quad \mapsto \quad \mathcal{U}:=\varepsilon ; \mathcal{O}_{D} ; \Omega$
$\mathcal{K}, \mathcal{U} \quad \mapsto \quad \mathcal{O}_{D}:=\mathbb{I} \cap \overline{\varepsilon^{\top} \cdot \overline{\mathcal{U}}}=\mathcal{K}^{\top} ; \mathcal{K}$

This means the obligation to prove, e.g.

$$
\begin{aligned}
& \mathcal{U} \pi=\pi, \\
& \mathcal{U} \subseteq \varepsilon, \\
& \mathcal{U} \Omega \subseteq \mathcal{U}, \\
& (\mathcal{U} \otimes \mathcal{U}) ; \mathcal{M} \subseteq \mathcal{U}, \\
& \mathcal{U} \subseteq \mathcal{U}: \varepsilon^{\top} \overline{\mathcal{U}} .
\end{aligned}
$$

Separation axioms

Let a topology on X be given via neighborhoods, open sets, kernel mapping as required.

It is T_{0}-space (sometimes a Kolmogorov space) if for any two points in X an open set exists that contains one of them but not the other.

It is T_{1}-space when
$\forall x, y: x \neq y \rightarrow \exists U, V \in \mathcal{O}: x \in U \wedge y \notin U \wedge y \in V \wedge x \notin V$.
It is T_{2}-space, i.e., a topology satisfying the Hausdorff property, when
$\forall x, y: x \neq y \rightarrow \exists U, V \in \mathcal{O}: x \in U \wedge y \in V \wedge \emptyset=U \cap V$.

Separation axioms

Let a topology given in relational form, i.e., by $\mathcal{U}, \mathcal{O}, \mathcal{K}, \varepsilon_{\mathcal{O}}$ as required. It is called a
i) T_{0}-space if $\operatorname{syq}\left(\mathcal{U}^{\top}, \mathcal{U}^{\top}\right)=\mathbb{I}$
ii) T_{1}-space if $\quad \overline{\mathbb{I}} \subseteq \mathcal{U}: \overline{\mathcal{U}}^{\top}$.
iii) T_{2}-space or a Hausdorff space if $\quad \overline{\mathbb{I}} \subseteq \mathcal{U} ; \overline{\varepsilon^{\top} ; \varepsilon} ; \mathcal{U}^{\top}$.

Contents

1. Motivation - my early topology
2. Topology
3. Interlude on prerequisites
4. Cryptomorphy of topology concepts
5. Continuity
6. Interlude on structure comparison
7. Interlude on the existential and inverse image
8. Relating continuity with the inverse image

Continuity - standard vs. relational definition

Let any two neighborhood topologies $\mathcal{U}, \mathcal{U}^{\prime}$ be given on sets X, X^{\prime}, and a mapping $f: X \longrightarrow X^{\prime}$.

For $p \in X$ and every neighborhood
f continuous $: \Longleftrightarrow U^{\prime} \in \mathcal{U}^{\prime}(f(p))$, there exists a neighborhood $U \in \mathcal{U}(p)$ satisfying $f(U) \subseteq U^{\prime}$.

$\left(\begin{array}{lllllllllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
f=\begin{gathered}
1 \\
1 \\
2 \\
3 \\
4 \\
5
\end{gathered}\left(\begin{array}{ccccc}
\boldsymbol{0} & 0 & 0 & \sigma & 0 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0}
\end{array}\right)
$$

(1)

(2)
(5)

Contents

1. Motivation - my early topology
2. Topology
3. Interlude on prerequisites
4. Cryptomorphy of topology concepts
5. Continuity
6. Interlude on structure comparison
7. Interlude on the existential and inverse image
8. Relating continuity with the inverse image

Structure-preserving mappings

Let be given two "structures" of whatever kind abstracted to relations $R_{1}: X_{1} \longrightarrow Y_{1}$ and $R_{2}: X_{2} \longrightarrow Y_{2}$.

Structure-preserving mappings

Let be given two "structures" of whatever kind abstracted to relations $R_{1}: X_{1} \longrightarrow Y_{1}$ and $R_{2}: X_{2} \longrightarrow Y_{2}$.

Given mappings $\Phi: X_{1} \longrightarrow X_{2}$ and $\Psi: Y_{1} \longrightarrow Y_{2}$, we may ask whether these mappings transfer the first structure "sufficiently nice" into the second one.

Structure-preserving mappings

Let be given two "structures" of whatever kind abstracted to relations $R_{1}: X_{1} \longrightarrow Y_{1}$ and $R_{2}: X_{2} \longrightarrow Y_{2}$.

Given mappings $\Phi: X_{1} \longrightarrow X_{2}$ and $\Psi: Y_{1} \longrightarrow Y_{2}$, we may ask whether these mappings transfer the first structure "sufficiently nice" into the second one.

If any two elements x, y are in relation R_{1}, then their images $\Phi(x), \Psi(y)$ shall be in relation R_{2}.

