Esakia duality for Sugihara monoids

Wesley Fussner (Joint work with Nick Galatos)

University of Denver Department of Mathematics Fall AMS Special Session on Algebraic Logic University of Denver

October 8, 2016

• Why another duality for relevant algebras?

- Why another duality for relevant algebras?
- Existing dualities (Urquhart, 1996) incorporate the ternary accessibility relation of the Routley-Meyer semantics.

- Why another duality for relevant algebras?
- Existing dualities (Urquhart, 1996) incorporate the ternary accessibility relation of the Routley-Meyer semantics.
- Dunn (1976) provided a Kripke-style semantics for *R*-mingle using only a binary accessibility relation.

- Why another duality for relevant algebras?
- Existing dualities (Urquhart, 1996) incorporate the ternary accessibility relation of the Routley-Meyer semantics.
- Dunn (1976) provided a Kripke-style semantics for *R*-mingle using only a binary accessibility relation.
- Kripke semantics is underwritten by Esakia duality for Heyting algebras

- Why another duality for relevant algebras?
- Existing dualities (Urquhart, 1996) incorporate the ternary accessibility relation of the Routley-Meyer semantics.
- Dunn (1976) provided a Kripke-style semantics for *R*-mingle using only a binary accessibility relation.
- Kripke semantics is underwritten by Esakia duality for Heyting algebras

Motivating Question:

Can we construct an Esakia-style duality that lifts Dunn's semantics to a categorical equivalence?

An ordered topological space (X, ≤, T) is called a *Priestley* space if (X, T) is compact, and whenever x, y ∈ X with x ≤ y there exists a clopen up-set U ⊆ X with x ∈ U, y ∉ U.

- An ordered topological space (X, ≤, T) is called a *Priestley* space if (X, T) is compact, and whenever x, y ∈ X with x ≤ y there exists a clopen up-set U ⊆ X with x ∈ U, y ∉ U.
- A Priestley space is called an *Esakia space* if whenever *U* is clopen, the down-set ↓*U* is also clopen.

- An ordered topological space (X, ≤, T) is called a *Priestley* space if (X, T) is compact, and whenever x, y ∈ X with x ≤ y there exists a clopen up-set U ⊆ X with x ∈ U, y ∉ U.
- A Priestley space is called an *Esakia space* if whenever *U* is clopen, the down-set ↓*U* is also clopen.
- An *Esakia function* is a map f: X → Y between Esakia spaces that is continuous, order-preserving, and satisfies ↑f(x) ⊆ f[↑x] for every x ∈ X.

Theorem (Priestley):

The category of bounded distributive lattices (with morphisms the algebraic homomorphisms) is dually equivalent to the category of Priestley spaces with morphisms the continuous, isotone maps.

Theorem (Priestley):

The category of bounded distributive lattices (with morphisms the algebraic homomorphisms) is dually equivalent to the category of Priestley spaces with morphisms the continuous, isotone maps.

Theorem (Esakia):

The category of Heyting algebras (with morphisms the algebraic homomorphisms) is dually equivalent to the category of Esakia spaces with morphisms the Esakia functions.

Theorem (Priestley):

The category of bounded distributive lattices (with morphisms the algebraic homomorphisms) is dually equivalent to the category of Priestley spaces with morphisms the continuous, isotone maps.

Theorem (Esakia):

The category of Heyting algebras (with morphisms the algebraic homomorphisms) is dually equivalent to the category of Esakia spaces with morphisms the Esakia functions.

The Esakia duality is a restricted form of the Priestley duality.

A commutative residuated lattice (CRL) is an algebra $(A, \land, \lor, \cdot, \rightarrow, t)$ such that

A commutative residuated lattice (CRL) is an algebra $(A, \land, \lor, \cdot, \rightarrow, t)$ such that

• (A, \land, \lor) is a lattice,

A commutative residuated lattice (CRL) is an algebra $(A, \land, \lor, \cdot, \rightarrow, t)$ such that

- (A, \land, \lor) is a lattice,
- (A, \cdot, t) is a commutative monoid, and

A commutative residuated lattice (CRL) is an algebra $(A, \land, \lor, \cdot, \rightarrow, t)$ such that

- (A, \land, \lor) is a lattice,
- (A, \cdot, t) is a commutative monoid, and
- for all $a, b, c \in A$,

$$a \cdot b \leq c \iff a \leq b \rightarrow c$$

Definition:

A CRL is called

Definition:

A CRL is called

• *integral* if *t* is the greatest element with respect to the lattice order,

Definition:

A CRL is called

- *integral* if *t* is the greatest element with respect to the lattice order,
- distributive if its lattice reduct is distributive,

Definition:

A CRL is called

- *integral* if *t* is the greatest element with respect to the lattice order,
- distributive if its lattice reduct is distributive,
- *idempotent* if it satisfies the identity $a^2 = a$.

