Some Universal Algebra Methods for Constraint Satisfaction Problems

William DeMeo
williamdemeo@gmail.com
University of Hawaii
joint work with Clifford Bergman

AMS Fall Western Sectional Meeting
University of Denver
8 October 2016

What is a CSP?

Informally, a Constraint Satisfaction Problem consists of

- a list of variables ranging over a finite domain and
- a set of constraints on those variables.

Question: Can we assign values to all of the variables so that all of the constraints are satisfied?

More formally...

Let D be a finite set and $\mathcal{R} \subseteq \operatorname{Rel}(D)=\bigcup_{n<\omega} \mathcal{P}\left(D^{n}\right)$
$\operatorname{CSP}(D, \mathcal{R})$ is the following decision problem:
Instance:

- variables: $V=\left\{v_{1}, \ldots, v_{n}\right\}$, a finite set
- constraints: $\left(C_{1}, \ldots, C_{m}\right)$, a finite list
each constraint C_{i} is a pair $\left(\mathbf{s}_{i}, R_{i}\right)$,

$$
\mathbf{s}_{i}(j) \in V \quad \text { and } \quad R_{i} \in \mathcal{R}
$$

Question: Does there exist a solution?
an assignment $f: V \rightarrow D$ of values to variables satisfying

$$
\forall i \quad f \circ \mathbf{s}_{i}=\left(f \mathbf{s}_{i}(1), f \mathbf{s}_{i}(2), \ldots, f \mathbf{s}_{i}(p)\right) \in R_{i}
$$

The CSP-Dichotomy Conjecture

Conjecture of Feder and Vardi
Every $\operatorname{CSP}(D, \mathcal{R})$ either lies in \mathbb{P} or is $\mathbb{N P}$-complete.

Polymorphisms

Definition

Let $R \in \operatorname{Rel}_{k}(D)$ and $f: D^{n} \rightarrow D$. We say f preserves R if

$$
\begin{aligned}
& \left(a_{11}, \ldots, a_{1 k}\right), \ldots,\left(a_{n 1}, \ldots, a_{n k}\right) \in R \Longrightarrow \\
& \quad\left(f\left(a_{11}, \ldots, a_{n 1}\right), \ldots, f\left(a_{1 k}, \ldots, a_{n k}\right)\right) \in R
\end{aligned}
$$

a_{11}	a_{12}	\ldots	$a_{1 k}$	\in	R
a_{21}	a_{22}	\ldots	$a_{2 k}$	\in	R
\vdots	\vdots		\vdots		\vdots
$a_{n 1}$	$a_{n 2}$	\ldots	$a_{n k}$	\in	R
\downarrow	\downarrow		\downarrow		
$\left(f\left(\mathbf{a}_{1}\right)\right.$	$f\left(\mathbf{a}_{2}\right)$	\ldots	$\left.f\left(\mathbf{a}_{k}\right)\right)$	\in	R

Notation

Let \mathcal{R} be a set of relations on D.
$\operatorname{Poly}(\mathcal{R})=$ set of all operations that preserve all relations in \mathcal{R}.

These are the polymorphisms of \mathcal{R}.

Let \mathcal{F} be a set of operations on D.
$\operatorname{lnv}(\mathcal{F})=$ set of all relations preserved by all operations in \mathcal{F}.

Galois Connection...

...from relational to algebraic structures, and back.

Relational		Algebraic
(D, \mathcal{R})	\longrightarrow	$(D, \operatorname{Poly}(\mathcal{R}))$
$(D, \operatorname{lnv}(\mathcal{F}))$	\longleftarrow	(D, \mathcal{F})

$\operatorname{CSP}(D, \mathcal{R}) \equiv_{\mathrm{p}} \operatorname{CSP}(D, \operatorname{Inv}(\operatorname{Poly}(\mathcal{R})))$
We can use algebra to help classify CSPs!

Algebraic CSP

For an algebra $\mathbf{A}=\langle A, \mathcal{F}\rangle$ define $\operatorname{CSP}(\mathbf{A})=\operatorname{CSP}(A, \operatorname{Inv}(\mathcal{F}))$

Informal algebraic CSP dichotomy conjecture

If $\operatorname{Poly}(\mathbf{A})$ is rich, then $\operatorname{CSP}(\mathbf{A})$ is in $\mathbb{P} \quad$ "tractable"
If $\operatorname{Poly}(\mathbf{A})$ is poor, then $\operatorname{CSP}(\mathbf{A})$ is $\mathbb{N P}$-complete "intractable"

Algebraic CSP

For an algebra $\mathbf{A}=\langle A, \mathcal{F}\rangle$ define $\operatorname{CSP}(\mathbf{A})=\operatorname{CSP}(A, \operatorname{Inv}(\mathcal{F}))$

Informal algebraic CSP dichotomy conjecture

If $\operatorname{Poly}(\mathbf{A})$ is rich, then $\operatorname{CSP}(\mathbf{A})$ is in $\mathbb{P} \quad$ "tractable"
If $\operatorname{Poly}(\mathbf{A})$ is poor, then $\operatorname{CSP}(\mathbf{A})$ is $\mathbb{N P}$-complete "intractable"

What does it mean to be rich?