Structure-preserving mappings

Let be given two "structures" of whatever kind abstracted to relations $R_{1}: X_{1} \longrightarrow Y_{1}$ and $R_{2}: X_{2} \longrightarrow Y_{2}$.

Given mappings $\Phi: X_{1} \longrightarrow X_{2}$ and $\Psi: Y_{1} \longrightarrow Y_{2}$, we may ask whether these mappings transfer the first structure "sufficiently nice" into the second one.

If any two elements x, y are in relation R_{1}, then their images $\Phi(x), \Psi(y)$ shall be in relation R_{2}.

$$
\forall x \in X_{1}: \forall y \in Y_{1}:(x, y) \in R_{1} \rightarrow(\Phi(x), \Psi(y)) \in R_{2}
$$

Structure-preserving mappings

Let be given two "structures" of whatever kind abstracted to relations $R_{1}: X_{1} \longrightarrow Y_{1}$ and $R_{2}: X_{2} \longrightarrow Y_{2}$.

Given mappings $\Phi: X_{1} \longrightarrow X_{2}$ and $\Psi: Y_{1} \longrightarrow Y_{2}$, we may ask whether these mappings transfer the first structure "sufficiently nice" into the second one.

If any two elements x, y are in relation R_{1}, then their images $\Phi(x), \Psi(y)$ shall be in relation R_{2}.

$$
\begin{aligned}
& \forall x \in X_{1}: \forall y \in Y_{1}:(x, y) \in R_{1} \rightarrow(\Phi(x), \Psi(y)) \in R_{2} \\
& R_{1} ; \Psi \subseteq \Phi ; R_{2}
\end{aligned}
$$

Homomorphism

This concept works for groups, fields and other algebraic structures, but also for relational structures as, e.g., graphs.
Φ, Ψ is a homomorphism from R to R^{\prime}, if
Φ, Ψ are mappings satisfying $R ; \Phi \subseteq \Psi ; R^{\prime}$.
Φ, Ψ is an isomorphism between R and R^{\prime}, if
Φ, Ψ as well as Φ^{\top}, Ψ^{\top} are homomorphisms.
Theorem
If Φ, Ψ are mappings, then

$$
\begin{aligned}
& R ; \Psi \subseteq \Phi ; R^{\prime} \quad \Longleftrightarrow \quad R \subseteq \Phi_{i}^{\prime} ; \Psi^{\top} \quad \Longleftrightarrow \\
& \Phi^{\top} ; R \subseteq R^{\prime} ; \Psi^{\top} \quad \Longleftrightarrow \quad \Phi^{\top} ; R \Psi \subseteq R^{\prime}
\end{aligned}
$$

If relations Φ, Ψ are not mappings, one cannot fully execute this rolling; there remain different forms of (bi-)simulations.

Continuity compares structures in a different way!

Let any two neighborhood topologies $\mathcal{U}, \mathcal{U}^{\prime}$ be given on sets X, X^{\prime}, and a mapping $f: X \longrightarrow X^{\prime}$.

For $p \in X$ and every neighborhood
f continuous $: \Longleftrightarrow U^{\prime} \in \mathcal{U}^{\prime}(f(p))$, there exists a neighborhood $U \in \mathcal{U}(p)$ satisfying $f(U) \subseteq U^{\prime}$.

Contents

1. Motivation - my early topology
2. Topology
3. Interlude on prerequisites
4. Cryptomorphy of topology concepts
5. Continuity
6. Interlude on structure comparison
7. Interlude on the existential and inverse image
8. Relating continuity with the inverse image

Existential image of relations

Existential image of relations

$\vartheta:=\vartheta_{R}:=\operatorname{syq}\left(R^{\top} ; \varepsilon, \varepsilon^{\prime}\right) \quad$ existential image.

Existential image of relations

$\vartheta:=\vartheta_{R}:=\operatorname{syq}\left(R^{\top} ; \varepsilon, \varepsilon^{\prime}\right) \quad$ existential image.
ϑ is (lattice-)continuous wrt. the powerset orderings $\Omega=\overline{\varepsilon^{\top} ; \bar{\varepsilon}}$

Existential image of relations

$\vartheta:=\vartheta_{R}:=\operatorname{syq}\left(R^{\top} ; \varepsilon, \varepsilon^{\prime}\right) \quad$ existential image.
ϑ is (lattice-)continuous wrt. the powerset orderings $\Omega=\overline{\varepsilon^{\top} ; \bar{\varepsilon}}$

$$
\begin{array}{lc}
\vartheta_{\mathbb{I}_{X}}=\mathbb{I}_{\mathbf{2}} \quad & \vartheta_{Q ; R}=\vartheta_{Q} ; \vartheta_{R} \quad \text { i.e. multiplicative } \\
\varepsilon^{\top} ; R=\vartheta_{R} ; \varepsilon^{\prime \top} & \varepsilon^{\prime \top} ; R^{\top}=\vartheta_{R^{\top} ;} \varepsilon^{\top} \quad \text { i.e. mutual simulation }
\end{array}
$$

