Varieties of Boolean Semilattices

Clifford Bergman

Iowa State University

American Mathematical Society, Denver October 2016

Motivating Construction

Let $\mathbf{G}=\langle G, \cdot\rangle$ be a groupoid (i.e., 1 binary operation)
Form the complex algebra

$$
\mathbf{G}^{+}=\langle\mathrm{Sb}(\mathbf{G}), \cap, \cup, \sim, \cdot, \emptyset, G\rangle
$$

$X \cdot Y=\{x \cdot y: x \in X, y \in Y\}$ "complex operation"

- \mathbf{G}^{+}is an expansion of a Boolean algebra
- $X \cdot \emptyset=\emptyset \cdot X=\emptyset \quad$ (normality)
- $X \cdot(Y \cup Z)=(X \cdot Y) \cup(X \cdot Z)$ and $(Y \cup Z) \cdot X=(Y \cdot X) \cup(Z \cdot X) \quad$ (additivity)
In fact, complete and atomic, and completely additive

Boolean Groupoids

Definition

A Boolean groupoid is an algebra $\mathbf{B}=\left\langle B, \wedge, \vee,{ }^{\prime}, \cdot, 0,1\right\rangle$ such that

$$
\begin{aligned}
\left\langle B, \wedge, \vee,^{\prime}, 0,1\right\rangle & \text { is a Boolean algebra } \\
x \cdot 0 & \approx 0 \cdot x \approx 0 \\
x \cdot(y \vee z) & \approx(x \cdot y) \vee(x \cdot z) \\
(y \vee z) \cdot x & \approx(y \cdot x) \vee(z \cdot x) .
\end{aligned}
$$

$B G=$ the variety of Boolean groupoids

Suppose $\mathbf{G}=\langle G, \cdot\rangle$ is a semilattice, i.e. associative, commutative, and idempotent. Then \mathbf{G}^{+}will be a Boolean semilattice.

Definition

A Boolean semilattice is a Boolean groupoid satisfying

$$
\begin{aligned}
x \cdot(y \cdot z) & \approx(x \cdot y) \cdot z \\
x \cdot y & \approx y \cdot x \\
x & \leq x \cdot x
\end{aligned}
$$

The variety is denoted BSI.
$\mathrm{SI}^{+}=\left\{\mathbf{S}^{+}: \mathbf{S}\right.$ a semilattice $\}$
Note that SI^{+}is not closed under any of $\mathbf{H}, \mathbf{S}, \mathbf{P}$

Clearly V(SI $) \subseteq$ BSI.
 One wishes that these are equal. They are not.

Example

Let H be a boolean algebra with atoms a, b. Define multiplication by

\cdot	a	b
a	a	b
b	b	$a \vee b$

$\mathrm{H} \in \mathrm{BSI}$ but $\mathrm{SI}^{+} \vDash x \wedge(y \cdot 1) \leq x \cdot y$ while \mathbf{H} fails this identity

Open Questions

(1) Is $\mathrm{V}\left(\mathrm{SI}^{+}\right)$finitely based? Is the equational theory decidable?
(2) Is either BSI or $\mathbf{V}\left(\mathrm{SI}^{+}\right)$generated by its finite members?

Theorem

Let \mathcal{K} be one of following classes.

- groupoids
- commutative groupoids
- idempotent groupoids
- commutative idempotent groupoids
- left-zero semigroups
- rectangular bands

Then $\mathbf{V}\left(\mathcal{K}^{+}\right)$is finitely based.
Let Sg denote the variety of semigroups.
Theorem (Jipsen)
$\mathbf{V}\left(\mathrm{Sg}^{+}\right)$is not finitely axiomatizable

Algebraic Theory of BSI

Let $\mathbf{B} \in \mathrm{BSI}, x \in B$.
$\downarrow x=x \cdot 1$

Theorem

\downarrow ' yields a closure operator on B :
$x \leq \downarrow x=\downarrow \downarrow x$ and $x \leq y \Longrightarrow \downarrow x \leq \downarrow y$
x is closed if $x=\downarrow x$

For a semilattice \mathbf{S} and $X \in \mathbf{S}^{+}$

$$
\downarrow X=X \cdot S=\{y \in S:(\exists x \in X) y \leq x\}
$$

the downset generated by X.

