On Paraconsistent Weak Kleene Logic and Involutive Bisemilattices

José Gil-Férez

Vanderbilt University

(Joint work with S. Bonzio, L. Peruzzi, and F. Paoli)

Denver, Colorado, 2016

• The language: $\land, \lor, \neg, 0, 1$

- The language: $\land,\lor,\neg,0,1$
- The matrix: $\textbf{PWK} = \langle \textbf{WK}, \{1, 1\!/\!2\} \rangle$

- The language: $\land, \lor, \neg, 0, 1$
- The matrix: $\textbf{PWK} = \langle \textbf{WK}, \{1, 1\!/\!2\} \rangle$
- WK is given by the Weak Kleene tables:

		$^{1/2}$					$^{1/2}$		7	
0	0	$^{1/2}$	0	-	0	0	1/2	1	1	
$^{1/2}$	1/2	$^{1/2}$	$^{1/2}$		$^{1/2}$	1/2	$^{1/2}$	$^{1/2}$	$^{1/2}$	1/2
1	0	$^{1/2}$	1		1	1	$^{1/2}$	1	0	1

- The language: $\land, \lor, \neg, 0, 1$
- The matrix: $\mathbf{PWK} = \langle \mathbf{WK}, \{1, 1/2\} \rangle$
- WK is given by the Weak Kleene tables:

		$^{1/2}$					$^{1/2}$		7	
0	0	1/2	0	-	0	0	$^{1/2}$	1	1	0
1/2	$^{1/2}$	$\frac{1/2}{1/2}$	$^{1/2}$		1/2	1/2	$\frac{1/2}{1/2}$	$^{1/2}$	$^{1/2}$	1/2
1	0	$^{1/2}$	1		1	1	$^{1/2}$	1	0	1

- The language: $\land, \lor, \neg, 0, 1$
- The matrix: $\mathbf{PWK} = \langle \mathbf{WK}, \{1, 1/2\} \rangle$
- WK is given by the Weak Kleene tables:

		$^{1/2}$					$^{1/2}$		7	
0				-	0	0	1/2	1	1	
$^{1/2}$	1/2	$^{1/2}$	$^{1/2}$		$^{1/2}$	1/2	$^{1/2}$	$^{1/2}$	$^{1/2}$	1/2
1	0	$^{1/2}$	1		1	1	$^{1/2}$	1	0	1

 $\Gamma \vDash_{\mathsf{PWK}} \alpha \iff \text{for every } v, \quad v[\Gamma] \subseteq \{1, 1/2\} \Rightarrow v(\alpha) \in \{1, 1/2\}$

Theorem (Ciuni, Carrrara) For all Γ and α , the following are equivalent:

- $\Gamma \vDash_{\mathsf{PWK}} \alpha$
- there is a subset $\Delta \subseteq \Gamma$ s.t. $var(\Delta) \subseteq var(\alpha)$ and $\Delta \vdash_{CL} \alpha$.

Theorem (Ciuni, Carrrara)

For all Γ and α , the following are equivalent:

- $\Gamma \vDash_{\mathsf{PWK}} \alpha$
- there is a subset $\Delta \subseteq \Gamma$ s.t. $var(\Delta) \subseteq var(\alpha)$ and $\Delta \vdash_{CL} \alpha$.
- Hilbert system for PWK:
 - any set of axioms for Classical Logic and
 - the rule:

$$[\mathsf{RMP}] \ \frac{\alpha \qquad \alpha \to \beta}{\beta}$$

provided that $\operatorname{var}(\alpha) \subseteq \operatorname{var}(\beta)$

Involutive Bisemilattices

Definition

An involutive bisemilattice is an algebra $\mathbf{B} = \langle B, \wedge, \vee, \neg, 0, 1 \rangle$

11. $x \lor x \approx x$; 12. $x \lor y \approx y \lor x$; 13. $x \lor (y \lor z) \approx (x \lor y) \lor z$; 14. $\neg \neg x \approx x$; 15. $x \land y \approx \neg (\neg x \lor \neg y)$; 16. $x \land (\neg x \lor y) \approx x \land y$; 17. $0 \lor x \approx x$; 18. $1 \approx \neg 0$.

