Some Universal Algebra Methods for Constraint Satisfaction Problems

William DeMeo williamdemeo@gmail.com University of Hawaii

joint work with Clifford Bergman

AMS Fall Western Sectional Meeting

University of Denver

8 October 2016

Informally, a Constraint Satisfaction Problem consists of

- a list of variables ranging over a finite domain and
- a set of constraints on those variables.

Question: Can we assign values to all of the variables so that all of the constraints are satisfied?

More formally...

Let *D* be a finite set and $\mathcal{R} \subseteq \operatorname{Rel}(D) = \bigcup_{n < \omega} \mathcal{P}(D^n)$

 $\mathsf{CSP}(D, \mathcal{R})$ is the following decision problem:

Instance:

- variables: $V = \{v_1, \ldots, v_n\}$, a finite set
- constraints: (C_1, \ldots, C_m) , a finite list

each constraint C_i is a pair (\mathbf{s}_i, R_i) ,

$$\mathbf{s}_i(j) \in V$$
 and $R_i \in \mathcal{R}$

Question: Does there exist a solution?

an assignment $f: V \rightarrow D$ of values to variables satisfying

$$orall i \quad f \circ \mathbf{s}_i = (\ f \, \mathbf{s}_i(1), \ f \, \mathbf{s}_i(2), \dots, \ f \, \mathbf{s}_i(p) \) \in R_i$$

The CSP-Dichotomy Conjecture

Conjecture of Feder and Vardi

Every $CSP(D, \mathcal{R})$ either lies in \mathbb{P} or is \mathbb{NP} -complete.

Polymorphisms

Definition

Let $R \in \operatorname{Rel}_k(D)$ and $f \colon D^n \to D$. We say *f* preserves *R* if

$$(a_{11},\ldots,a_{1k}),\ldots,(a_{n1},\ldots,a_{nk})\in R \Longrightarrow$$

 $(f(a_{11},\ldots,a_{n1}),\ldots,f(a_{1k},\ldots,a_{nk}))\in R$

a ₁₁	a_{12}		a_{1k}	\in	R
a ₂₁	a_{22}		a_{2k}	\in	R
÷	÷		÷		÷
<i>a</i> _{n1}	a _{n2}		a nk	\in	R
\downarrow	\downarrow		\downarrow		_
(<i>f</i> (a ₁)	f(a ₂)	• • •	$f(\mathbf{a}_k)$)	\in	R

Notation

Let \mathcal{R} be a set of relations on D.

 $Poly(\mathcal{R}) = set of all operations that preserve all relations in \mathcal{R}.$

These are the polymorphisms of \mathcal{R} .

Let \mathcal{F} be a set of operations on *D*.

 $Inv(\mathcal{F})$ = set of all relations preserved by all operations in \mathcal{F} .

... from relational to algebraic structures, and back.

Relational		Algebraic
(D, \mathcal{R})	\longrightarrow	$(D, Poly(\mathcal{R}))$
$(D, Inv(\mathcal{F}))$	\leftarrow	(D, \mathcal{F})

 $\mathsf{CSP}(D, \mathcal{R}) \equiv_{\mathsf{p}} \mathsf{CSP}(D, \mathsf{Inv}(\mathsf{Poly}(\mathcal{R})))$

We can use algebra to help classify CSPs!

For an algebra $\mathbf{A} = \langle \mathbf{A}, \mathfrak{F} \rangle$ define $\mathsf{CSP}(\mathbf{A}) = \mathsf{CSP}(\mathbf{A}, \mathsf{Inv}(\mathfrak{F}))$

Informal algebraic CSP dichotomy conjecture

If Poly(A) is rich, then CSP(A) is in \mathbb{P} "tractable"

If Poly(A) is poor, then CSP(A) is \mathbb{NP} -complete "intractable"

For an algebra $\mathbf{A} = \langle \mathbf{A}, \mathfrak{F} \rangle$ define $\mathsf{CSP}(\mathbf{A}) = \mathsf{CSP}(\mathbf{A}, \mathsf{Inv}(\mathfrak{F}))$

Informal algebraic CSP dichotomy conjecture

If $Poly(\mathbf{A})$ is rich, then $CSP(\mathbf{A})$ is in \mathbb{P} "tractable"

If Poly(A) is poor, then CSP(A) is \mathbb{NP} -complete "intractable"

What does it mean to be rich?

