Relational Algebra for "Just Good Enough" Hardware

J.N. Oliveira
naslab Inesc Tec \& University of Minho

RAMiCS 2014
Marienstatt im Westerwald, Germany
28 April - 1 May 2014

Motivation

Motivation

Software V\&V

EXPLORE MICROMO'S
"MOTION" APP TODAY!

- Use with iPhone and Android devices • Universal DC motor calculator
- Analysis based on speed or voltage with torque and catalog data

HOME > TECHNOLOGIES > PROTOTYPING > R\&D NOTEBOOK: THE GROWING IMPORTANCE OF SOFTWARE VERIFIC/

R\&D Notebook: The growing importance of software verification and validation in medical device design

The third edition of IEC 60601-1 takes on a new role, bringing risk management into the very first stages of the product development process.
compared with...

Motivation

MITnews

engineering science management architecture + planning humanities, arts, and social sciences campus

The surprising usefulness of sloppy arithmetic
A computer chip that performs imprecise calculations could process some types of data thousands of times more efficiently than existing chips.
Larry Hardesty, MIT News Office

Sloppy arithmetic useful?
Horror!

But there is more...

"Just good enough" h/w

... coming from the land of the Swiss watch:

"We should stop designing perfect circuits"

o2.10.13 - Are integrated circuits "too good" for current technological applications? Christian Enz, the new Director of the Institute of Microengineering, backs the idea that perfection is overrated.

Message:
Why perfection if (some) imperfection still meets the standards?

S/w for "just good enough" h/w

What about software running over "just good enough" hardware?
Ready to take the risk?
Nonsense to run safety critical software on defective hardware?

Uups! - it seems "it already runs":
medical
"IEC 60601-1 [brings] risk management into the design very first stages of [product development]"

Risk is everywhere - an inevitable (desired?) part of life.

P (robabilistic) R (isk) A (nalysis)

NASA/SP-2011-3421 (Stamatelatos and Dezfuli, 2011):
1.2.2 A PRA characterizes risk in terms of three basic questions: (1) What can go wrong? (2) How likely is it? and (3) What are the consequences?

The PRA process
answers these questions by systematically (...) identifying, modeling, and quantifying scenarios that can lead to undesired consequences

Interestingly,
medical
design
"IEC 60601-1 [...] very first stages of [development]"

From the very first stage in development

Think of things that can go wrong:

$$
\text { bad } \cup \text { good }
$$

How likely?

$$
\begin{equation*}
\text { bad }_{p} \diamond \text { good } \tag{1}
\end{equation*}
$$

where

$$
\text { bad }_{p} \diamond \text { good }=p \times \text { bad }+(1-p) \times \text { good }
$$

for some probability p of bad behaviour, eg. the imperfect action

$$
\operatorname{top}_{\left(10^{-7}\right)} \diamond \text { pop }
$$

leaving a stack unchanged with 10^{-7} probability.

Imperfect truth tables

Imperfect negation id $0.01 \diamond$ neg:

Functions? Relations? Yes: matrices!

Better than the "anything can happen" relation id \cup neg, matrix id ${ }_{p} \diamond$ neg carries useful quantitative information.

Aside: fragment of function pres: President \rightarrow Country displayed as a matrix in the Relational Mathematics book (Schmidt, 2010).

Relational and linear algebra (LA) share a lot in common.

LA required when calculating risk of failure of safety critical s / w.

Linear algebra of programming

Relational / KAT algebra - a success story.

Linear algebra of programming (LAoP)

- research track aiming at a quantitative extension of heterogeneous relational/KAT algebra.

Keeping the pointfree style!
Strategy: mild and pragmatic use of categorial techniques.

Heinrich Kleisli (1930-2011)

Main point - Kleisli categories matter!

Context

Faults in CBS systems

Interested in reasoning about the risk of faults propagating in component-based software (CBS) systems.

Traditional CBS risk analysis relies on semantically weak CBS models, e.g. component call-graphs (Cortellessa and
 Grassi, 2007).

Our starting point is a coalgebraic semantics for s/w components modeled as monadic Mealy machines (Barbosa and Oliveira, 2006).

Main ideas

Component $=$ Monadic Mealy machine (MMM), that is, an \mathbb{F}-evolving transition structure of type:

$$
S \times I \rightarrow \mathbb{F}(S \times O)
$$

where \mathbb{F} is a monad.
Method $=$ Elementary (single action) MMM.
CBS design $=$ Algebra of MMM combinators.
Semantics $=$ Coalgebraic, calculational.
To this framework we want to add analysis of
Risk $=$ Probability of faulty (catastrophic) behaviour

Mealy machines in various guises

F-transition structure:

$$
S \times I \rightarrow \mathbb{F}(S \times O)
$$

Coalgebra:

$$
S \rightarrow(\mathbb{F}(S \times O))^{\prime}
$$

State-monadic:

$$
I \rightarrow(\mathbb{F}(S \times O))^{S}
$$

All versions useful in component algebra.

Mealy machines in various guises

\mathbb{F}-transition structure:

$$
S \times I \rightarrow \mathbb{F}(S \times O)
$$

Coalgebra:

$$
S \rightarrow(\mathbb{F}(S \times O))^{\prime}
$$

State-monadic:

$$
I \rightarrow(\mathbb{F}(S \times O))^{S}
$$

All versions useful in component algebra.