Thus, the class of involutive bisemilattices is an equational class, which we denote by \mathcal{IBSL} .

Involutive Bisemilatices

Theorem

The only nontrivial subdirectly irreducible bisemilattices are WK, S_2 , and B_2 , up to isomorphism.

Involutive Bisemilatices

Theorem

The only nontrivial subdirectly irreducible bisemilattices are WK, S_2 , and B_2 , up to isomorphism.

Corollary

IBSL is the variety generated by WK.

Involutive Bisemilatices

Theorem

The only nontrivial subdirectly irreducible bisemilattices are WK, S_2 , and B_2 , up to isomorphism.

Corollary

 \mathcal{IBSL} is the variety generated by \mathbf{WK} .

Corollary

The only nontrivial proper subvarieties of IBSL are the disjoint varieties BA of Boolean algebras and SL of semilattices with zero.

Example

Example

• Positive elements: $P(\mathbf{B}) = \{x \in B : 1 \leq x\}.$

Example

- Positive elements: $P(\mathbf{B}) = \{x \in B : 1 \leq x\}.$
- Fibers: $[\neg c, c]$ for every $c \in P(\mathbf{B})$. They are Boolean algebras.

Płonka sums

A direct system of algebras: $\mathtt{T}=\langle(\varphi_{ij}:i\leqslant j),\mathbf{I}\rangle$ such that:

- $\mathbf{I} = \langle I, \leqslant \rangle$ is a join semilattice;
- $\varphi_{ij}: \mathbf{A}_i \to \mathbf{A}_j$ is a homomorphism, for each $i \leqslant j$,

 φ_{ii} is the identity in \mathbf{A}_i and $\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik};$

• If $i, j \in I$ are different, then \mathbf{A}_i and \mathbf{A}_j are disjoint.

Płonka sums

A direct system of algebras: $\mathtt{T}=\langle (\varphi_{ij}:i\leqslant j),\mathbf{I}\rangle$ such that:

•
$$\mathbf{I} = \langle I, \leqslant \rangle$$
 is a join semilattice;

• $\varphi_{ij}: \mathbf{A}_i \to \mathbf{A}_j$ is a homomorphism, for each $i \leqslant j$,

 φ_{ii} is the identity in \mathbf{A}_i and $\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik};$

• If $i, j \in I$ are different, then A_i and A_j are disjoint.

Płonka sum over T is the algebra $\mathbf{T} = \langle \bigcup_I A_i, \{g^{\mathbf{T}} : g \in \nu\} \rangle$,

• for every n-ary $g \in \nu$, and $a_1, \ldots, a_n \in T$, where $n \ge 1$ and $a_r \in A_{i_r}$, we set $j = i_1 \lor \cdots \lor i_n$ and define

$$g^{\mathbf{T}}(a_1,\ldots,a_n) = g^{\mathbf{A}_j}(\varphi_{i_1j}(a_1),\ldots,\varphi_{i_nj}(a_n));$$

Płonka sums

A direct system of algebras: $\mathtt{T}=\langle(\varphi_{ij}:i\leqslant j),\mathbf{I}\rangle$ such that:

•
$$\mathbf{I} = \langle I, \leqslant \rangle$$
 is a join semilattice;

• $\varphi_{ij}: \mathbf{A}_i \to \mathbf{A}_j$ is a homomorphism, for each $i \leqslant j$,

 φ_{ii} is the identity in \mathbf{A}_i and $\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik};$

• If $i, j \in I$ are different, then A_i and A_j are disjoint.

Płonka sum over T is the algebra $\mathbf{T} = \langle \bigcup_I A_i, \{g^{\mathbf{T}} : g \in \nu\} \rangle$,

• for every n-ary $g \in \nu$, and $a_1, \ldots, a_n \in T$, where $n \ge 1$ and $a_r \in A_{i_r}$, we set $j = i_1 \lor \cdots \lor i_n$ and define

$$g^{\mathbf{T}}(a_1,\ldots,a_n) = g^{\mathbf{A}_j}(\varphi_{i_1j}(a_1),\ldots,\varphi_{i_nj}(a_n));$$

• if $g \in \nu$ is a constant, we assume that I has a least element \bot , and $g^{\mathbf{T}} = g^{\mathbf{A}_{\bot}}$.