R may be re-obtained from ϑ as $R=\overline{\varepsilon ; \vartheta ; \overline{\varepsilon^{\top}}}$

Existential image of relations

$\vartheta:=\vartheta_{R}:=\operatorname{syq}\left(R^{\top} ; \varepsilon, \varepsilon^{\prime}\right) \quad$ existential image.
ϑ is (lattice-)continuous wrt. the powerset orderings $\Omega=\overline{\varepsilon^{\top} ; \bar{\varepsilon}}$

$$
\begin{array}{lc}
\vartheta_{\mathbb{I}_{X}}=\mathbb{I}_{2} X & \vartheta_{Q ; R}=\vartheta_{Q} ; \vartheta_{R} \quad \text { i.e. multiplicative } \\
\varepsilon^{\top} ; R=\vartheta_{R} ; \varepsilon^{\prime \top} & \varepsilon^{\prime \top} ; R^{\top}=\vartheta_{R^{\top}} ; \varepsilon^{\top} \quad \text { i.e. mutual simulation }
\end{array}
$$

R may be re-obtained from ϑ as $R=\overline{\varepsilon ; \vartheta ; \overline{\varepsilon^{\top}}}$
but there exist many relations W satisfying $R=\overline{\varepsilon_{i} W ;{\overline{\varepsilon^{\prime}}}^{\top}}$

Existential image

$$
R=\begin{gathered}
1 \\
2 \\
3 \\
4 \\
5
\end{gathered}\left(\begin{array}{cccc}
\boldsymbol{0} & 1 & 0 & 0 \\
\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0}
\end{array}\right)
$$

$$
\vartheta_{R}=
$$

$\left(\begin{array}{llllllllllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

Inverse image

Contents

1. Motivation - my early topology
2. Topology
3. Interlude on prerequisites
4. Cryptomorphy of topology concepts
5. Continuity
6. Interlude on structure comparison
7. Interlude on the existential and inverse image
8. Relating continuity with the inverse image

Continuity compares structures in a different way!

Let any two neighborhood topologies $\mathcal{U}, \mathcal{U}^{\prime}$ be given on sets X, X^{\prime}, and a mapping $f: X \longrightarrow X^{\prime}$.

For $p \in X$ and every neighborhood
f continuous $: \Longleftrightarrow U^{\prime} \in \mathcal{U}^{\prime}(f(p))$, there exists a neighborhood $U \in \mathcal{U}(p)$ satisfying $f(U) \subseteq U^{\prime}$.

Lifting the continuity condition

For all $p \in X$, all $V \in \mathcal{U}^{\prime}(f(p))$, exists a $U \in \mathcal{U}(p)$ with $f(U) \subseteq V$.

$$
\begin{aligned}
& \forall p \in X: \forall V \in \mathcal{U}^{\prime}(f(p)): \exists U \in \mathcal{U}(p): f(U) \subseteq V \\
& \forall p \in X: \forall v \in \mathbf{2}^{X^{\prime}}: \mathcal{U}_{f(p), v}^{\prime} \longrightarrow\left(\exists u: \mathcal{U}_{p, u} \wedge\left[\forall y: \varepsilon_{y u} \rightarrow \varepsilon_{f(y), v}^{\prime}\right]\right) \\
& \forall p: \forall v:\left(f \mathcal{U}^{\prime}\right)_{p v} \longrightarrow\left(\exists u: \mathcal{U}_{p u} \wedge\left[\forall y: \varepsilon_{y u} \rightarrow\left(f ; \varepsilon^{\prime}\right)_{y v}\right]\right) \\
& \forall p: \forall v:\left(f \mathcal{U}^{\prime}\right)_{p v} \longrightarrow\left(\exists u: \mathcal{U}_{p u} \wedge \exists y: \varepsilon_{y u} \wedge \overline{\left(f ; \varepsilon^{\prime}\right)_{y v}}\right) \\
& \forall p: \forall v:\left(f \mathcal{U}^{\prime}\right)_{p v} \longrightarrow\left(\exists u: \mathcal{U}_{p u} \wedge \overline{\varepsilon^{\top} ; \overline{f ; \varepsilon^{\prime}}}{ }_{u v}\right) \\
& \forall p: \forall v:\left(f \mathcal{U}^{\prime}\right)_{p v} \longrightarrow\left(\overline{\mathcal{U}}, \overline{\varepsilon^{\top} ; \overline{f ; \varepsilon^{\prime}}}\right)_{p v} \\
& f \mathcal{U}^{\prime} \subseteq \mathcal{U} ; \overline{\varepsilon^{\top} ; \overline{f ; \varepsilon^{\prime}}} \\
& f: \mathcal{U}^{\prime} \subseteq \mathcal{U}: \vartheta_{f^{\top}}^{\top}
\end{aligned} \text { The last step is proved as follows: }
$$