Abstracting from internal state S and branching effect \mathbb{F}, machine

$$
m: S \times I \rightarrow \mathbb{F}(S \times O)
$$

can be depicted as

or as the arrow $I \xrightarrow{m} 0$.

Example - stack component

From a (partial) algebra of finite lists (Haskell syntax)

(partial) function

type

push $(s, a)=a: s$
pop = tail
top $=$ head
empty $s=($ length $s=0)$
push :: ([a], a) \rightarrow [a]
pop :: [a] \rightarrow [a]
top $::[a] \rightarrow a$
empty $::[a] \rightarrow \mathbb{B}$
method
push' $=\pi \cdot \overline{\text { (nush }}$

$e^{e m p t y}{ }^{\prime}=\eta \cdot(i d \Delta$ empty $) \cdot f s t$
type

Example - stack component

From a (partial) algebra of finite lists (Haskell syntax)

(partial) function

type

$$
\begin{aligned}
& \text { push }(s, a)=a: s \\
& \text { pop }=\text { tail } \\
& \text { top }=\text { head } \\
& \text { empty } s=(\text { length } s=0)
\end{aligned}
$$

$$
\begin{aligned}
& \text { push }:::([a], a) \rightarrow[a] \\
& \text { pop }::[a] \rightarrow[a] \\
& \text { top }::[a] \rightarrow a \\
& \text { empty }::[a] \rightarrow \mathbb{B}
\end{aligned}
$$

to a collection of (total) methods (MMMs):

method	type
push $^{\prime}=\eta \cdot($ push $\Delta!)$	push $^{\prime}::([a], a) \rightarrow \mathbb{M}([a], 1)$
pop $^{\prime}=($ pop Δ top $\Leftarrow(\neg \cdot$ empty $)) \cdot f s t$	pop ${ }^{\prime}::([a], 1) \rightarrow \mathbb{M}([a], a)$
top $^{\prime}=($ id Δ top $\Leftarrow(\neg \cdot$ empty $)) \cdot$ fst	top $^{\prime}::([a], 1) \rightarrow \mathbb{M}([a], a)$
empty $=\eta \cdot($ id Δ empty $) \cdot$ fst	empty $::([a], 1) \rightarrow \mathbb{M}([a], \mathbb{B})$

where...

Explanation

Pairing:

"Sink" ("bang") function $A \xrightarrow{!} 1$ onto singleton type 1
\mathbb{M} : Monad with unit η and zero \perp (typically Maybe)
\mathbb{M}-totalizer on given pre-condition:

$$
\begin{gathered}
\Leftarrow \cdot::(a \rightarrow b) \rightarrow(a \rightarrow \mathbb{B}) \rightarrow a \rightarrow \mathbb{M} b \\
(f \Leftarrow p) a=\text { if } p \text { a then }(\eta \cdot f) a \text { else } \perp
\end{gathered}
$$

Component $=\sum$ methods

Define

$$
\begin{aligned}
& \text { stack }::([a], 1+1+a+1) \rightarrow \mathbb{M}([a], a+a+1+\mathbb{B}) \\
& \text { stack }=\text { pop }^{\prime} \oplus \text { top }^{\prime} \oplus \text { push }^{\prime} \oplus \text { empty }^{\prime}
\end{aligned}
$$

to obtain a compound $\mathbb{M}-\mathrm{MM}$ (stack component) with 4 methods, where

- input 1 means "DO IT!"
- output 1 means "DONE!"

Notation $m \oplus n$ expresses the "coalesced" sum of two
 state-compatible MMMs (next slide).

Machine sums

Note the pointfree definition
$\cdot \oplus \cdot::($ Functor $\mathbb{F}) \Rightarrow$
-- input machines
$((s, i) \rightarrow \mathbb{F}(s, o)) \rightarrow$ $((s, j) \rightarrow \mathbb{F}(s, p)) \rightarrow$
-- output machine
$(s, i+j) \rightarrow \mathbb{F}(s, o+p)$
-- definition
$m_{1} \oplus m_{2}=\left(\mathbb{F} d r^{\circ}\right) \cdot \Delta \cdot\left(m_{1}+m_{2}\right) \cdot d r$
where $d r^{\circ}$ is the converse of isomorphism

$$
\mathrm{dr}::(s, i+j) \rightarrow(s, i)+(s, j)
$$

and $\Delta:: \mathbb{F} a+\mathbb{F} b \rightarrow \mathbb{F}(a+b)$ is a kind of "cozip" operator.

S/w system = component composition

Forward composition

is central to component communication.
Abstracting from state, it means composition in a categorial sense:

Exchange law

Formal definition of m; n to be discussed shortly.
For suitably typed MMM m_{1}, m_{2}, n_{1} and n_{2}, mind the useful exchange law

$$
\begin{equation*}
\left(m_{1} \oplus m_{2}\right) ;\left(n_{1} \oplus n_{2}\right)=\left(m_{1} ; n_{1}\right) \oplus\left(m_{2} ; n_{2}\right) \tag{2}
\end{equation*}
$$

expressing two alternative approaches to s/w system construction:

- $\cdot \oplus$ - -first - "component-oriented"
- •; - first - "method-oriented"

For several other combinators in the algebra see (Barbosa and Oliveira, 2006).