• The Płonka sum of a direct system of Boolean algebras is an involutive bisemilattice.

- The Płonka sum of a direct system of Boolean algebras is an involutive bisemilattice.
- If **B** is an involutive bisemilattice, then **B** is isomorphic to the Płonka sum over the direct system of the fibers:

$$\varphi_{cd}: [\neg c, c] \to [\neg d, d]; \qquad \varphi_{cd}(a) = \neg d \lor a.$$

- The Płonka sum of a direct system of Boolean algebras is an involutive bisemilattice.
- If **B** is an involutive bisemilattice, then **B** is isomorphic to the Płonka sum over the direct system of the fibers:

$$\varphi_{cd}: [\neg c, c] \to [\neg d, d]; \qquad \varphi_{cd}(a) = \neg d \lor a.$$

Corollary

IBSL is the variety satisfying exactly the regular equations satisfied by Boolean algebras.

Leibniz Hierarchy

 \mathcal{IBSL} is not the equivalent algebraic semantics of any logic L.

 \mathcal{IBSL} is not the equivalent algebraic semantics of any logic L.

• Suppose \mathcal{IBSL} is the equivalent algebraic semantics of an algebraizable logic L.

 \mathcal{IBSL} is not the equivalent algebraic semantics of any logic L.

- Suppose \mathcal{IBSL} is the equivalent algebraic semantics of an algebraizable logic L.
- Consider the algebra $\mathbf{C}\in\mathcal{IBSL}$ and its congruence lattice:

IBSL is not the equivalent algebraic semantics of any logic L.

- Suppose \mathcal{IBSL} is the equivalent algebraic semantics of an algebraizable logic L.
- Consider the algebra $\mathbf{C}\in\mathcal{IBSL}$ and its congruence lattice:

• There is a lattice isomorphism $\varOmega^{\mathbf{C}}:\mathcal{F}i_{L}\,\mathbf{C}\to\mathrm{Co}\,\mathbf{C}.$

IBSL is not the equivalent algebraic semantics of any logic L.

- Suppose \mathcal{IBSL} is the equivalent algebraic semantics of an algebraizable logic L.
- Consider the algebra $\mathbf{C}\in\mathcal{IBSL}$ and its congruence lattice:

- There is a lattice isomorphism $\Omega^{\mathbf{C}}: \mathcal{F}i_{\mathrm{L}} \mathbf{C} \to \mathrm{Co}\, \mathbf{C}.$
- {2} is the only subset of C such that $\Omega^{\mathbb{C}}{2} = \theta_2$, and hence it is an L-filter.

IBSL is not the equivalent algebraic semantics of any logic L.

- Suppose \mathcal{IBSL} is the equivalent algebraic semantics of an algebraizable logic L.
- Consider the algebra $\mathbf{C}\in\mathcal{IBSL}$ and its congruence lattice:

- There is a lattice isomorphism $\Omega^{\mathbf{C}}: \mathcal{F}i_{L} \mathbf{C} \to \mathrm{Co}\, \mathbf{C}.$
- {2} is the only subset of C such that $\Omega^{\mathbb{C}}{2} = \theta_2$, and hence it is an L-filter.
- It follows that \emptyset is also an L-filter, L is purely inferential, and this leads to a contradiction.

PWK *is not* protoalgebraic.

PWK *is not* protoalgebraic.

• Suppose PWK is protoalgebraic.

PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.
- Therefore, there is a set of formulas $p \Rightarrow q$ satisfying:

PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.
- Therefore, there is a set of formulas $p \Rightarrow q$ satisfying:

 $1 \models_{\mathrm{PWK}} p \Rightarrow p,$

PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.
- Therefore, there is a set of formulas $p \Rightarrow q$ satisfying:

$$\mathbf{1} \models_{\mathrm{PWK}} p \Rightarrow p,$$

$$2 \quad p, p \Rightarrow q \vDash_{\text{PWK}} q.$$

PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.
- Therefore, there is a set of formulas $p \Rightarrow q$ satisfying:

$$\mathbf{1} \models_{\mathrm{PWK}} p \Rightarrow p,$$

$$2 \quad p, p \Rightarrow q \vDash_{\text{PWK}} q.$$

• Consider the valuation v on WK: v(p) = 1/2, v(q) = 0.

PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.
- Therefore, there is a set of formulas $p \Rightarrow q$ satisfying:

$$\mathbf{1} \models_{\mathrm{PWK}} p \Rightarrow p,$$

$$2 \quad p, p \Rightarrow q \vDash_{\text{PWK}} q.$$

- Consider the valuation v on WK: v(p) = 1/2, v(q) = 0.
- Thus, $v[\{p\} \cup p \Rightarrow q] = \{1/2\}$, while v(q) = 0, which is a contradiction.

Theorem PWK *is not selfextensional, and therefore it is non-Fregean.*

Theorem PWK *is not selfextensional, and therefore it is non-Fregean.*

• Notice that $\neg p \lor p \dashv \models_{PWK} \neg q \lor q$.

Theorem PWK *is not selfextensional, and therefore it is non-Fregean.*

- Notice that $\neg p \lor p \exists \vDash_{\text{PWK}} \neg q \lor q$.
- Consider the valuation v on WK: v(p) = 1/2, v(q) = 0.

PWK is not selfextensional, and therefore it is non-Fregean.

- Notice that $\neg p \lor p \exists \vDash_{\text{PWK}} \neg q \lor q$.
- Consider the valuation v on WK: v(p) = 1/2, v(q) = 0.

•
$$v(\neg(\neg p \lor p)) = 1/2.$$

PWK is not selfextensional, and therefore it is non-Fregean.

- Notice that $\neg p \lor p \exists \vDash_{\text{PWK}} \neg q \lor q$.
- Consider the valuation v on WK: v(p) = 1/2, v(q) = 0.

•
$$v(\neg(\neg p \lor p)) = 1/2$$

• $v(\neg(\neg q \lor q)) = 0.$

PWK is not selfextensional, and therefore it is non-Fregean.

- Notice that $\neg p \lor p = \models_{PWK} \neg q \lor q$.
- Consider the valuation v on WK: v(p) = 1/2, v(q) = 0.
 - $v(\neg(\neg p \lor p)) = 1/2.$
 - $v(\neg(\neg q \lor q)) = 0.$
- Therefore $\neg(\neg p \lor p) = \models_{PWK} \neg(\neg q \lor q)$, does not hold. That is, $= \models_{PWK}$ is not a congruence.

• A matrix $\mathbf{M} = \langle \mathbf{A}, F \rangle$ is reduced if $\boldsymbol{\Omega}^{\mathbf{A}} F = Id_A$.

• A matrix $\mathbf{M} = \langle \mathbf{A}, F \rangle$ is reduced if $\boldsymbol{\Omega}^{\mathbf{A}} F = Id_A$.

 $\mathsf{Mod}^*(L) = \mathsf{class} \text{ of reduced models of } L.$

• A matrix $\mathbf{M} = \langle \mathbf{A}, F \rangle$ is reduced if $\boldsymbol{\Omega}^{\mathbf{A}} F = Id_A$.

 $Mod^*(L) = class of reduced models of L.$

 $\mathsf{Alg}^*(\mathbf{L}) = \{ \mathbf{A} : \text{there is a reduced model } \langle \mathbf{A}, F \rangle \text{ of } \mathbf{L} \}.$

Lemma

If **A** is an algebra of type of \mathcal{IBSL} and $F \in \mathcal{F}i_{PWK}$ **A**, then for every $a, b \in A$, $\langle a, b \rangle \in \Omega^{\mathbf{A}} F$ if and only if for every $c \in A$,

 $[a \lor c \in F \iff b \lor c \in F]$ and $[\neg a \lor c \in F \iff \neg b \lor c \in F]$

Lemma

If **A** is an algebra of type of \mathcal{IBSL} and $F \in \mathcal{F}i_{PWK}$ **A**, then for every $a, b \in A$, $\langle a, b \rangle \in \Omega^{\mathbf{A}} F$ if and only if for every $c \in A$,

$$\left(a \lor c \in F \iff b \lor c \in F\right)$$
 and $\left(\neg a \lor c \in F \iff \neg b \lor c \in F\right)$