Definition:

A CRL is called

- *integral* if *t* is the greatest element with respect to the lattice order,
- distributive if its lattice reduct is distributive,
- *idempotent* if it satisfies the identity $a^2 = a$.

Definition:

The expansion of a CRL by a unary operation \neg satisfying $\neg \neg a = a$ and $a \rightarrow \neg b = b \rightarrow \neg a$ is called an *involutive* CRL. A distributive, idempotent, involutive CRL is called a *Sugihara monoid*.

Definition:

A CRL is called

- *integral* if *t* is the greatest element with respect to the lattice order,
- distributive if its lattice reduct is distributive,
- *idempotent* if it satisfies the identity $a^2 = a$.

Definition:

The expansion of a CRL by a unary operation \neg satisfying $\neg \neg a = a$ and $a \rightarrow \neg b = b \rightarrow \neg a$ is called an *involutive* CRL. A distributive, idempotent, involutive CRL is called a *Sugihara monoid*.

For simplicity, we consider expansions of Sugihara monoids by universal bounds \bot and $\top.$

A Kleene algebra is an algebra (A, $\wedge, \vee, \neg, \bot, \top)$ such that

A Kleene algebra is an algebra $(A, \land, \lor, \neg, \bot, \top)$ such that

• (A, \land , \lor , \bot , \top) is a bounded distributive lattice, and

A Kleene algebra is an algebra $(A, \land, \lor, \neg, \bot, \top)$ such that

- (A, \wedge, \vee, \bot, \top) is a bounded distributive lattice, and
- ¬ satisfies the identities

•
$$\neg \neg a = a$$
,

•
$$\neg \bot = \top$$
,

•
$$\neg(a \wedge b) = \neg a \lor \neg b$$
,

•
$$a \land \neg a \leq b \lor \neg b$$
.

A Kleene algebra is an algebra $(A, \land, \lor, \neg, \bot, \top)$ such that

- (A, \wedge, \vee, \bot, \top) is a bounded distributive lattice, and
- \neg satisfies the identities

•
$$\neg \neg a = a$$
,

•
$$\neg \perp = \top$$
,

•
$$\neg(a \wedge b) = \neg a \lor \neg b$$
,

•
$$a \land \neg a \leq b \lor \neg b$$
.

Proposition:

The $(\land, \lor, \neg, \bot, \top)$ -reduct of every bounded Sugihara monoid is a Kleene algebra.

We may define a Kleene algebra $\mathbf{K} = (\{-1, 0, 1\}, \land, \lor, \neg, -1, 1)$, where -1 < 0 < 1 and \neg is the additive inversion -.

We may define a Kleene algebra $\mathbf{K} = (\{-1, 0, 1\}, \land, \lor, \neg, -1, 1)$, where -1 < 0 < 1 and \neg is the additive inversion -.

Proposition (Kalman, 1958):

The Kleene algebras are generated as a prevariety by K.

We may define a Kleene algebra $\mathbf{K} = (\{-1, 0, 1\}, \land, \lor, \neg, -1, 1)$, where -1 < 0 < 1 and \neg is the additive inversion -.

Proposition (Kalman, 1958):

The Kleene algebras are generated as a prevariety by K.

As a consequence, the Sugihara monoids have reducts in a prevariety generated by a single finite algebra.

We may define a Kleene algebra $\mathbf{K} = (\{-1, 0, 1\}, \land, \lor, \neg, -1, 1)$, where -1 < 0 < 1 and \neg is the additive inversion -.

Proposition (Kalman, 1958):

The Kleene algebras are generated as a prevariety by K.

As a consequence, the Sugihara monoids have reducts in a prevariety generated by a single finite algebra.

This suggests that a duality for Sugihara monoids could be obtained by restricting a natural duality for their reducts, just as in the case of Heyting algebra.