Simulation (Haskell)

Let \mathbb{M} instantiate to Haskell's Maybe monad:

- Running a perfect and successful composition:

$$
\begin{aligned}
& >\left(\text { pop }^{\prime} ; \text { push') }(([1],[2]),())\right. \\
& \text { Just }(([],[1,2]),())
\end{aligned}
$$

- Running a perfect but catastrophic composition:

$$
\begin{aligned}
& >\left(\text { pop }^{\prime} ; \text { push' }\right)(([],[2]),()) \\
& \text { Nothing }
\end{aligned}
$$

(source stack empty)

What about imperfect machine communication?

Imperfect components

Risk of $p o p^{\prime}$ behaving like top ${ }^{\prime}$ with probability $1-p$:

$$
\begin{aligned}
& \text { pop }^{\prime \prime}:: \mathbb{P} \rightarrow([a], 1) \rightarrow \mathbb{D}(\mathbb{M}([a], a)) \\
& {p o p^{\prime \prime}}^{p}=\text { pop }_{p} \diamond \text { top }
\end{aligned}
$$

Risk of push' not pushing anything, with probability $1-q$:

$$
\begin{aligned}
& \text { push }^{\prime \prime}:: \mathbb{P} \rightarrow([a], a) \rightarrow \mathbb{D}(\mathbb{M}([a], 1)) \\
& \text { push' }^{\prime} q=\text { push }_{q} \diamond!
\end{aligned}
$$

Details: $\mathbb{P}=[0,1], \mathbb{D}$ is the (finite) distribution monad and

$$
\begin{aligned}
& \because \diamond:: \mathbb{P} \rightarrow(t \rightarrow a) \rightarrow(t \rightarrow a) \rightarrow t \rightarrow \mathbb{D} a \\
& \left(f f_{p} \diamond g\right) x=\text { choose } p(f x)(g x)
\end{aligned}
$$

chooses between f and g according to p.

Faulty components

Define

$$
m_{2}=\text { pop }^{\prime \prime} 0.95 ;_{\text {D }} \text { push }{ }^{\prime \prime} 0.8
$$

where $\cdot{ }_{D}$. is a probabilistic enrichment of composition and run the same simulations for m_{2} over the same state ([1], [2]):

$$
\begin{aligned}
& >m_{2}(([1],[2]),()) \\
& \text { Just }(([],[1,2]),()) 76.0 \% \\
& \text { Just }(([],[2]),()) 19.0 \% \\
& \text { Just }(([1],[1,2]),()) 4.0 \% \\
& \text { Just (([1], [2]), ()) } 1.0 \%
\end{aligned}
$$

Total risk of faulty behaviour is $24 \%(1-0.76)$ structured as:
(a) 1% - both stacks misbehave; (b) 19% - target stack misbehaves;
(c) 4% - source stack misbehaves.

Faulty components

As expected, the behaviour of

$$
\begin{aligned}
& >m_{2}(([],[2]),()) \\
& \text { Nothing } 100.0 \%
\end{aligned}
$$

is 100% catastrophic (popping from an empty stack).

Simulation details:
Using the PFP library written in Haskell by Erwig and Kollmansberger (2006).

Central topic

Our MMMs have become probabilistic, acquiring the general shape

$$
S \times I \rightarrow \mathbb{D}(\mathbb{F}(S \times O))
$$

where the additional \mathbb{D} - (finite support) distribution monad captures imperfect behaviour (fault propagation).

Questions:

- Shall we compose $\mathbb{D} \cdot \mathbb{F}$ and work over the composite monad?
- Or shall we try and find a way of working "as if \mathbb{D} wasn't there"?

Let us first see how MMM compose.

MMM forward composition

Combinator

is defined by Kleisli composition

$$
m_{1} ; m_{2}=\left(\psi m_{2}\right) \bullet\left(\phi m_{1}\right)
$$

of two steps:

- ϕm_{1} - run m_{1} "wrapped" with the state of m_{2}
- ψm_{2} - run m_{2} "wrapped" with that of m_{1} for the output it delivers

Kleisli composition

Let $X \xrightarrow{\eta} \mathbb{F} X<{ }^{\mu} \mathbb{F}^{2} X$ be a monad in diagram

$f \bullet g$ denotes the so-called Kleisli composition of \mathbb{F}-resultric arrows, forming a monoid with η as identity:

$$
\begin{aligned}
& f \bullet(g \bullet h)=(f \bullet g) \bullet h \\
& f \bullet \eta=f=\eta \bullet f
\end{aligned}
$$

MMM composition - part I

Given $I \xrightarrow{m_{1}} J$ build ϕm_{1} :

$$
\begin{aligned}
& \mathbb{F}(S \times J) \times Q \stackrel{m_{1} \times i d}{m_{1}}(S \times I) \times Q \leftarrow \times r \\
& \mathbb{F}((S \times J) \times Q) \\
& \tau_{r}
\end{aligned} \underbrace{\leftarrow}_{\phi m_{1}}
$$

where

- $\mathrm{xr}:(S \times Q) \times I \rightarrow(S \times I) \times Q$ is the obvious isomorphism ensuring the compound state and input I
- $\tau_{r}:(\mathbb{F} A) \times B \rightarrow \mathbb{F}(A \times B)$ is the right strength of monad \mathbb{F}, which therefore has to be a strong monad.

