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What is a CSP?

Informally, a Constraint Satisfaction Problem consists of

a list of variables ranging over a finite domain and
a set of constraints on those variables.

Question: Can we assign values to all of the variables so that all of the
constraints are satisfied?
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More formally...

Let D be a finite set and R ⊆ Rel(D) =
⋃

n<ω
P(Dn)

CSP(D,R) is the following decision problem:

Instance:

variables: V = { v1, . . . , vn }, a finite set
constraints: (C1, . . . ,Cm), a finite list

each constraint Ci is a pair (si , Ri ),

si (j) ∈ V and Ri ∈ R

Question: Does there exist a solution?

an assignment f : V → D of values to variables satisfying

∀i f ◦ si = ( f si (1), f si (2), . . . , f si (p) ) ∈ Ri
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The CSP-Dichotomy Conjecture

Conjecture of Feder and Vardi
Every CSP(D,R) either lies in P or is NP-complete.

williamdemeo@gmail.com Algebraic CSP 8 Oct 2016 4 / 18

williamdemeo@gmail.com


Polymorphisms

Definition
Let R ∈ Relk (D) and f : Dn → D. We say f preserves R if

(a11, . . . ,a1k ), . . . , (an1, . . . ,ank ) ∈ R =⇒(
f (a11, . . . ,an1), . . . , f (a1k , . . . ,ank )

)
∈ R

a11 a12 . . . a1k ∈ R
a21 a22 . . . a2k ∈ R
...

...
...

...
an1 an2 . . . ank ∈ R
↓ ↓ ↓

( f (a1) f (a2) . . . f (ak ) ) ∈ R
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Notation

Let R be a set of relations on D.

Poly(R) = set of all operations that preserve all relations in R.

These are the polymorphisms of R.

Let F be a set of operations on D.

Inv(F) = set of all relations preserved by all operations in F.
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Galois Connection...

...from relational to algebraic structures, and back.

Relational Algebraic
(D,R) −→ (D,Poly(R))

(D, Inv(F)) ←− (D,F)

CSP(D,R) ≡p CSP(D, Inv(Poly(R)))

We can use algebra to help classify CSPs!
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Algebraic CSP

For an algebra A = 〈A,F〉 define CSP(A) = CSP(A, Inv(F))

Informal algebraic CSP dichotomy conjecture

If Poly(A) is rich, then CSP(A) is in P “tractable”

If Poly(A) is poor, then CSP(A) is NP-complete “intractable”

What does it mean to be rich?
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Definitions

Weak NU term
An n-ary term f is called a weak near-unanimity term if

f (x , x , . . . , x) ≈ x and
f (y , x , x , x , . . . , x) ≈ f (x , y , x , x , . . . , x) ≈ · · · ≈ f (x , x , . . . , x , y)

Note: no essentially unary term is WNU

Cube term
An n-ary term f is called a cube term if it satisfies f (x , x , . . . , x) ≈ x and for
every i ≤ k there exists (z1, . . . , zk ) ∈ {x , y}k−1 such that

f (z1, . . . , zi−1, x , zi+1, . . . , zk ) ≈ y
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Two General Techniques/Algorithms

Method 1 Berman, Idziak, Marković, McKenzie, Valeriote, Willard

If Poly(R) contains a “cube term” then CSP(R) ∈ P

Algebras with a cube term operation possess “few subpowers.”

This is used to prove the algorithm is poly-time.

Method 2 Kozik, Krokhin, Valeriote, Willard (improving Barto, Kozik; Bulatov)

If Poly(R) contains WNU terms v(x , y , z) and w(x , y , z,u) satisfying
v(y , x , x) = w(y , x , x , x), then CSP(R) ∈ P.

Examples: majority, semilattice

Algebras with these operations are congruence SD-∧
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Current State of Affairs

The two general techniques do not cover all cases of a WNU term.

Two possible directions:

1. Find a completely new algorithm.

2. Combine the two existing algorithms.

We describe some progress in the second direction.
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A Motivating Example

Let A = 〈{0,1,2,3}, ·〉, have the following Cayley table:

· 0 1 2 3
0 0 0 3 2
1 0 1 3 2
2 3 3 2 1
3 2 2 1 3

What is an instance of CSP(S(A))?

Constraint relations are subdirect products of subalgebras of A.

The proper nontrivial subuniverses of A are {0,1} and {1,2,3}.
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Potatoes of a six-variables instance of CSP(S(A))
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Constraint = Subuniverse of Product

A A Sq3 Sq3 S2 S2

Each colored line represents a tuple in the relation R

R ⊆ A× A× Sq3 × Sq3 × S2 × S2

Question: Why isn’t the R shown above a subuniverse?
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Theorem 1
Let Ai , Bj be finite algebras in a Taylor variety. Assume

each Ai is abelian
each Bj has a sink sj

Suppose

R ≤sd A1 × · · · × AJ × B1 × · · · × BK

Then
Proj1...J R × {s1} × {s2} × · · · × {sK} ⊆ R

By Taylor variety we mean an idempotent variety with a Taylor term.

s ∈ B is called a sink if for all t ∈ Clok (B) and 1 ≤ j ≤ k , if t depends on its
j-th argument, then t(b1, . . . ,bj−1, s,bj+1, . . . ,bk ) = s for all bi ∈ B.
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Theorem 2
Let Ai , Bj be finite algebras in a Taylor variety. Assume

each Ai has a cube term operation
each Bj has a sink sj

Suppose

R ≤sd A1 × · · · × AJ × B1 × · · · × BK

Then
Proj1...J R × {s1} × {s2} × · · · × {sK} ⊆ R

The proof depends on the following result of Barto, Kozik, Stanovsky: a finite
idempotent algebra has a cube term iff every one of its subalgebras has a so
called transitive term operation.

williamdemeo@gmail.com Algebraic CSP 8 Oct 2016 16 / 18

williamdemeo@gmail.com


Theorem 2
Let Ai , Bj be finite algebras in a Taylor variety. Assume

each Ai has a cube term operation
each Bj has a sink sj

Suppose

R ≤sd A1 × · · · × AJ × B1 × · · · × BK

Then
Proj1...J R × {s1} × {s2} × · · · × {sK} ⊆ R

The proof depends on the following result of Barto, Kozik, Stanovsky: a finite
idempotent algebra has a cube term iff every one of its subalgebras has a so
called transitive term operation.

williamdemeo@gmail.com Algebraic CSP 8 Oct 2016 16 / 18

williamdemeo@gmail.com


Application

Corollary
Suppose every algebra in the set A contains either a cube terms or a sink.
Then CSP(A) is tractable.

Algorithm:

Restrict the given instance to potatoes with cube terms.

Find a solution to the restricted instance (in poly-time by few subpowers).

If a restricted solution exists, then there is a full solution (by Thm 2).

If no restricted solution exists, then no full solution exists.
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Quotient strategy

Start with
A1 × A2 × · · · × An

Choose a tuple of congruence relations

Θ = (θ1, θ2, . . . , θn) ∈
∏

Con Ai

so that A := {A1/θ0, . . . ,An/θn} is a “jointly tractable” set of algebras.

That is, CSP(A) is tractable.

Obvious fact: a solution to I is a solution to I/Θ.

For some problems, we have the following converse:

(?) a solution to I/Θ always extends to a solution to I.

Problem: For what algebras does the ?-converse hold?

Thank you!
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