$$
\begin{aligned}
& \mathcal{U}: \overline{\varepsilon^{\top} ; \overline{f_{i} \varepsilon^{\prime}}} \subseteq \mathcal{U}: \overline{\varepsilon^{\top} ; \overline{f_{i}, \varepsilon^{\prime} ; \vartheta_{f^{\top} ; \vartheta_{f}^{\top}}}} \text { because } \vartheta_{f^{\top}} \text { is total } \\
& =\mathcal{U}: \overline{\varepsilon^{\top} ; \overline{f ; \varepsilon^{\prime} ; \operatorname{syq}\left(f ; \varepsilon^{\prime}, \varepsilon\right) ; \vartheta_{f^{\top}}^{\top}}} \text { by definition of } \vartheta_{f^{\top}} \\
& \subseteq \mathcal{U}: \overline{\varepsilon^{\top} ; \overline{\varepsilon ; \vartheta_{f^{\top}}^{\top}}} \text { cancellation } \\
& =\mathcal{U}: \overline{\varepsilon^{\top} ; \bar{\varepsilon}} ; \vartheta_{f^{\top}}^{\top} \text { since } \vartheta_{f^{\top}} \text { is a mapping } \\
& =\mathcal{U} ; \Omega ; \vartheta_{f^{\top}}^{\top}=\mathcal{U} ; \vartheta_{f^{\top}}^{\top}
\end{aligned}
$$

Continuity - standard vs. relational definition

Let any two neighborhood topologies $\mathcal{U}, \mathcal{U}^{\prime}$ be given on sets X, X^{\prime}, and a mapping $f: X \longrightarrow X^{\prime}$.

For $p \in X$ and every neighborhood
f continuous $: \Longleftrightarrow U^{\prime} \in \mathcal{U}^{\prime}(f(p))$, there exists a neighborhood $U \in \mathcal{U}(p)$ satisfying $f(U) \subseteq U^{\prime}$.
f continuous $: \Longleftrightarrow f: \mathcal{U}^{\prime} ; \vartheta_{f^{\top}} \subseteq \mathcal{U}$

$$
\Longleftrightarrow \quad f: \mathcal{U}^{\prime} \subseteq \mathcal{U}^{\prime} \vartheta_{f^{\top}}^{\top}
$$

Cryptomorphy of continuity concepts

Given sets X, X^{\prime} with topologies, we consider a mapping $f: X \longrightarrow X^{\prime}$ together with its inverse image $\vartheta_{f^{\top}}: \mathbf{2}^{X^{\prime}} \longrightarrow \mathbf{2}^{X}$. Then we say that the pair $\left(f, \vartheta_{f} T\right)$ is
i) \mathcal{K}-continuous $\quad: \Longleftrightarrow \mathcal{K}_{2}^{\top} ; \vartheta_{f^{\top}} \subseteq \overline{\varepsilon_{2}^{\top} ; f^{\top} ; \overline{\varepsilon_{1}}} \mathcal{K}_{1}^{\top}$
ii) $\mathcal{O}_{D^{\text {-continuous }}} \quad: \Longleftrightarrow \mathcal{O}_{D 2^{2}} \vartheta_{f^{\top}} \subseteq \vartheta_{f^{\top} \cdot} \mathcal{O}_{D 1}$
iii) $\mathcal{O}_{V^{\text {-continuous }}}: \Longleftrightarrow \vartheta_{f^{\top}}^{\top} \cdot \mathcal{O}_{V}^{\prime} \subseteq \mathcal{O}_{V}$
iv) $\varepsilon_{\mathcal{O}^{\prime}}$-continuous $\quad: \Longleftrightarrow f_{;} \varepsilon_{\mathcal{O}_{2} ; \vartheta} \vartheta_{f^{\top}} \subseteq \varepsilon_{\mathcal{O}_{1}}$

Cryptomorphy of continuity concepts

Given sets X, X^{\prime} with topologies, we consider a mapping $f: X \longrightarrow X^{\prime}$ together with its inverse image $\vartheta_{f^{\top}}: \mathbf{2}^{X^{\prime}} \longrightarrow \mathbf{2}^{X}$. Then we say that the pair $\left(f, \vartheta_{f^{\top}}\right)$ is
i) \mathcal{K}-continuous $\quad: \Longleftrightarrow \mathcal{K}_{2}^{\top} ; \vartheta_{f^{\top}} \subseteq \overline{\varepsilon_{2}^{\top} ; f^{\top} ; \overline{\varepsilon_{1}}} ; \mathcal{K}_{1}^{\top}$
ii) $\mathcal{O}_{D^{-} \text {-continuous }}: \Longleftrightarrow \mathcal{O}_{D 2^{;} \vartheta_{f^{\top}} \subseteq \vartheta_{f^{\top}} \cdot \mathcal{O}_{D 1}}$
iii) $\mathcal{O}_{V^{-} \text {-continuous }}: \Longleftrightarrow \vartheta_{f^{\top}}^{\top} \cdot \mathcal{O}_{V}^{\prime} \subseteq \mathcal{O}_{V}$
iv) $\varepsilon_{\mathcal{O}^{-}}$-continuous $\quad: \Longleftrightarrow f ; \varepsilon_{\mathcal{O}_{2}} ; \vartheta_{f^{\top}} \subseteq \varepsilon_{\mathcal{O}_{1}}$

Again, there is an obligation to prove
f is \mathcal{K}-continuous $\Longleftrightarrow f$ is \mathcal{O}_{D}-continuous

f is \mathcal{O}_{V}-continuous $\Longleftrightarrow f$ is $\varepsilon_{\mathcal{O}}$-continuous

Thank you!