MMM composition - part II

Given $J \xrightarrow{m_{2}} K$ build ψm_{2} :

$$
\begin{aligned}
& S \times \mathbb{F}(Q \times K) \stackrel{i d \times m_{2}}{\gtrless} S \times(Q \times J)<\times 1 \quad(S \times J) \times Q \\
& \quad \tau_{1} \mid \\
& \mathbb{F}(S \times(Q \times K)) \\
& \mathbb{F}\left(\left(S \times a^{\circ} \downarrow\right.\right.
\end{aligned}
$$

where

- a° is the converse of isomorphism a: $(A \times B) \times C \rightarrow A \times(B \times C)$
- xl is a variant of xr
- $\tau_{l}:(B \times \mathbb{F} A) \rightarrow \mathbb{F}(B \times A)$ is the left strength of \mathbb{F}.

MMM composition - part III

Finally build $m_{1} ; m_{2}=\left(\psi m_{2}\right) \bullet\left(\phi m_{1}\right)$:
$\mathbb{F}(\mathbb{F}((S \times Q) \times K)) \stackrel{\mathbb{F}\left(\psi m_{2}\right)}{\leftarrow} \mathbb{F}((S \times J) \times Q) \stackrel{\phi m_{1}}{\rightleftarrows} \mathbb{F}((S \times Q) \times I)$

This for perfect \mathbb{F}-monadic machines. What about the imperfect ones? What is the impact of adding probability-of fault to the above construction? Does one need to rebuild the definition?

MMM composition - part III

Finally build $m_{1} ; m_{2}=\left(\psi m_{2}\right) \bullet\left(\phi m_{1}\right)$:

This for perfect \mathbb{F}-monadic machines. What about the imperfect ones?
What is the impact of adding probability-of-fault to the above construction? Does one need to rebuild the definition?

Doubly-monadic machines

Recall Haskell simulations running combinator $m_{1} ; D m_{2}$ for doubly-monadic machines of type

$$
(S \times I) \rightarrow \mathbb{D}(\mathbb{M}(S \times O))
$$

involving the Maybe (\mathbb{M}) and (finite support) distribution (\mathbb{D}) monads which generalize to

$$
(S \times I) \rightarrow \mathbb{G}(\mathbb{F}(S \times O))
$$

where, following the terminology of Hasuo et al. (2007):

- monad $X \xrightarrow{\eta_{\mathbb{F}}} \mathbb{F} X<\stackrel{\mu_{\mathbb{F}}}{\leftarrow} \mathbb{F}^{2} X$ caters for transitional effects (how the machine evolves)
- monad $X \xrightarrow{\eta_{\mathbb{G}}} \mathbb{G} X \stackrel{\mu_{\mathbb{G}}}{\mathbb{G}^{2} X \text { specifies the branching }}$ type of the system.

Going relational

Doubly-monadic machines

Typical instance:

$$
\begin{aligned}
\mathbb{G}= & \mathbb{P}(\text { powerset }) \text { and } \mathbb{F}=\mathbb{M}=(1+) \text { ('maybe'), that is, } \\
& m: Q \times I \rightarrow \mathbb{P}(1+Q \times J)
\end{aligned}
$$

is a reactive, non-deterministic finite state automaton with explicit termination.

Such machines can be regarded as binary relations of (relational) type

$$
(Q \times I) \rightarrow(1+Q \times J)
$$

and handled directly in relational algebra. (Details in the next slide)

Nondeterministic Maybe machines

The power transpose adjunction

$$
R=\lceil m\rceil \quad \Leftrightarrow \quad\langle\forall b, a \quad: \quad b R a=b \in m a\rangle
$$

for trading between \mathbb{P}-functions and binary relations, in a way such that

$$
\lceil m \bullet n\rceil=\lceil m\rceil \cdot\lceil n\rceil
$$

where

- $m \bullet n$ - Kleisli composition of \mathbb{P}-functions
- $\lceil m\rceil \cdot\lceil n\rceil$ - relational composition $b(R \cdot S) a \Leftrightarrow\langle\exists c:: b R c \wedge c S a\rangle$
of the corresponding binary relations.

Composing relational \mathbb{M}-machines

Transition monad on duty is $\mathbb{M}=(1+)$, ie.

$$
X \xrightarrow{i_{2}} 1+X \stackrel{\left[i_{1}, i d\right]}{\rightleftharpoons} 1+(1+X)
$$

($i_{1}, i_{2}=$ binary sum injections).

Lifting: in the original definition

$$
m_{1} ; m_{2}=\left(\psi m_{2}\right) \bullet\left(\phi m_{1}\right)
$$

run Kleisli composition relationally:

$$
\begin{aligned}
R \bullet S & =\left[i_{1}, i d\right] \cdot(i d+R) \cdot S=\left[i_{1}, R\right] \cdot S \\
& =i_{1} \cdot i_{1}^{\circ} \cdot S \cup R \cdot i_{2}^{\circ} \cdot S
\end{aligned}
$$

Composing relational \mathbb{M}-machines

Pointwise: $y(R \bullet S)$ a holds iff

$$
(y=*) \wedge(* S a) \vee\left\langle\exists c::(y R c) \wedge\left(\left(i_{2} c\right) S a\right)\right\rangle
$$

where $*=i_{1} \perp$
In words:
$R \bullet S$ doomed to fail if S fails;
Otherwise, $R \bullet S$ will fail where R fails.
For the same input, $R \bullet S$ may both succeed or fail.