Definitions

Weak NU term

An *n*-ary term *f* is called a *weak near-unanimity term* if

$$f(x, x, ..., x) \approx x$$
 and
 $f(y, x, x, x, ..., x) \approx f(x, y, x, x, ..., x) \approx \cdots \approx f(x, x, ..., x, y)$

Note: no essentially unary term is WNU

Definitions

Weak NU term

An n-ary term f is called a weak near-unanimity term if

 $f(x, x, ..., x) \approx x$ and $f(y, x, x, x, ..., x) \approx f(x, y, x, x, ..., x) \approx \cdots \approx f(x, x, ..., x, y)$

Note: no essentially unary term is WNU

Cube term

An *n*-ary term *f* is called a *cube term* if it satisfies $f(x, x, ..., x) \approx x$ and for every $i \leq k$ there exists $(z_1, ..., z_k) \in \{x, y\}^{k-1}$ such that

$$f(z_1,\ldots,z_{i-1},x,z_{i+1},\ldots,z_k)\approx y$$

< 47 >

Two General Techniques/Algorithms

Method 1 Berman, Idziak, Marković, McKenzie, Valeriote, Willard If Poly(\Re) contains a "cube term" then $CSP(\Re) \in \mathbb{P}$

Algebras with a cube term operation possess "few subpowers."

This is used to prove the algorithm is poly-time.

Two General Techniques/Algorithms

Method 1 Berman, Idziak, Marković, McKenzie, Valeriote, Willard If $Poly(\Re)$ contains a "cube term" then $CSP(\Re) \in \mathbb{P}$

Algebras with a cube term operation possess "few subpowers."

This is used to prove the algorithm is poly-time.

Method 2 Kozik, Krokhin, Valeriote, Willard (improving Barto, Kozik; Bulatov) If Poly(\mathcal{R}) contains WNU terms v(x, y, z) and w(x, y, z, u) satisfying v(y, x, x) = w(y, x, x, x), then $CSP(\mathcal{R}) \in \mathbb{P}$.

Examples: majority, semilattice

Algebras with these operations are congruence SD- \wedge

The two general techniques do not cover all cases of a WNU term.

Two possible directions:

- 1. Find a completely new algorithm.
- 2. Combine the two existing algorithms.

We describe some progress in the second direction.

A Motivating Example

Let $\mathbf{A} = \langle \{0, 1, 2, 3\}, \cdot \rangle$, have the following Cayley table:

•	0	1	2	3
0	0	0	3 3	2
1	0	1	3	2
1 2 3	0 0 3 2	3 2	2	1
3	2	2	1	3

What is an instance of CSP(S(A))?

Constraint relations are subdirect products of subalgebras of A.

The proper nontrivial subuniverses of **A** are $\{0, 1\}$ and $\{1, 2, 3\}$.

< 47 >

Potatoes of a six-variables instance of CSP(S(A))

< (7) >

Constraint = Subuniverse of Product

Each colored line represents a tuple in the relation R

 $\textit{R} \subseteq \textit{A} imes \textit{A} imes \textit{Sq}_3 imes \textit{Sq}_3 imes \textit{S}_2 imes \textit{S}_2$

Constraint = Subuniverse of Product

Each colored line represents a tuple in the relation R

 $\textit{R} \subseteq \textit{A} imes \textit{A} imes \textit{Sq}_3 imes \textit{Sq}_3 imes \textit{S}_2 imes \textit{S}_2$

Question: Why isn't the R shown above a subuniverse?

Let \mathbf{A}_i , \mathbf{B}_j be finite algebras in a Taylor variety. Assume

- each A_i is abelian
- each \mathbf{B}_i has a sink s_i

Suppose

$$\textbf{R} \leq_{\mathrm{sd}} \textbf{A}_1 \times \cdots \times \textbf{A}_J \times \textbf{B}_1 \times \cdots \times \textbf{B}_{\mathcal{K}}$$

Then

$$\operatorname{Proj}_{1\dots J} R \times \{s_1\} \times \{s_2\} \times \dots \times \{s_K\} \subseteq R$$

By Taylor variety we mean an idempotent variety with a Taylor term.