Language and system

Systems to support work with relations

- RelView: RBDD-Implementierung; auch für große Relationen
- Titu Rel eine relationale Sprache, transformierbar, interpretierbar
- RalF: weiland ein guter Formel-Manipulator und Beweis-Assistent
- RATH: Exploring (finite) relation algebras with tools written in Haskell

Aims in designing TituRel

- Formulate all problems so far tackled with relational methods
- Transform relational terms and formulae in order to optimize them
- Interpret the relational constructs as boolean matrices, in RelView, in the Titu Rel substrate, or in Rath
- Prove relational formulae with system support in the style of Ralf or Rasiowa-Sikorski
- Translate relational formulae into $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-representation, or to first-order predicate logic, e.g.

Recalling syntax vs. semantics for PL/I:

	K const.	interpretation I	an element K_{I} for K
tokens	φ fct.	in	
	p pred.	in supporting set	a function table φ_{I} for φ
			s subset p_{I} for p

Recalling syntax vs. semantics for PL/I:

	K const.	interpretation I	an element K_{I} for K
tokens	φ fct.	in anction table φ_{I} for φ	
	p pred.	in supporting set	s subset p_{I} for p

Out of this and the variables V one forms terms and formulae

$$
T=V|K| \varphi(T) \quad F=p(T)|\neg F| \forall V: F
$$

Recalling syntax vs. semantics for PL/I:

	K const.	interpretation I	an element K_{I} for K
tokens	φ fct.	in	
	p pred.	in supporting set	a function table φ_{I} for φ

Out of this and the variables V one forms terms and formulae

$$
T=V|K| \varphi(T) \quad F=p(T)|\neg F| \forall V: F
$$

With a variable valuation $v: x \mapsto v(x)$ terms are evaluated

$$
v^{*}(x):=v(x) \quad v^{*}(k):=k_{I} \quad v^{*}(\varphi(t)):=\varphi_{I}\left(v^{*}(t)\right)
$$

Recalling syntax vs. semantics for PL/I:

	K const.	interpretation I	an element K_{I} for K
tokens	φ fct.	in supporting set	a function table φ_{I} for φ p p subset p_{I} for p

Out of this and the variables V one forms terms and formulae

$$
T=V|K| \varphi(T) \quad F=p(T)|\neg F| \forall V: F
$$

With a variable valuation $v: x \mapsto v(x)$ terms are evaluated

$$
v^{*}(x):=v(x) \quad v^{*}(k):=k_{I} \quad v^{*}(\varphi(t)):=\varphi_{I}\left(v^{*}(t)\right)
$$

and formulae interpreted

$$
\begin{aligned}
& \models_{I, v} p(t): \Longleftrightarrow v^{*}(t) \subseteq p_{I} \quad \not \models_{I, v} \neg F: \Longleftrightarrow \not \models_{I, v} F \\
& \models_{I, v} \forall x: F \quad: \Longleftrightarrow \quad \text { For all } s \text { holds } \models_{I, v_{x \leftarrow s}} F
\end{aligned}
$$

Relational language

The system Titu REL runs under one of the following acronym interpretations

- This is the ultimate relation system
- Towards improved techniques using relations
- Teaching informaticians to use relations
- Try it, to use relations
- Toolkit intended to use relations
- Testing innovative tools using relations
- Think innovative - try using relations

Titu REL ontvangt de Heilige Graal en de Heilige Speer uit handen van een Engelenschaar die neder daalt uit de hemel. Hij bouwt een Tempel voor deze heilige relikwien, de Graalburcht Montsalvat. Ridders die tot de Graal worden geroepen vormen de ridderschap van de Heilige Graal, hun Koning is Titurel. Op hoge leeftijd draagt hij zijn ambt over op zijn zoon Amfortas.

Model questions

Model problem

Model problem

Theory of relation algebra

Predicate logic vs. relational logic

RRA (representable relation algebras, i.e. the Boolean matrix algebras) are not finitely axiomatizable. (Don Monk)

RA can express any (and up to logical equivalence, exactly the) first-order logic formulas containing no more than three variables.

RRA is axiomatizable by a universal Horn theory.

Model problem

$$
\begin{array}{ll}
\mathbb{I}^{\top}=\mathbb{I} & \\
a^{\top}=c & b^{2}=\bar{b}=\mathbb{I} \cup a \cup c \\
b^{\top}=b & a ; c=c ; a=\mathbb{T} \\
c^{\top}=a & a ; b=b ; a=a \cup b \\
a^{2}=a & c ; b=b ; c=c \cup b \\
c^{2}=c &
\end{array}
$$

Ralph McKenzie's homogeneous non-representable RA
The element a cannot be conceived as a Boolean matrix.