Summary: Nondeterministic \mathbb{M}-machines are \mathbb{M}-relations and original (deterministic) definition is "reused" in the relational setting:

$$
R_{1} ; R_{2}=\left(\psi R_{2}\right) \bullet\left(\phi R_{1}\right)=\left[i_{1}, \psi R_{2}\right] \cdot\left(\phi R_{1}\right)
$$

Going linear

Probabilistic branching (\mathbb{D} instead of \mathbb{P})

Again, instead of working in Set,

$$
\mathbb{D}(\mathbb{F} B)<^{g} A
$$

$\mathbb{D}(\mathbb{F} C)<^{f} B$
we seek to implement \mathbb{F}-Kleisli-composition in the Kleisli category of \mathbb{D}, that is

thus "abstracting from" monad \mathbb{D}.
Question: Kleisli(\mathbb{D}) $=$??

Probabilistic monadic machines

It turns out to be the (monoidal) category of column-stochastic (CS) matrices, cf. adjunction

such that

$$
M=\lceil f\rceil \quad \Leftrightarrow \quad\left\langle\forall b, a \quad: \quad b M a=\left(\begin{array}{ll}
f & a) b\rangle
\end{array}\right.\right.
$$

where $A \rightarrow C S B$ is the matrix type of all matrices with B-indexed rows and A-indexed columns all adding up to $1(100 \%)$.

Important:

CS represents the Kleisli category of \mathbb{D}

Probabilism versus matrix algebra

Recall probabilistic negation function

$$
f=i d_{0.1} \diamond(\neg)
$$

which corresponds to matrix

$$
\left.\lceil f\rceil=\begin{array}{c}
\\
\text { True } \\
\text { False }
\end{array} \quad \begin{array}{cc}
\text { True } & \text { False } \\
0.1 & 0.9 \\
0.9 & 0.1
\end{array}\right)
$$

where probabilistic choice is immediate on the matrix side,

$$
\left\lceil f_{p} \diamond g\right\rceil=p\lceil f\rceil+(1-p)\lceil g\rceil
$$

where $(+)$ denotes addition of matrices of the same type.

Typed linear algebra

In general, category of matrices over a semi-ring $(\mathbb{S} ;+, \times, 0,1)$:

- Objects are types (A, B, \ldots) and morphisms $(M: A \rightarrow B)$ are matrices whose columns have finite support.
- Composition:

$$
B \underset{C=M \cdot N}{\stackrel{M}{\leftarrow} A<_{N}^{N}} C
$$

that is:

$$
b(M \cdot N) c=\left\langle\sum a::(r M a) \times(a N c)\right\rangle
$$

- Identity: the diagonal Boolean matrix id : $A \rightarrow A$.

Typed linear algebra

Matrix coproducts

$$
(A+B) \rightarrow C \cong(A \rightarrow C) \times(B \rightarrow C)
$$

where $A+B$ is disjoint union, cf. universal property

$$
X=[M \mid N] \Leftrightarrow X \cdot i_{1}=M \wedge X \cdot i_{2}=N
$$

where $\left[i_{1} \mid i_{2}\right]=i d$.
$[M \mid N]$ is one of the basic matrix block combinators - it puts M and N side by side and is such that

$$
[M \mid N]=M \cdot i_{1}^{\circ}+N \cdot i_{2}^{\circ}
$$

as in relation algebra.

Typed linear algebra

Matrix direct sum

$$
M \oplus N=\left[\begin{array}{c|c}
M & 0 \\
\hline 0 & N
\end{array}\right]
$$

is an (endo,bi)functor, cf.

$$
\begin{aligned}
(i d \oplus i d) & =i d \\
(M \oplus N) \cdot(P \oplus Q) & =(M \cdot P) \oplus(N \cdot Q) \\
{[M \mid N] \cdot(P \oplus Q) } & =[M \cdot P \mid N \cdot Q]
\end{aligned}
$$

as in relation algebra - etc, etc.
The Maybe monad in the category is therefore given by $\mathbb{M}=(i d \oplus \cdot)$

Another "Kleisli shift"

As we did for relations representing Kleisli(\mathbb{P}), let us encode \mathbb{M} -Kleisli composition in matrix form:

$$
M \bullet N=\left[i_{1} \mid M\right] \cdot N
$$

Thus $M \bullet N=i_{1} \cdot i_{1}^{\circ} \cdot N+M \cdot i_{2}^{\circ} \cdot N$ leading into the pointwise

$$
\begin{aligned}
& y(M \bullet N) a= \\
& (y=*) \times(* N a)+\left\langle\sum b::(y M b) \times\left(\left(i_{2} b\right) N a\right)\right\rangle
\end{aligned}
$$

- compare with the relational version and example (next slide).

