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Motivation

Why another duality for relevant algebras?

Existing dualities (Urquhart, 1996) incorporate the ternary
accessibility relation of the Routley-Meyer semantics.

Dunn (1976) provided a Kripke-style semantics for R-mingle
using only a binary accessibility relation.

Kripke semantics is underwritten by Esakia duality for Heyting
algebras

Motivating Question:

Can we construct an Esakia-style duality that lifts Dunn’s
semantics to a categorical equivalence?
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Priestley and Esakia duality

Definitions:

An ordered topological space (X ,≤, T ) is called a Priestley
space if (X , T ) is compact, and whenever x , y ∈ X with
x 6≤ y there exists a clopen up-set U ⊆ X with x ∈ U, y /∈ U.

A Priestley space is called an Esakia space if whenever U is
clopen, the down-set ↓U is also clopen.

An Esakia function is a map f : X→ Y between Esakia spaces
that is continuous, order-preserving, and satisfies
↑f (x) ⊆ f [↑x ] for every x ∈ X .

3 / 20
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Priestley and Esakia duality

Theorem (Priestley):

The category of bounded distributive lattices (with morphisms the
algebraic homomorphisms) is dually equivalent to the category of
Priestley spaces with morphisms the continuous, isotone maps.

Theorem (Esakia):

The category of Heyting algebras (with morphisms the algebraic
homomorphisms) is dually equivalent to the category of Esakia
spaces with morphisms the Esakia functions.

The Esakia duality is a restricted form of the Priestley duality.
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Sugihara monoids

Definition:

A commutative residuated lattice (CRL) is an algebra
(A,∧,∨, ·,→, t) such that

(A,∧,∨) is a lattice,

(A, ·, t) is a commutative monoid, and

for all a, b, c ∈ A,

a · b ≤ c ⇐⇒ a ≤ b → c
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Sugihara monoids

Definition:

A CRL is called

integral if t is the greatest element with respect to the lattice
order,

distributive if its lattice reduct is distributive,

idempotent if it satisfies the identity a2 = a.

Definition:

The expansion of a CRL by a unary operation ¬ satisfying ¬¬a = a
and a→ ¬b = b → ¬a is called an involutive CRL. A distributive,
idempotent, involutive CRL is called a Sugihara monoid.

For simplicity, we consider expansions of Sugihara monoids by
universal bounds ⊥ and >.

6 / 20
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Kleene algebras

Definition:

A Kleene algebra is an algebra (A,∧,∨,¬,⊥,>) such that

(A,∧,∨,⊥,>) is a bounded distributive lattice, and

¬ satisfies the identities

¬¬a = a,
¬⊥ = >,
¬(a ∧ b) = ¬a ∨ ¬b,
a ∧ ¬a ≤ b ∨ ¬b.

Proposition:

The (∧,∨,¬,⊥,>)-reduct of every bounded Sugihara monoid is a
Kleene algebra.
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Kleene algebras

Example:

We may define a Kleene algebra K = ({−1, 0, 1},∧,∨,¬,−1, 1),
where −1 < 0 < 1 and ¬ is the additive inversion −.

Proposition (Kalman, 1958):

The Kleene algebras are generated as a prevariety by K.

As a consequence, the Sugihara monoids have reducts in a
prevariety generated by a single finite algebra.

This suggests that a duality for Sugihara monoids could be
obtained by restricting a natural duality for their reducts, just as in
the case of Heyting algebra.

8 / 20



DR
AF
T
2

Kleene algebras

Example:

We may define a Kleene algebra K = ({−1, 0, 1},∧,∨,¬,−1, 1),
where −1 < 0 < 1 and ¬ is the additive inversion −.

Proposition (Kalman, 1958):

The Kleene algebras are generated as a prevariety by K.

As a consequence, the Sugihara monoids have reducts in a
prevariety generated by a single finite algebra.

This suggests that a duality for Sugihara monoids could be
obtained by restricting a natural duality for their reducts, just as in
the case of Heyting algebra.

8 / 20



DR
AF
T
2

Kleene algebras

Example:

We may define a Kleene algebra K = ({−1, 0, 1},∧,∨,¬,−1, 1),
where −1 < 0 < 1 and ¬ is the additive inversion −.

Proposition (Kalman, 1958):

The Kleene algebras are generated as a prevariety by K.

As a consequence, the Sugihara monoids have reducts in a
prevariety generated by a single finite algebra.

This suggests that a duality for Sugihara monoids could be
obtained by restricting a natural duality for their reducts, just as in
the case of Heyting algebra.

8 / 20



DR
AF
T
2

Kleene algebras

Example:

We may define a Kleene algebra K = ({−1, 0, 1},∧,∨,¬,−1, 1),
where −1 < 0 < 1 and ¬ is the additive inversion −.

Proposition (Kalman, 1958):

The Kleene algebras are generated as a prevariety by K.

As a consequence, the Sugihara monoids have reducts in a
prevariety generated by a single finite algebra.

This suggests that a duality for Sugihara monoids could be
obtained by restricting a natural duality for their reducts, just as in
the case of Heyting algebra.

8 / 20



DR
AF
T
2

Davey-Werner duality

Definition:

A structure X = (X ,≤,Q,X0, T ) is called a Kleene space if
(X ,≤, T ) is a Priestley space, Q is a closed binary relation on X ,
X0 is a closed subspace, and for all x , y , z ∈ X ,

xQx ,

xQy and x ∈ X0 =⇒ x ≤ y ,

xQy and y ≤ z =⇒ zQx .

Example:

We may define a Kleene space K˜ = ({−1, 0, 1},v,Q,K0, T ),
where −1 v 0 and 1 v 0, −1 and 1 are incomparable,
K0 = {−1, 1}, and Q is the relation of comparability with respect
to the order.