Davey-Werner duality

Definition:

A structure $\mathbf{X} = (X, \leq, Q, X_0, \mathcal{T})$ is called a *Kleene space* if (X, \leq, \mathcal{T}) is a Priestley space, Q is a closed binary relation on X, X_0 is a closed subspace, and for all $x, y, z \in X$,

• xQx,

•
$$xQy$$
 and $x \in X_0 \implies x \le y$,

•
$$xQy$$
 and $y \leq z \implies zQx$.

Davey-Werner duality

Definition:

A structure $\mathbf{X} = (X, \leq, Q, X_0, \mathcal{T})$ is called a *Kleene space* if (X, \leq, \mathcal{T}) is a Priestley space, Q is a closed binary relation on X, X_0 is a closed subspace, and for all $x, y, z \in X$,

• xQx,

•
$$xQy$$
 and $x \in X_0 \implies x \leq y$,

•
$$xQy$$
 and $y \leq z \implies zQx$.

Example:

We may define a Kleene space $\mathbf{K} = (\{-1, 0, 1\}, \sqsubseteq, Q, K_0, \mathcal{T})$, where $-1 \sqsubseteq 0$ and $1 \sqsubseteq 0$, -1 and 1 are incomparable, $K_0 = \{-1, 1\}$, and Q is the relation of comparability with respect to the order.

Proposition (Davey-Werner, 1983):

The category of Kleene algebras K is dually equivalent to the category of Kleene spaces KS (with morphisms the continuous, structure-preserving maps in the signature (\leq, Q, X_0)).

Proposition (Davey-Werner, 1983):

The category of Kleene algebras K is dually equivalent to the category of Kleene spaces KS (with morphisms the continuous, structure-preserving maps in the signature (\leq, Q, X_0)).

Given a Kleene algebra \mathbf{A} , let $D(\mathbf{A})$ be the collection of Kleene algebra homomorphisms $\mathbf{A} \to \mathbf{K}$ endowed with structure inherited pointwise from \mathbf{K} . For a morphism $h: \mathbf{A} \to \mathbf{B}$ in K, let $D(h): D(\mathbf{B}) \to D(\mathbf{A})$ be defined by $D(h)(x) = x \circ h$.

Proposition (Davey-Werner, 1983):

The category of Kleene algebras K is dually equivalent to the category of Kleene spaces KS (with morphisms the continuous, structure-preserving maps in the signature (\leq, Q, X_0)).

Given a Kleene algebra \mathbf{A} , let $D(\mathbf{A})$ be the collection of Kleene algebra homomorphisms $\mathbf{A} \to \mathbf{K}$ endowed with structure inherited pointwise from \mathbf{K} . For a morphism $h: \mathbf{A} \to \mathbf{B}$ in K, let $D(h): D(\mathbf{B}) \to D(\mathbf{A})$ be defined by $D(h)(x) = x \circ h$.

Given a Kleene space **X**, let $E(\mathbf{X})$ be the collection of Kleene space morphisms $\mathbf{X} \to \mathbf{K}$ endowed with structure inherited pointwise from **K**. For a morphism $\varphi : \mathbf{X} \to \mathbf{Y}$ in KS, let $E(\varphi) : E(\mathbf{Y}) \to E(\mathbf{X})$ be defined by $E(\varphi)(\alpha) = \alpha \circ \varphi$. We restrict the Davey-Werner duality to obtain a duality for the Sugihara monoids.

We restrict the Davey-Werner duality to obtain a duality for the Sugihara monoids.

Definition:

We call a Kleene space $\mathbf{X} = (X, \leq, Q, X_0, \mathcal{T})$ a Sugihara space if

- (X, \leq, \mathcal{T}) is an Esakia space,
- X₀ is open,
- Q coincides with ≤ ∪ ≥ (i.e., comparability with respect to the partial order ≤).

We restrict the Davey-Werner duality to obtain a duality for the Sugihara monoids.

Definition:

We call a Kleene space $\mathbf{X} = (X, \leq, Q, X_0, \mathcal{T})$ a Sugihara space if

- (X, \leq, \mathcal{T}) is an Esakia space,
- X₀ is open,
- Q coincides with ≤ ∪ ≥ (i.e., comparability with respect to the partial order ≤).

We define operations on the dual of a Sugihara space ${\bf X}$ in order to make this structure into a Sugihara monoid.