Another "Kleisli shift"

Example:
Probabilistic \mathbb{M}-Kleisli composition $M \bullet N$ of matrices $N:\left\{a_{1}, a_{2}, a_{3}\right\} \rightarrow 1+\left\{c_{1}, c_{2}\right\}$ and
$M:\left\{c_{1}, c_{2}\right\} \rightarrow 1+\left\{b_{1}, b_{2}\right\}$.
Injection $i_{1}: 1 \rightarrow 1+\left\{b_{1}, b_{2}\right\}$ is the leftmost column vector.

				a1	a2	a3	
				0.5	0	0	
			0.5	1	0.7		
	*	c1		c2	0	0	0.3
*	1	0.2	0	0.6	0.2	0.14	
b1	0	0	0.6	0	0	0.18	
b2	0	0.8	0.4	0.4	0.8	0.68	

Example: for input a_{1} there is 60% probability of $M \bullet N$ failing $=$ either N fails (50%) or passes c_{1} to $M(50 \%)$ which fails with 20% probability.

Probabilistic MMM (=pMMM) as matrices

Similarly to relations before, we can think of probabilistic \mathbb{M} -monadic Mealy machines as CS matrices which communicate (as matrices) as follows

$$
\begin{equation*}
N ; M=\left[i_{1} \mid\left(i d \oplus a^{\circ}\right) \cdot \tau_{l} \cdot(i d \otimes M) \cdot x l\right] \cdot \tau_{r} \cdot(N \otimes i d) \cdot \mathrm{xr} \tag{3}
\end{equation*}
$$

where

- functions are represented matricially by Dirac distributions;
- relational product becomes matrix Kronecker product

$$
(y, x)(M \otimes N)(b, a)=(y M b) \times(x N a)
$$

NB: Haskell implementation of pMMM composition follows (3).

Kleisli shift

Monad-monad lifting

For the above to make sense for machines of generic type
$Q \times I \rightarrow \mathbb{G}(\mathbb{F}(Q \times J))$ make sure that

The lifting of monad \mathbb{F} by monad \mathbb{G} still is a monad in the Kleisli category of \mathbb{G}.

Recall:

- \mathbb{F} - transition monad
- \mathbb{G} - branching monad

Mind their different roles:
Branching monad "hosts" transition monad.

Monad-monad lifting

In general, given two monads

$$
\begin{aligned}
& X \xrightarrow{\eta_{\mathbb{G}}} \mathbb{G} X \stackrel{\mu_{\mathbb{G}}}{\leftrightarrows} \mathbb{G}^{2} X \quad \text { (the host) } \\
& X \xrightarrow{\eta_{\mathbb{F}}} \mathbb{F} X \stackrel{\mu_{\mathbb{F}}}{\leftrightarrows} \mathbb{F}^{2} X \quad \text { (the guest) }
\end{aligned}
$$

in a category \mathbf{C} :

- let \mathbf{C}^{b} denote the Kleisli category induced by host \mathbb{G};
- let $B \stackrel{f^{b}}{\leftarrow} A$ be the morphism in C^{b} corresponding to $\mathbb{G} B \leftarrow^{f} A$ in C;
- define

$$
f^{b} \cdot g^{b}=(f \bullet g)^{b}=\left(\mu_{\mathbb{G}} \cdot \mathbb{G} f \cdot g\right)^{b}
$$

Monad-monad lifting

For any morphism $B \leftarrow^{f} A$ in \mathbf{C} define its lifting to C^{b} by

$$
\begin{equation*}
\bar{f}=\left(\eta_{\mathbb{G}} \cdot f\right)^{b} \tag{4}
\end{equation*}
$$

As in (Hasuo et al., 2007), assume distributive law

$$
\lambda: \mathbb{F} \mathbb{G} \rightarrow \mathbb{G} \mathbb{F}
$$

Lift the guest endofunctor \mathbb{F} from \mathbf{C} to \mathbf{C}^{b} by defining $\overline{\mathbb{F}}$ as follows, for $\mathbb{G} B \leftarrow^{f} A$:

$$
\overline{\mathbb{F}}\left(f^{b}\right)=(\lambda \cdot \mathbb{F} f)^{b}
$$

cf. diagram

$$
\mathbb{G} \mathbb{F} B \stackrel{\lambda}{\stackrel{\lambda}{\sim}} \mathbb{F} \mathbb{G} B \stackrel{\mathbb{F} f}{\rightleftharpoons} \mathbb{F} A
$$

Monad-monad lifting

For $\overline{\mathbb{F}}$ to be a functor in \mathbf{C}^{b} two conditions must hold (Hasuo et al., 2007):

$$
\begin{aligned}
\lambda \cdot \mathbb{F} \eta_{\mathbb{G}} & =\eta_{\mathbb{G}} \\
\lambda \cdot \mathbb{F} \mu_{\mathbb{G}} & =\mu_{\mathbb{G}} \cdot \mathbb{G} \lambda \cdot \lambda
\end{aligned}
$$

We need to find extra conditions for guest \mathbb{F} to lift to a monad in C^{b}; that is,

$$
X \xrightarrow{\overline{\eta_{\mathbb{F}}}=\left(\eta_{\mathbb{G}} \cdot \eta_{\mathbb{F}}\right)^{b}} \overline{\mathbb{F}} X \stackrel{\overline{\mu_{\mathbb{F}}}=\left(\eta_{\mathbb{G}} \cdot \mu_{\mathbb{F}}\right)^{b}}{\mathbb{F}^{2}} X
$$

should be a monad in \mathbf{C}^{b}.
The standard monadic laws, e.g. $\overline{\mu_{\mathbb{F}}} \cdot \overline{\eta_{\mathbb{F}}}=i d$, hold via lifting (4) and Kleisli composition laws.