Theorem

 $\mathsf{Alg}^*(\mathrm{PWK}) \subseteq \mathcal{IBSL}.$

$\ensuremath{\mathrm{PWK}}$ in the Leibniz Hierarchy

Theorem

Moreover, $\langle \mathbf{B}, F \rangle \in \mathsf{Mod}^*(\mathsf{PWK})$ if and only if $\mathbf{B} \in \mathcal{IBSL}$, for every a < b positive elements, there is $c \in B$ such that

$$1 \leqslant \neg b \lor c \quad \textit{but} \quad 1 \nleq \neg a \lor c$$

and $F = P(\mathbf{B})$ the set of positive elements of \mathbf{B} , which is given by:

$$P(\mathbf{B}) = \{c \in B : 1 \lor c = c\}$$

PWK in the Leibniz Hierarchy

Theorem

Moreover, $\langle \mathbf{B}, F \rangle \in \mathsf{Mod}^*(\mathsf{PWK})$ if and only if $\mathbf{B} \in \mathcal{IBSL}$, for every a < b positive elements, there is $c \in B$ such that

$$1 \leqslant \neg b \lor c \quad \textit{but} \quad 1 \nleq \neg a \lor c$$

and $F = P(\mathbf{B})$ the set of positive elements of \mathbf{B} , which is given by:

$$P(\mathbf{B}) = \{c \in B: 1 \lor c = c\}$$

Corollary

PWK is truth-equational but it is not assertional.

Leibniz Hierarchy

- A g-matrix is a pair $\langle \mathbf{A}, \mathcal{C} \rangle$ s.t. \mathcal{C} is a closure system on A.
- A g-matrix $\langle \mathbf{A}, \mathcal{C} \rangle$ is a g-model of a logic L if $\mathcal{C} \subseteq \overline{\mathcal{F}i_{L}\mathbf{A}}$.
- The Tarski congruence of a g-matrix $\langle \mathbf{A}, \mathcal{C} \rangle$ is

$$\widetilde{\boldsymbol{\varOmega}}^{\mathbf{A}} \mathcal{C} = \bigcap_{T \in \mathcal{C}} \boldsymbol{\varOmega}^{\mathbf{A}} T$$

• $\langle \mathbf{A}, \mathcal{C} \rangle$ is reduced if $\widetilde{\mathbf{\Omega}}^{\mathbf{A}} \mathcal{C} = Id_{\mathbf{A}}$.

 $\mathsf{Alg}(L) = \{ \mathbf{A} : \langle \mathbf{A}, \mathcal{F}i_L \, \mathbf{A} \rangle \text{ is a reduced g-model of } L \}.$

In general,

$$\mathsf{Alg}^*(L) \subseteq \mathsf{Alg}(L) \subseteq \mathbb{V}(L).$$

 $\mathsf{Alg}^*(\mathrm{PWK}) \varsubsetneq \mathsf{Alg}(\mathrm{PWK}) \subsetneq \mathbb{V}(\mathrm{PWK}) = \mathcal{IBSL}.$

 $\mathsf{Alg}^*(\mathrm{PWK}) \varsubsetneq \mathsf{Alg}(\mathrm{PWK}) \subsetneq \mathbb{V}(\mathrm{PWK}) = \mathcal{IBSL}.$

Theorem

 $\mathsf{Alg}(\mathrm{PWK})$ is the quasivariety of involutive bisemilattices satisfying the quasi-equation

$$\neg x \approx x \& \neg y \approx y \Rightarrow x \approx y$$

 $\mathsf{Alg}^*(\mathrm{PWK}) \varsubsetneq \mathsf{Alg}(\mathrm{PWK}) \subsetneq \mathbb{V}(\mathrm{PWK}) = \mathcal{IBSL}.$

Theorem

 $\mathsf{Alg}(\mathrm{PWK})$ is the quasivariety of involutive bisemilattices satisfying the quasi-equation

$$\neg x \approx x \& \neg y \approx y \Rightarrow x \approx y$$

Theorem $\mathsf{Alg}(\mathrm{PWK}) = \mathbb{Q}(\mathbf{WK}).$