Given a Kleene space **X**, a morphism $\alpha : \mathbf{X} \to \mathbf{K}$ may be represented uniquely as a map of the form

$$\varphi_{(U,V)}(x) = \begin{cases} 1, & \text{if } x \notin V \\ 0, & \text{if } x \in U \cap V \\ -1, & \text{if } x \notin U \end{cases}$$

where U, V are clopen up-sets of **X** satisfying $U \cup V = X$, $U \cap V \subseteq X - X_0$, and $((X - U) \times (X - V)) \cap Q = \emptyset$.

Given a Kleene space **X**, a morphism $\alpha : \mathbf{X} \to \mathbf{K}$ may be represented uniquely as a map of the form

$$\varphi_{(U,V)}(x) = \begin{cases} 1, & \text{if } x \notin V \\ 0, & \text{if } x \in U \cap V \\ -1, & \text{if } x \notin U \end{cases}$$

where U, V are clopen up-sets of **X** satisfying $U \cup V = X$, $U \cap V \subseteq X - X_0$, and $((X - U) \times (X - V)) \cap Q = \emptyset$.

Let **X** be a Sugihara space. We define binary operations \cdot and \rightsquigarrow on the collection of Kleene space morphisms from **X** to \underbrace{K} as follows.

The clopen up-sets of **X** form a Heyting algebra with \rightarrow defined by

$$U \to V = \{x \in X : \uparrow x \cap U \subseteq V\}$$

Define also $U \Rightarrow V = [U \cap (X - X_0)] \rightarrow V$, and $U^* = U \rightarrow (X - X_0)$.

The clopen up-sets of ${\boldsymbol{\mathsf{X}}}$ form a Heyting algebra with \rightarrow defined by

$$U \to V = \{x \in X : \uparrow x \cap U \subseteq V\}$$

Define also $U \Rightarrow V = [U \cap (X - X_0)] \rightarrow V$, and $U^* = U \rightarrow (X - X_0)$.

We define a multiplication \cdot on pairs $\langle U_1, V_1 \rangle, \langle U_2, V_2 \rangle$ of clopen up-sets of **X** by $\langle U_1, V_1 \rangle \cdot \langle U_2, V_2 \rangle = \langle U_3, V_3 \rangle$, where

$$U_3 = [(U_1 \Rightarrow V_2) \cap (U_2 \Rightarrow V_1)] \rightarrow (U_1 \cap U_2),$$

and

$$egin{aligned} V_3 =& [(U_1 \Rightarrow V_2) \cap (U_2 \Rightarrow V_1)] \ &\cap [((U_1 \Rightarrow V_2) \cap (U_2 \Rightarrow V_1)) o (U_1 \cap U_2)]^* \end{aligned}$$

Define also a new implication \rightsquigarrow on pairs $\langle U_1, V_1 \rangle, \langle U_2, V_2 \rangle$ of clopen up-sets by $\langle U_1, V_1 \rangle \rightsquigarrow \langle U_2, V_2 \rangle = \langle U_3, V_3 \rangle$, where

$$U_3 = (U_1 \rightarrow U_2) \cap (V_2 \Rightarrow V_1),$$

and

$$egin{aligned} V_3 =& [((U_1
ightarrow U_2) \cap (V_2 \Rightarrow V_1)) \Rightarrow (U_1 \cap (X \Rightarrow V_2)] \ &\cap [(U_1
ightarrow U_2) \cap (V_2 \Rightarrow V_1)]^* \end{aligned}$$

Finally, for morphisms $\varphi_{(U_1,V_1)}, \varphi_{(U_2,V_2)} \colon \mathbf{X} \to \mathbf{K}$, define

 $\varphi(U_1,V_1)\cdot\varphi(U_2,V_2)=\varphi(U_1,V_1)\cdot(U_2,V_2)$

and

$$\varphi(U_1,V_1) \rightsquigarrow \varphi(U_2,V_2) = \varphi(U_1,V_1) \rightsquigarrow (U_2,V_2)$$

Let SM denote the category of bounded Sugihara monoids with morphisms the algebraic homomorphisms. Let SS denote the category whose objects are Sugihara spaces $(X, \leq , \leq \cup \geq, X_0, \mathcal{T})$, and whose morphisms are Esakia functions preserving X_0 .

Let SM denote the category of bounded Sugihara monoids with morphisms the algebraic homomorphisms. Let SS denote the category whose objects are Sugihara spaces $(X, \leq , \leq \cup \geq, X_0, \mathcal{T})$, and whose morphisms are Esakia functions preserving X_0 .