Monad-monad lifting

The remaining natural laws,

$$
\begin{aligned}
& \left(\overline{\mathbb{F}} f^{b}\right) \cdot \overline{\eta_{\mathbb{F}}}=\overline{\eta_{\mathbb{F}}} \cdot f^{b} \\
& \left(\overline{\mathbb{F}} f^{b}\right) \cdot \overline{\mu_{\mathbb{F}}}=\overline{\mu_{\mathbb{F}}} \cdot\left(\overline{\mathbb{F}}^{2} f^{b}\right)
\end{aligned}
$$

are ensured by two "monad-monad" compatibility conditions:

$$
\begin{aligned}
\lambda \cdot \eta_{\mathbb{F}} & =\mathbb{G} \eta_{\mathbb{F}} \\
\lambda \cdot \mu_{\mathbb{F}} & =\mathbb{G} \mu_{\mathbb{F}} \cdot \lambda \cdot \mathbb{F} \lambda
\end{aligned}
$$

that is:

(Details in the paper.)

Pairing!

Not yet done!

There is a price to pay for the "hosting" process.
Definition of $\left\lceil m_{1}\right\rceil ;\left\lceil m_{2}\right\rceil$ is strongly monadic.
Question:

Do strong monads lift to strong monads?

Recall the types of the two strengths:

$$
\begin{aligned}
& \tau_{l}:(B \times \mathbb{F} A) \rightarrow \mathbb{F}(B \times A) \\
& \tau_{r}:(\mathbb{F} A \times B) \rightarrow \mathbb{F}(A \times B)
\end{aligned}
$$

The basic properties, e.g. $\mathbb{F} / f t \cdot \tau_{r}=I f t$ and
$\mathbb{F} \mathrm{a}^{\circ} \cdot \tau_{r}=\tau_{r} \cdot\left(\tau_{r} \times i d\right) \cdot \mathrm{a}^{\circ}$ are preserved by their liftings (e.g. $\overline{\tau_{r}}$) by construction.

Naturality vs lifting

So, what may fail is their naturality, e.g.

$$
\overline{\tau_{l}} \cdot(N \otimes \overline{\mathbb{F}} M)=\overline{\mathbb{F}}(N \otimes M) \cdot \overline{\tau_{l}}
$$

where M and N are arbitrary CS matrices and $\cdot \otimes \cdot$ is Kronecker product.

Naturality is essential to pointfree proofs!

Example: for $\mathbb{F}=\mathbb{M}=(1+)$ we have e.g. $\overline{\tau_{l}}=(\overline{!} \oplus i d) \cdot \overline{d r}$, that is

$$
1+A \times B \stackrel{!\oplus i d}{\rightleftarrows}(1 \times B)+(A \times B) \stackrel{\mathrm{dr}}{\leftrightarrows}(1+A) \times B
$$

dropping the \bar{f} bars over functions for easier reading.

Naturality which lifts

Is $\overline{!} \oplus i d$ natural? We check:

$$
\begin{array}{ll}
& (\text { id } \oplus N) \cdot(!\oplus i d)=(!\oplus i d) \cdot(M \oplus N) \\
\Leftrightarrow & \quad\{\text { bifunctor } \cdot \oplus \cdot\} \\
& !\oplus N=(!\cdot M) \oplus N \\
\Leftrightarrow & \quad\{!\cdot M=!\text { because } M \text { is a CS matrix }\} \\
& \text { true }
\end{array}
$$

Note: matrix M is CS iff !• $M=$! holds. (Thus composition is closed over CS-matrices.)

Naturality which does not lift

Is the diagonal function $\delta=i d \Delta i d$ — that is

$$
\delta x=(x, x)
$$

still natural once lifted to matrices?
No! Diagram

does not commute for every CS matrix $M: A \rightarrow B-$ counter-example in the next slide.

Naturality which does not lift

Given probabilistic f

evaluate $\delta \cdot f$

delta * f

Then evaluate $(f \otimes f) \cdot \delta$

$$
(f x f)^{*} \text { delta }
$$

where $\delta:\{a, b\} \rightarrow\{a, b\} \times\{a, b\}$
where $\delta: \mathbb{B} \rightarrow \mathbb{B} \times \mathbb{B}$

Probabilistic pairing

This happens because the Kleisli-lifting of pairing

$$
(f \Delta g) x=(f x, g x)
$$

is a weak-product for column stochastic matrices:

$$
X=M \Delta N \Rightarrow\left\{\begin{array}{r}
f s t \cdot X=M \tag{5}\\
s n d \cdot X=N
\end{array}\right.
$$

ie. (\Leftarrow) is not guaranteed
So $(f s t \cdot X) \Delta($ snd $\cdot X)$ differs from X in general.

In LA, $M \Delta N$ is known as the Khatri-Rao matrix product.
In RA, $R \Delta S$ is known as the fork operator.