Definitions

Weak NU term

An n-ary term f is called a weak near-unanimity term if

$$
\begin{gathered}
f(x, x, \ldots, x) \approx x \text { and } \\
f(y, x, x, x, \ldots, x) \approx f(x, y, x, x, \ldots, x) \approx \cdots \approx f(x, x, \ldots, x, y)
\end{gathered}
$$

Note: no essentially unary term is WNU

Definitions

Weak NU term

An n-ary term f is called a weak near-unanimity term if

$$
\begin{gathered}
f(x, x, \ldots, x) \approx x \text { and } \\
f(y, x, x, x, \ldots, x) \approx f(x, y, x, x, \ldots, x) \approx \cdots \approx f(x, x, \ldots, x, y)
\end{gathered}
$$

Note: no essentially unary term is WNU

Cube term

An n-ary term f is called a cube term if it satisfies $f(x, x, \ldots, x) \approx x$ and for every $i \leq k$ there exists $\left(z_{1}, \ldots, z_{k}\right) \in\{x, y\}^{k-1}$ such that

$$
f\left(z_{1}, \ldots, z_{i-1}, x, z_{i+1}, \ldots, z_{k}\right) \approx y
$$

Two General Techniques/Algorithms

Method 1 Berman, Idziak, Marković, McKenzie, Valeriote, Willard
If $\operatorname{Poly}(\mathcal{R})$ contains a "cube term" then $\operatorname{CSP}(\mathcal{R}) \in \mathbb{P}$

Algebras with a cube term operation possess "few subpowers."
This is used to prove the algorithm is poly-time.

Two General Techniques/Algorithms

Method 1 Berman, Idziak, Marković, McKenzie, Valeriote, Willard
 If Poly (\mathcal{R}) contains a "cube term" then $\operatorname{CSP}(\mathcal{R}) \in \mathbb{P}$

Algebras with a cube term operation possess "few subpowers."
This is used to prove the algorithm is poly-time.
Method 2 Kozik, Krokhin, Valeriote, Willard (improving Barto, Kozik; Bulatov)
If Poly (\mathcal{R}) contains WNU terms $v(x, y, z)$ and $w(x, y, z, u)$ satisfying $v(y, x, x)=w(y, x, x, x)$, then $\operatorname{CSP}(\mathcal{R}) \in \mathbb{P}$.

Examples: majority, semilattice
Algebras with these operations are congruence SD- \wedge

Current State of Affairs

The two general techniques do not cover all cases of a WNU term.

Two possible directions:

1. Find a completely new algorithm.
2. Combine the two existing algorithms.

We describe some progress in the second direction.

A Motivating Example

Let $\mathbf{A}=\langle\{0,1,2,3\}, \cdot\rangle$, have the following Cayley table:

\cdot	0	1	2	3
0	0	0	3	2
1	0	1	3	2
2	3	3	2	1
3	2	2	1	3

What is an instance of $\operatorname{CSP}(S(\mathbf{A}))$?
Constraint relations are subdirect products of subalgebras of \mathbf{A}.
The proper nontrivial subuniverses of \mathbf{A} are $\{0,1\}$ and $\{1,2,3\}$.

Potatoes of a six-variables instance of $\operatorname{CSP}(\mathrm{S}(\mathbf{A}))$

Constraint $=$ Subuniverse of Product

Each colored line represents a tuple in the relation R
$R \subseteq A \times A \times S q_{3} \times S q_{3} \times S_{2} \times S_{2}$

Constraint $=$ Subuniverse of Product

Each colored line represents a tuple in the relation R
$R \subseteq A \times A \times S q_{3} \times S q_{3} \times S_{2} \times S_{2}$
Question: Why isn't the R shown above a subuniverse?

Theorem 1

Let $\mathbf{A}_{i}, \mathbf{B}_{j}$ be finite algebras in a Taylor variety. Assume

- each \mathbf{A}_{i} is abelian
- each \mathbf{B}_{j} has a sink s_{j}

Suppose

$$
\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{J} \times \mathbf{B}_{1} \times \cdots \times \mathbf{B}_{K}
$$

Then

$$
\operatorname{Proj}_{1 \ldots J} R \times\left\{s_{1}\right\} \times\left\{s_{2}\right\} \times \cdots \times\left\{s_{K}\right\} \subseteq R
$$

By Taylor variety we mean an idempotent variety with a Taylor term.