Define a functor $F: SM \to SS$ as follows. For a Sugihara monoid **A**, let $F(\mathbf{A})$ be the Davey-Werner dual of the Kleene algebra reduct of **A**. For a morphism $h: \mathbf{A} \to \mathbf{B}$, let $F(h): F(\mathbf{B}) \to F(\mathbf{A})$ be defined by $F(h)(x) = x \circ h$.

Let SM denote the category of bounded Sugihara monoids with morphisms the algebraic homomorphisms. Let SS denote the category whose objects are Sugihara spaces $(X, \leq , \leq \cup \geq, X_0, \mathcal{T})$, and whose morphisms are Esakia functions preserving X_0 .

Define a functor $F : SM \to SS$ as follows. For a Sugihara monoid **A**, let $F(\mathbf{A})$ be the Davey-Werner dual of the Kleene algebra reduct of **A**. For a morphism $h : \mathbf{A} \to \mathbf{B}$, let $F(h) : F(\mathbf{B}) \to F(\mathbf{A})$ be defined by $F(h)(x) = x \circ h$.

Define a functor $G: SS \to SM$ as follows. For a Sugihara space **X**, let $G(\mathbf{X})$ be the Davey-Werner dual of **X** endowed with the additional binary operations \cdot and \rightsquigarrow , and the nullary operation $\varphi_{(X,X-X_0)}$. For a morphism $\varphi: \mathbf{X} \to \mathbf{Y}$ of SS, define $G(\varphi): G(\mathbf{Y}) \to G(\mathbf{X})$ by $G(\varphi)(\alpha) = \alpha \circ \varphi$.

The functors F and G witness a dual equivalence of categories between SM and SS.

The functors F and G witness a dual equivalence of categories between SM and SS.

A Sugihara space X is, *inter alia*, an Esakia space. What happens if instead of taking its Kleene dual, we take its Esakia dual?

The functors F and G witness a dual equivalence of categories between SM and SS.

A Sugihara space X is, *inter alia*, an Esakia space. What happens if instead of taking its Kleene dual, we take its Esakia dual?

We obtain the Heyting algebra that forms the negative cone of the Sugihara monoid $F(\mathbf{X})$.

The functors F and G witness a dual equivalence of categories between SM and SS.

A Sugihara space X is, *inter alia*, an Esakia space. What happens if instead of taking its Kleene dual, we take its Esakia dual?

We obtain the Heyting algebra that forms the negative cone of the Sugihara monoid $F(\mathbf{X})$.

Along these lines, the choice of taking the Kleene dual of such an Esakia space can be thought of as a topological construction of the twist product used in paraconsistent logics.

The functors F and G witness a dual equivalence of categories between SM and SS.

A Sugihara space X is, *inter alia*, an Esakia space. What happens if instead of taking its Kleene dual, we take its Esakia dual?

We obtain the Heyting algebra that forms the negative cone of the Sugihara monoid $F(\mathbf{X})$.

Along these lines, the choice of taking the Kleene dual of such an Esakia space can be thought of as a topological construction of the twist product used in paraconsistent logics.

This reflects recent results by Galatos and Raftery that the Sugihara monoids are (covariantly) equivalent to their negative cones.

Thank you!

Bibliography

- D.M. Clark and B.A. Davey, *Natural Dualities for the Working Algebraist*, Cambridge University Press, 1998.
- B.A. Davey and H. Werner, Dualities and equivalences for varieties of algebras, *Contributions to Lattice Theory* (Szeged, 1980) (A.P. Huhn and E.T. Schmidt, eds), Colloq. Math. Soc. János Bolyai 33, North-Holland, Amsterdam, New York, 1983, pp. 101–275.
- J.M. Dunn, A Kripke-style semantics for *R*-mingle using a binary accessibility relation, Studia Logica **35** (1976), no. 2, 163–172.
- L. Esakia, Topological Kripke Models, Soviet Math. Dokl., 15:147–151, 1974.
- N. Galatos and J.G. Raftery, A category equivalence for odd Sugihara monoids and its applications, J. Pure Appl. Algebra 216 (2012), 2177–2192.

Bibliography Continued.

- N. Galatos and J.G. Raftery, Idempotent residuated structures: Some category equivalences and their applications, Trans. Amer. Math. Soc. 367 (2015), 3189–3223.
- J.A. Kalman, Lattices with Involution, Trans. Amer. Math. Soc. 87, (1958), 485–491.
- H. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1979), 186–190
- A. Urquhart, Duality for Algebras of Relevant Logics, Studia Logica, **56** (1996) 253–276.