Probabilistic pairing

In summary: weak product (5) still grants the cancellation rule,

$$
\text { fst } \cdot(M \Delta N)=M \wedge \text { snd } \cdot(M \Delta N)=N
$$

cf. e.g.

Probabilistic pairing

... but reconstruction

$$
X=(f s t \cdot X) \Delta(\text { snd } \cdot X)
$$

doesn't hold in general, cf. e.g.

$$
\begin{aligned}
& X: 2 \rightarrow 2 \times 3 \\
& X=\left[\begin{array}{cc}
0 & 0.4 \\
0.2 & 0 \\
0.2 & 0.1 \\
0.6 & 0.4 \\
0 & 0 \\
0 & 0.1
\end{array}\right] \quad(\text { fst } \cdot X) \Delta(\text { snd } \cdot X)=\left[\begin{array}{cc}
0.24 & 0.4 \\
0.08 & 0 \\
0.08 & 0.1 \\
0.36 & 0.4 \\
0.12 & 0 \\
0.12 & 0.1
\end{array}\right]
\end{aligned}
$$

(X is not recoverable from its projections - Khatri-Rao not surjective).
This is not surprising (cf. RA) but creates difficulties and needs attention.

Closing

Research proposal

Need to quantify software (un)reliability in presence of faults.
Need for weighted nondeterminism, e.g. probabilism.
Relation algebra \rightarrow Matrix algebra
Usual strategy:
"Keep category (sets), change definition"

Proposed strategy:
"Keep definition, change category"

Change category

Possible wherever semantic models are structured around a pair (\mathbb{F}, \mathbb{G}) of monads:

Monad	\mathbb{F}	\mathbb{G}
Effect	Transition	Branching
Role	Guest	Host
Strategy	Lifted	"Kleislified"

Works nicely for those \mathbb{G} for which well-established Kleisli categories are known, for instance (aside):

\mathbb{G}	Kleisli
\mathbb{P}	Relation algebra
Vec	Matrix algebra
\mathbb{D}	Stochastic matrices
Giry	Stochastic relations

cf. (Panangaden, 2009) etc.

Future work

- LAoP in its infancy - really a lot to do!
- Relation to quantum physics - cf. remarks by Coecke and Paquette, in their Categories for the Practising Physicist (Coecke, 2011):

Rel [the category of relations] possesses more 'quantum features' than the category Set of sets and functions [...] The categories FdHilb and Rel moreover admit a categorical matrix calculus.

- Final (behavioural) semantics of pMMM calls for infinite support distributions.
- Measure theory - Kerstan and König (2012) provide an excellent starting point.
- Case studies!

Verification of IBM 4765

Marić and Sprenger (2014) rely on MMM of type

$$
(Q \times A) \rightarrow \mathbb{P}((2+V) \times Q)
$$

for verifying a persistent memory manager (in IBMs 4765 secure coprocessor) in face of restarts and hardware failures, where

- V - (normal) return values
- 2-exceptions (either "regular" or "restarts")

Interested in scaling up \mathbb{P} to \mathbb{D} and do the proofs using (pointfree!) matrix algebra where they use explicit monad transformers etc, etc (Isabelle).

The monadic "curse"

"Monads [...] come with a curse. The monadic curse is that once someone learns what monads are and how to use them, they lose the ability to explain it to other people"
(Douglas Crockford: Google Tech Talk on how to express monads in JavaScript, 2013)

Douglas Crockford (2013)

References

L.S. Barbosa and J.N. Oliveira. Transposing Partial Components - an Exercise on Coalgebraic Refinement. Theor. Comp. Sci., 365(1):2-22, 2006.
B. Coecke, editor. New Structures for Physics. Number 831 in Lecture Notes in Physics. Springer, 2011. doi: 10.1007/978-3-642-12821-9.
V. Cortellessa and V. Grassi. A modeling approach to analyze the impact of error propagation on reliability of component-based systems. In Component-Based Software Engineering, volume 4608 of LNCS, pages 140-156. 2007.
M. Erwig and S. Kollmansberger. Functional pearls: Probabilistic functional programming in Haskell. J. Funct. Program., 16: 21-34, January 2006.
I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction. Logical Methods in Computer Science, 3(4):1-36, 2007. doi: 10.2168/LMCS-3(4:11)2007.
H. Kerstan and B. König. Coalgebraic trace semantics for probabilistic transition systems based on measure theory. In

Maciej Koutny and Irek Ulidowski, editors, CONCUR 2012, LNCS, pages 410-424. Springer, 2012.
O. Marić and C. Sprenger. Verification of a transactional memory manager under hardware failures and restarts, 2014. To appear in FM'14.
J.N. Oliveira. A relation-algebraic approach to the "Hoare logic" of functional dependencies. JLAP, 2014a. .
J.N. Oliveira. Relational algebra for "just good enough" hardware. In RAMiCS, volume 8428 of LNCS, pages 119-138. Springer Berlin / Heidelberg, 2014b. .
P. Panangaden. Labelled Markov Processes. Imperial College Press, 2009.
G. Schmidt. Relational Mathematics. Number 132 in Encyclopedia of Mathematics and its Applications. Cambridge University Press, November 2010. ISBN 9780521762687.
M. Stamatelatos and H. Dezfuli. Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners, 2011. NASA/SP-2011-3421, 2nd edition, December 2011.