Model problem

Model problem

Model problem

Model problem

$$
\pi ; R ; P ; \pi^{\prime \prime \top} \cap \rho ; S ; Q: \rho^{\prime \prime \top} \subseteq
$$

Model problem

4 morphisms in any other case

Model problem

It is, however, possible to prove that

$$
\left(Q \otimes \mathbb{I}_{X}\right) ;\left(\mathbb{I}_{B} \otimes R\right)=(Q \otimes R)=\left(\mathbb{I}_{A} \otimes R\right) ;\left(Q \otimes \mathbb{I}_{Y}\right)
$$

This does express correctly that Q and R may with one execution thread be executed in either order; i.e., with meandering "coroutines".

But no two execution threads are provided to execute in parallel.

Model problem

Model problem

Model problem

History of relations

History of relations

Relations were being developed at a time when

- formal semantics was not yet known
language and interpretation
typing and unification
- the idea that several models of a theory may exist, was close to being completely unknown (non-Euclidian geometry: Bolyai, Lobatschevskij ≈ 1840)
- one was still bound to handle the following in the respective natural language, namely in English, German, Latin, Greek, Japanese, Russian, Arabic ...!

quantification	\forall, \exists
conversion	R^{\top}
composition	$A ; B$

but also „brother", „father", „uncle"
and only gradually developed a more standardized language

- the concept of a matrix had not yet been coined (Cayley, Sylvester 1850's)

History of relations

George Boole's investigations on the laws of thought of 1854:
In every discourse, whether of the mind conversing with its own thoughts, or of the individual in his intercourse with others, there is an assumed or expressed limit within which the subjects of its operation are confined. The most unfettered discourse is that in which the words we use are understood in the widest possible application, and for them the limits of discourse are co-extensive with those of the universe itself. But more usually we confine ourselves to a less spacious field. ...Furthermore, this universe of discourse is in the strictest sense the ultimate subject of the discourse. The office of any name or descriptive term employed under the limitations supposed is not to raise in the mind the conception of all the beings or objects to which that name or description is applicable, but only of those which exist within the supposed universe of discourse.

History of relations

Ernst Schröder (1841-1902)

C. S. Peirce (1839-1914)

\cap
Arthur Cayley (1821-1895)
matrices
J. J. Sylvester (1814-1897)
typing \cap
George Boole (1815-1864)
Augustus De Morgan (1806-1871)

Closure and contact

Closure and contact

Definition

Let some ordered set (V, \leq) be given. A mapping $\rho: V \longrightarrow V$ is called a closure operation, if it is
i) expanding $\quad x \leq \rho(x)$,
ii) isotonic
$x \leq y \longrightarrow \rho(x) \leq \rho(y)$,
iii) idempotent $\quad \rho(\rho(x)) \leq \rho(x)$.

Closure and contact

Definition

Let some ordered set (V, \leq) be given. A mapping $\rho: V \longrightarrow V$ is called a closure operation, if it is
i) expanding $\quad x \leq \rho(x)$,
ii) isotonic
$x \leq y \longrightarrow \rho(x) \leq \rho(y)$,
iii) idempotent $\quad \rho(\rho(x)) \leq \rho(x)$.

As usual: quantifiers omitted. We now reinstall them

Closure and contact

Definition

Let some ordered set (V, \leq) be given. A mapping $\rho: V \longrightarrow V$ is called a closure operation, if it is
i) expanding $\quad x \leq \rho(x)$,
ii) isotonic
$x \leq y \longrightarrow \rho(x) \leq \rho(y)$,
iii) idempotent $\quad \rho(\rho(x)) \leq \rho(x)$.

As usual: quantifiers omitted. We now reinstall them
$\forall x, y: x \leq y \longrightarrow \rho(x) \leq \rho(y)$

Closure and contact

Definition

Let some ordered set (V, \leq) be given. A mapping $\rho: V \longrightarrow V$ is called a closure operation, if it is
i) expanding $\quad x \leq \rho(x)$,
ii) isotonic
$x \leq y \longrightarrow \rho(x) \leq \rho(y)$,
iii) idempotent $\quad \rho(\rho(x)) \leq \rho(x)$.

As usual: quantifiers omitted. We now reinstall them
$\forall x, y: x \leq y \longrightarrow \rho(x) \leq \rho(y)$
which makes 18 symbols in standard mathematics notation. This will now shrink down to just 7.