Congruence Ideals

Let \mathbf{B} be a Boolean semilattice
θ is a Boolean semilattice congruence \Longrightarrow
θ is a Boolean congruence $\Longleftrightarrow I=0 / \theta$ is a boolean ideal
What condition on a boolean ideal / ensures that it comes from a BSI congruence?

Answer: $x \in I \Longrightarrow \downarrow x \in I$
so instead of working with congruences, we can work with congruence ideals

Consequences

Let \mathbf{B} be a Boolean semilattice
(1) Let $a \in \mathbf{B}$. The smallest congruence ideal containing a is $(\downarrow a]$.
(2) BSI has equationally definable principal congruences (EDPC)
(3) \mathbf{B} is subdirectly irreducible iff it has a smallest nonzero closed element
(9) B is simple iff $x>0 \Longrightarrow \downarrow x=1$ Thus, for $\mathbf{S} \in \mathbf{S I}, \mathbf{S}^{+}$is SI iff \mathbf{S} has a least element \mathbf{S}^{+}is simple iff \mathbf{S} is trivial
(6) Every simple algebra is a discriminator algebra

Subvarieties of BSI

Every nontrivial BSI contains $\{0,1\}$ as a subalgebra

$$
\begin{array}{l|ll}
\cdot & 0 & 1 \\
\hline 0 & 0 & 0 \\
1 & 0 & 1
\end{array}, \mathbf{C}_{0}^{+}
$$

Thus, the lattice of subvarieties has a single atom (Defined by $x \cdot x \approx x \wedge x$)

Unfortunately there seem to be (infinitely?) many covers of the atom

Idempotent Boolean Semilattices

$\mid \mathrm{BSI}=\operatorname{Mod}\left(x^{2} \approx x\right)$
Let S be a semilattice. $S^{+} \vDash x^{2} \approx x$ iff S is linear
Theorem: $\mathrm{IBSI}=\mathbf{V}\left\{\mathbf{L}^{+}: \mathbf{L}\right.$ linearly ordered $\}$

Problems:

(1) Is IBSI $=\mathbf{V}\left\{\mathbf{C}_{n}^{+}: n \in \omega\right\}$?
(2) Is $\mathrm{IBSI}=\mathbf{V}\left(\mathbb{N}^{+}\right)$?
(3) is $\mathbb{N}^{+} \in \mathbf{V}\left\{\mathbf{C}_{n}^{+}: n \in \omega\right\}$?
(9) Does IBSI have uncountably many subvarieties?

Boolean Fans

A fan is a (meet) semilattice of height 1. Let \mathbf{Y}_{n} denote the fan with an n-element antichain at the top.

Theorem:
$\mathrm{BF}=\mathbf{V}\left\{\mathbf{Y}^{+}: \mathbf{Y}\right.$ a fan $\} \quad$ "Boolean Fans"
$=\operatorname{Mod}\left((\downarrow x-x) \cdot\left(\downarrow\left(x^{\prime}\right)-x^{\prime}\right) \approx 0\right)$
Theorem: BF has uncountably many subvarieties

Splitting Algebras (Blok-Pigozzi)

EDPC \Longrightarrow every finite subdirectly irreducible algebra is splitting.
\mathbf{B} is splitting iff there is an identity ϵ such that

$$
(\forall \mathbf{A} \in \mathbf{B S I}) \mathbf{B} \in \mathbf{V}(\mathbf{A}) \text { or } \mathbf{A} \vDash \epsilon
$$

Equivalently, $\mathcal{L}=[\mathbf{V}(\mathbf{B})) \cup(\operatorname{Mod}(\epsilon)]$
Write $\mathrm{BSI} / \mathbf{B}=\operatorname{Mod}(\epsilon) \cap \mathrm{BSI} \quad$ "Conjugate variety"
Theorem: $\mathrm{BSI} / \mathbf{B}=\left\{\mathbf{A}: \mathbf{B} \notin \mathbf{S H}_{\omega}(\mathbf{A})\right\}$

Can we find the conjugate identity for some small S.I. Boolean semilattices?

$$
\text { Theorem: } \mathrm{BF} / \mathbf{Y}_{1}^{+}=\operatorname{Mod}\left(\left(x \cdot x^{\prime}\right)^{\prime} \cdot\left(x \cdot x^{\prime}\right)^{\prime} \approx 1\right)
$$

Problem: Find the defining identity for $\mathrm{BSI} / \mathbf{Y}_{1}^{+}$

Papers, notes, etc., available on my web site: http:
//www.math.iastate.edu/cbergman/manuscripts/pubs.html