Theorem 1

Let $\mathbf{A}_{i}, \mathbf{B}_{j}$ be finite algebras in a Taylor variety. Assume

- each \mathbf{A}_{i} is abelian
- each \mathbf{B}_{j} has a sink s_{j}

Suppose

$$
\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{J} \times \mathbf{B}_{1} \times \cdots \times \mathbf{B}_{K}
$$

Then

$$
\operatorname{Proj}_{1 \ldots J} R \times\left\{s_{1}\right\} \times\left\{s_{2}\right\} \times \cdots \times\left\{s_{K}\right\} \subseteq R
$$

By Taylor variety we mean an idempotent variety with a Taylor term.
$s \in B$ is called a sink if for all $t \in \mathrm{Clo}_{k}(\mathbf{B})$ and $1 \leq j \leq k$, if t depends on its j-th argument, then $t\left(b_{1}, \ldots, b_{j-1}, s, b_{j+1}, \ldots, b_{k}\right)=s$ for all $b_{i} \in B$.

Theorem 2

Let $\mathbf{A}_{i}, \mathbf{B}_{j}$ be finite algebras in a Taylor variety. Assume

- each \mathbf{A}_{i} has a cube term operation
- each \mathbf{B}_{j} has a sink s_{j}

Suppose

$$
\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{J} \times \mathbf{B}_{1} \times \cdots \times \mathbf{B}_{K}
$$

Then

$$
\operatorname{Proj}_{1 \ldots J} R \times\left\{s_{1}\right\} \times\left\{s_{2}\right\} \times \cdots \times\left\{s_{K}\right\} \subseteq R
$$

Theorem 2

Let $\mathbf{A}_{i}, \mathbf{B}_{j}$ be finite algebras in a Taylor variety. Assume

- each \mathbf{A}_{i} has a cube term operation
- each \mathbf{B}_{j} has a sink s_{j}

Suppose

$$
\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{J} \times \mathbf{B}_{1} \times \cdots \times \mathbf{B}_{K}
$$

Then

$$
\operatorname{Proj}_{1 \ldots J} R \times\left\{s_{1}\right\} \times\left\{s_{2}\right\} \times \cdots \times\left\{s_{K}\right\} \subseteq R
$$

The proof depends on the following result of Barto, Kozik, Stanovsky: a finite idempotent algebra has a cube term iff every one of its subalgebras has a so called transitive term operation.

Application

Corollary

Suppose every algebra in the set \mathcal{A} contains either a cube terms or a sink. Then $\operatorname{CSP}(\mathcal{A})$ is tractable.

Algorithm:
Restrict the given instance to potatoes with cube terms.
Find a solution to the restricted instance (in poly-time by few subpowers).
If a restricted solution exists, then there is a full solution (by Thm 2).
If no restricted solution exists, then no full solution exists.

Quotient strategy

Start with

$$
\mathbf{A}_{1} \times \mathbf{A}_{2} \times \cdots \times \mathbf{A}_{n}
$$

Choose a tuple of congruence relations

$$
\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right) \in \prod \operatorname{Con} \mathbf{A}_{i}
$$

so that $\mathcal{A}:=\left\{\mathbf{A}_{1} / \theta_{0}, \ldots, \mathbf{A}_{n} / \theta_{n}\right\}$ is a "jointly tractable" set of algebras.
That is, $\operatorname{CSP}(\mathcal{A})$ is tractable.
Obvious fact: a solution to I is a solution to I / Θ.
For some problems, we have the following converse:
(\star) a solution to I / Θ always extends to a solution to I.
Problem: For what algebras does the \star-converse hold?

Quotient strategy

Start with

$$
\mathbf{A}_{1} \times \mathbf{A}_{2} \times \cdots \times \mathbf{A}_{n}
$$

Choose a tuple of congruence relations

$$
\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right) \in \prod \operatorname{Con} \mathbf{A}_{i}
$$

so that $\mathcal{A}:=\left\{\mathbf{A}_{1} / \theta_{0}, \ldots, \mathbf{A}_{n} / \theta_{n}\right\}$ is a "jointly tractable" set of algebras.
That is, $\operatorname{CSP}(\mathcal{A})$ is tractable.
Obvious fact: a solution to I is a solution to I / Θ.
For some problems, we have the following converse:
(\star) a solution to I / Θ always extends to a solution to I.
Problem: For what algebras does the \star-converse hold?