Theorem
Assume an ordering $E: X \longrightarrow X$ and a mapping $\rho: X \longrightarrow X$. Then ρ is a closure operator if and only if

$$
\rho \subseteq E \quad E ; \rho \subseteq \rho ; E \quad \rho ; \rho \subseteq \rho
$$

Theorem

Assume an ordering $E: X \longrightarrow X$ and a mapping $\rho: X \longrightarrow X$. Then ρ is a closure operator if and only if

$$
\rho \subseteq E \quad E ; \rho \subseteq \rho ; E \quad \rho ; \rho \subseteq \rho
$$

We convince ourselves, that the intentions of the preceding definition are met when lifting in this way, starting from $\rho(\rho(x)) \leq \rho(x)$:

$$
\begin{aligned}
& \forall x, y, z: \rho_{x y} \wedge \rho_{y z} \rightarrow\left[\exists w: \rho_{x w} \wedge E_{z w}\right] \\
& \Longleftrightarrow \quad \forall x, y, z: \rho_{x y} \wedge \rho_{y z} \rightarrow\left(\rho ; E^{\top}\right)_{x z} \\
& \Longleftrightarrow \quad \neg\left(\exists x, z:\left(\exists y: \rho_{x y} \wedge \rho_{y z}\right) \wedge\left[\rho ; E^{\top}\right]_{x z}\right) \\
& \Longleftrightarrow \quad \neg\left(\exists x, z:(\rho ; \rho)_{x z} \wedge \overline{\left[\rho E^{\top}\right]_{x z}}\right) \\
& \Longleftrightarrow \quad \forall x, z:(\rho ; \rho)_{x z} \rightarrow\left[\rho ; E^{\top}\right]_{x z} \\
& \Longleftrightarrow \quad \rho ; \rho \subseteq \rho ; E^{\top}
\end{aligned}
$$

Theorem

Assume an ordering $E: X \longrightarrow X$ and a mapping $\rho: X \longrightarrow X$.
Then ρ is a closure operator if and only if

$$
\rho \subseteq E \quad E ; \rho \subseteq \rho ; E \quad \rho ; \rho \subseteq \rho
$$

We convince ourselves, that the intentions of the preceding definition are met when lifting in this way, starting from $\rho(\rho(x)) \leq \rho(x)$:

$$
\begin{aligned}
& \forall x, y, z: \rho_{x y} \wedge \rho_{y z} \rightarrow\left[\exists w: \rho_{x w} \wedge E_{z w}\right] \\
& \Longleftrightarrow \quad \forall x, y, z: \rho_{x y} \wedge \rho_{y z} \rightarrow\left(\rho ; E^{\top}\right)_{x z} \\
& \Longleftrightarrow \quad \neg\left(\exists x, z:\left(\exists y: \rho_{x y} \wedge \rho_{y z}\right) \wedge\left[\rho ; E^{\top}\right]_{x z}\right) \\
& \Longleftrightarrow \quad \neg\left(\exists x, z:(\rho ; \rho)_{x z} \wedge \overline{\left[\rho ; E^{\top}\right]_{x z}}\right) \\
& \Longleftrightarrow \quad \forall x, z:(\rho ; \rho)_{x z} \rightarrow\left[\rho ; E^{\top}\right]_{x z} \\
& \Longleftrightarrow \quad \rho ; \rho \subseteq \rho E^{\top}
\end{aligned}
$$

Together with the others, we get $\quad \Longleftrightarrow \quad \rho ; \rho \subseteq \rho$

Closure and contact

Definition

We consider a set related to its powerset, with a membership relation $\varepsilon: X \longrightarrow \mathcal{P}(X)$ and a powerset ordering $\Omega: \mathcal{P}(X) \longrightarrow \mathcal{P}(X)$. A relation $C: X \longrightarrow \mathcal{P}(X)$ is called an Aumann contact relation, provided
i) it contains the membership relation, i.e., $\varepsilon \subseteq C$,
ii) an element x in contact with a set Y all of whose elements are in contact with a set Z, will be in contact with Z, the so-called infectivity of contact, i.e., $C ; \varepsilon^{\top}, \bar{C} \subseteq C$, or equivalently, $C^{\top} ; \bar{C} \subseteq \varepsilon^{\top} ; \bar{C}$.

One will easily show that C forms an upper cone, i.e., $C ; \Omega \subseteq C$: $C^{\top} ; \bar{C} \subseteq \varepsilon^{\top} ; \bar{C} \subseteq \varepsilon^{\top} ; \bar{\varepsilon}=\bar{\Omega}$

Closure and contact

Theorem
Given a closure operator $\rho: \mathcal{P}(X) \longrightarrow \mathcal{P}(X)$ on some powerset defined via a membership relation $\varepsilon: X \longrightarrow \mathcal{P}(X)$, the construct $C:=\varepsilon ; \rho^{\top}$ turns out to be an Aumann contact relation.

Beweis.
i) $\varepsilon \subseteq \varepsilon ; \rho^{\top}$
\Longleftrightarrow
$\varepsilon ; \rho \subseteq \varepsilon \Longleftarrow$

$$
\varepsilon ; \Omega \subseteq \varepsilon
$$

ii) $C ; \overline{\varepsilon^{\top} ; \bar{C}}=\varepsilon ; \rho^{\top} ; \overline{\varepsilon^{\top} ; \overline{\varepsilon ; \rho^{\top}}}=\varepsilon ; \rho^{\top} ; \overline{\varepsilon^{\top} ; \bar{\varepsilon}} ; \rho^{\top} \quad$ since ρ is a mapping
$=\varepsilon ; \rho^{\top} ; \Omega ; \rho^{\top}$
$\subseteq \varepsilon ; \Omega ; \rho^{\top} ; \rho^{\top} \quad$ with the second closure property
$\subseteq \varepsilon ; \Omega ; \rho^{\top} \quad$ with the third closure property
$=\varepsilon ; \rho^{\top}=C \quad$ since $\varepsilon ; \Omega=\varepsilon$

Closure and contact

Theorem

Given any Aumann contact relation $C: X \longrightarrow \mathcal{P}(X)$, forming the construct $\rho:=\operatorname{syq}(C, \varepsilon)$ results in a closure operator.