9 / 20
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Davey-Werner duality

Proposition (Davey-Werner, 1983):

The category of Kleene algebras K is dually equivalent to the
category of Kleene spaces KS (with morphisms the continuous,
structure-preserving maps in the signature (≤,Q,X0)).

Given a Kleene algebra A, let D(A) be the collection of Kleene
algebra homomorphisms A→ K endowed with structure inherited
pointwise from K˜ . For a morphism h : A→ B in K, let
D(h) : D(B)→ D(A) be defined by D(h)(x) = x ◦ h.

Given a Kleene space X, let E (X) be the collection of Kleene space
morphisms X→ K˜ endowed with structure inherited pointwise
from K. For a morphism ϕ : X→ Y in KS, let
E (ϕ) : E (Y)→ E (X) be defined by E (ϕ)(α) = α ◦ ϕ.

10 / 20
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Sugihara spaces

We restrict the Davey-Werner duality to obtain a duality for the
Sugihara monoids.

Definition:

We call a Kleene space X = (X ,≤,Q,X0, T ) a Sugihara space if

(X ,≤, T ) is an Esakia space,

X0 is open,

Q coincides with ≤ ∪ ≥ (i.e., comparability with respect to
the partial order ≤).

We define operations on the dual of a Sugihara space X in order to
make this structure into a Sugihara monoid.
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Kleene space morphisms

Given a Kleene space X, a morphism α : X→ K˜ may be
represented uniquely as a map of the form

ϕ(U,V )(x) =


1, if x /∈ V

0, if x ∈ U ∩ V

−1, if x /∈ U

where U,V are clopen up-sets of X satisfying U ∪ V = X ,
U ∩ V ⊆ X − X0, and ((X − U)× (X − V )) ∩ Q = ∅.

Let X be a Sugihara space. We define binary operations · and  
on the collection of Kleene space morphisms from X to K˜ as
follows.

12 / 20
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New operations

The clopen up-sets of X form a Heyting algebra with → defined by

U → V = {x ∈ X : ↑x ∩ U ⊆ V }

Define also U ⇒ V = [U ∩ (X − X0)]→ V , and
U∗ = U → (X − X0).

We define a multiplication · on pairs 〈U1,V1〉, 〈U2,V2〉 of clopen
up-sets of X by 〈U1,V1〉 · 〈U2,V2〉 = 〈U3,V3〉, where

U3 = [(U1 ⇒ V2) ∩ (U2 ⇒ V1)]→ (U1 ∩ U2),

and

V3 =[(U1 ⇒ V2) ∩ (U2 ⇒ V1)]

∩ [((U1 ⇒ V2) ∩ (U2 ⇒ V1))→ (U1 ∩ U2)]∗

13 / 20
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New operations

Define also a new implication  on pairs 〈U1,V1〉, 〈U2,V2〉 of
clopen up-sets by 〈U1,V1〉 〈U2,V2〉 = 〈U3,V3〉, where

U3 = (U1 → U2) ∩ (V2 ⇒ V1),

and

V3 =[((U1 → U2) ∩ (V2 ⇒ V1))⇒ (U1 ∩ (X ⇒ V2)]

∩ [(U1 → U2) ∩ (V2 ⇒ V1)]∗
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New operations

Finally, for morphisms ϕ(U1,V1), ϕ(U2,V2) : X→ K˜ , define

ϕ(U1,V1) · ϕ(U2,V2) = ϕ(U1,V1)·(U2,V2)

and
ϕ(U1,V1)  ϕ(U2,V2) = ϕ(U1,V1) (U2,V2)

15 / 20
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The equivalence

Let SM denote the category of bounded Sugihara monoids with
morphisms the algebraic homomorphisms. Let SS denote the
category whose objects are Sugihara spaces (X ,≤,≤ ∪ ≥,X0, T ),
and whose morphisms are Esakia functions preserving X0.

Define a functor F : SM→ SS as follows. For a Sugihara monoid
A, let F (A) be the Davey-Werner dual of the Kleene algebra
reduct of A. For a morphism h : A→ B, let F (h) : F (B)→ F (A)
be defined by F (h)(x) = x ◦ h.

Define a functor G : SS→ SM as follows. For a Sugihara space X,
let G (X) be the Davey-Werner dual of X endowed with the
additional binary operations · and  , and the nullary operation
ϕ(X ,X−X0). For a morphism ϕ : X→ Y of SS, define
G (ϕ) : G (Y)→ G (X) by G (ϕ)(α) = α ◦ ϕ.
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reduct of A. For a morphism h : A→ B, let F (h) : F (B)→ F (A)
be defined by F (h)(x) = x ◦ h.

Define a functor G : SS→ SM as follows. For a Sugihara space X,
let G (X) be the Davey-Werner dual of X endowed with the
additional binary operations · and  , and the nullary operation
ϕ(X ,X−X0). For a morphism ϕ : X→ Y of SS, define
G (ϕ) : G (Y)→ G (X) by G (ϕ)(α) = α ◦ ϕ.
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Main result

Main Theorem:

The functors F and G witness a dual equivalence of categories
between SM and SS.

A Sugihara space X is, inter alia, an Esakia space. What happens
if instead of taking its Kleene dual, we take its Esakia dual?

We obtain the Heyting algebra that forms the negative cone of the
Sugihara monoid F (X).

Along these lines, the choice of taking the Kleene dual of such an
Esakia space can be thought of as a topological construction of the
twist product used in paraconsistent logics.

This reflects recent results by Galatos and Raftery that the
Sugihara monoids are (covariantly) equivalent to their negative
cones.
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Thank you!

Thank you!
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