Let \mathbf{A}_i , \mathbf{B}_j be finite algebras in a Taylor variety. Assume

- each A_i is abelian
- each **B**_{*i*} has a sink s_{*i*}

Suppose

$$\textbf{R} \leq_{\mathrm{sd}} \textbf{A}_1 \times \cdots \times \textbf{A}_J \times \textbf{B}_1 \times \cdots \times \textbf{B}_{\mathcal{K}}$$

Then

$$\operatorname{Proj}_{1\dots J} R \times \{s_1\} \times \{s_2\} \times \dots \times \{s_K\} \subseteq R$$

By Taylor variety we mean an idempotent variety with a Taylor term.

 $s \in B$ is called a sink if for all $t \in Clo_k(\mathbf{B})$ and $1 \leq j \leq k$, if t depends on its j-th argument, then $t(b_1, \ldots, b_{j-1}, s, b_{j+1}, \ldots, b_k) = s$ for all $b_i \in B$.

Let \mathbf{A}_i , \mathbf{B}_j be finite algebras in a Taylor variety. Assume

- each A_i has a cube term operation
- each \mathbf{B}_j has a sink s_j

Suppose

$$\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}_1 imes \cdots imes \mathbf{A}_J imes \mathbf{B}_1 imes \cdots imes \mathbf{B}_K$$

Then

$$\operatorname{Proj}_{1\dots J} R \times \{s_1\} \times \{s_2\} \times \dots \times \{s_K\} \subseteq R$$

Let \mathbf{A}_i , \mathbf{B}_j be finite algebras in a Taylor variety. Assume

- each A_i has a cube term operation
- each **B**_{*j*} has a sink s_{*j*}

Suppose

$$\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}_1 \times \cdots \times \mathbf{A}_J \times \mathbf{B}_1 \times \cdots \times \mathbf{B}_K$$

Then

$$\operatorname{Proj}_{1\dots J} R \times \{s_1\} \times \{s_2\} \times \cdots \times \{s_K\} \subseteq R$$

The proof depends on the following result of Barto, Kozik, Stanovsky: a finite idempotent algebra has a cube term iff every one of its subalgebras has a so called transitive term operation.

Application

Corollary

Suppose every algebra in the set A contains either a cube terms or a sink. Then CSP(A) is tractable.

Algorithm:

Restrict the given instance to potatoes with cube terms.

Find a solution to the restricted instance (in poly-time by few subpowers).

If a restricted solution exists, then there is a full solution (by Thm 2).

If no restricted solution exists, then no full solution exists.

Quotient strategy

Start with

$$\mathbf{A}_1 \times \mathbf{A}_2 \times \cdots \times \mathbf{A}_n$$

Choose a tuple of congruence relations

$$\Theta = (\theta_1, \theta_2, \dots, \theta_n) \in \prod \operatorname{Con} \mathbf{A}_i$$

so that $\mathcal{A} := {\mathbf{A}_1/\theta_0, \dots, \mathbf{A}_n/\theta_n}$ is a "jointly tractable" set of algebras.

That is, CSP(A) is tractable.

Obvious fact: a solution to *I* is a solution to I/Θ .

For some problems, we have the following converse:

(*) a solution to I/Θ always extends to a solution to *I*.

Problem: For what algebras does the *-converse hold?

Quotient strategy

Start with

$$\mathbf{A}_1 \times \mathbf{A}_2 \times \cdots \times \mathbf{A}_n$$

Choose a tuple of congruence relations

$$\Theta = (\theta_1, \theta_2, \dots, \theta_n) \in \prod \operatorname{Con} \mathbf{A}_i$$

so that $\mathcal{A} := {\mathbf{A}_1/\theta_0, \dots, \mathbf{A}_n/\theta_n}$ is a "jointly tractable" set of algebras.

That is, CSP(A) is tractable.

Obvious fact: a solution to *I* is a solution to I/Θ .

For some problems, we have the following converse:

(*) a solution to I/Θ always extends to a solution to *I*.

Problem: For what algebras does the *-converse hold?

williamdemeo@gmail.com

Thank you!