Proof: i) $\rho=\operatorname{syq}(C, \varepsilon) \subseteq \overline{C^{\top} ; \bar{\varepsilon}} \subseteq \overline{\varepsilon^{\top} ; \bar{\varepsilon}}=\Omega$
ii) We recall ε;syq $(\varepsilon, Y)=Y$ and $\bar{\varepsilon}$;syq $(\varepsilon, Y)=\bar{Y}$ for

$$
\rho ; \bar{\Omega} ; \rho^{\top}=\operatorname{syq}(C, \varepsilon) ; \varepsilon^{\top} ; \bar{\varepsilon} ; \operatorname{syq}(\varepsilon, C)=C^{\top} ; \bar{C} \subseteq \varepsilon^{\top} ; \bar{\varepsilon}=\bar{\Omega} .
$$

Since ρ is a mapping, we may proceed with

$$
\overline{\rho ; \Omega ; \rho^{\top}} \subseteq \bar{\Omega} \quad \Omega \subseteq \rho ; \Omega ; \rho^{\top} \quad \Omega ; \rho \subseteq \rho ; \Omega
$$

iii) We prove $\rho ; \rho \subseteq \rho$, i.e., $\operatorname{syq}(C, \varepsilon)$;syq $(C, \varepsilon) \subseteq \operatorname{syq}(C, \varepsilon)$ or

$$
\left(\bar{C}^{\top} ; \varepsilon \cup C^{\top} ; \bar{\varepsilon}\right) ; \operatorname{syq}(\varepsilon, C) \subseteq \bar{C}^{\top} ; \varepsilon \cup C^{\top} ; \bar{\varepsilon}
$$

Now, the two terms on the left are treated separately.

Example

Let an arbitrary relation $R: X \longrightarrow Y$ be given.

Then $C:=\overline{\bar{R} ; \overline{\bar{R}}^{\top} ; \varepsilon}$ is always an Aumann contact relation. To show this, we have to prove
$\varepsilon \subseteq \overline{\bar{R} ;} \overline{\bar{R}}^{\top} ; \varepsilon=C$, which is trivial using Schröder equivalences.

$$
\begin{aligned}
& C^{\top} ; \bar{C} \subseteq \varepsilon^{\top} ; \bar{C} \Longleftrightarrow \overline{\bar{R}}{\overline{\bar{R}^{\top}}{ }^{\top}}^{\top} ; \bar{R} ; \overline{\bar{R}^{\top} ; \varepsilon} \subseteq \varepsilon^{\top} ; \bar{R} ; \overline{\bar{R}}^{\top} ; \varepsilon \\
& \quad \Longleftrightarrow \overline{\bar{R}} \overline{\bar{R}}^{\top} ; \varepsilon ; \bar{R} \subseteq \varepsilon^{\top} ; \bar{R} \\
& \quad \Longleftrightarrow \overline{\varepsilon^{\top} ; \bar{R}} ; \bar{R}^{\top} \subseteq\left(\bar{R} ; \overline{\bar{R}}^{\top} ; \varepsilon\right)^{\top}
\end{aligned}
$$

The construct $C:=\overline{\bar{R}} \overline{\bar{R}^{\top} ; \varepsilon}$ may be read as follows: It declares those combinations $x \in X$ and $S \subseteq X$ to be in contact C, for which every relationship $(x, y) \notin R$ implies that there exists also an $x^{\prime} \in S$ in relation $\left(x^{\prime}, y\right) \notin R$.

Exzerpt of bibliography of trade union publication

Berghammer, R., Rusinowska, A., and de Swart, H. (2005) Applying Relational Algebra and RELVIEW to Coalition Formation. Public Choice Society. http://www.pubchoicesoc.org/papers2005/BerghammerRusinowskadeSwart.pdf

Brink, C., Kahl, W., and Schmidt, G. (Eds.) (1997) Relational Methods in Computer Science. Berlin, Springer.

Deemen, A. van (1997) Coalition Formation and Social Choice. Kluwer.

Rusinowska, A., de Swart, H., And van der Rijt, J.W. (2005) A new model of coalition formation. Social Choice and Welfare, 24, 129-154.

Schmidt, G., And Ströhlein, T. (1993) Relations and Graphs, Discrete Mathematics for Computer Scientists. Berlin, Springer.
Swart, H. de, Orlowska, E., Schmidt, G., and Roubens, M. (Eds.) (2003) Theory and Applications of Relational Structures as Knowledge Instruments. Berlin, Springer.

