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Paraconsistent Week Kleene Logic

• The language: ∧,∨,¬, 0, 1

• The matrix: PWK = 〈WK, {1, 1/2}〉

1/2

1

0

• WK is given by the Weak Kleene tables:

∧ 0 1/2 1

0 0 1/2 0

1/2 1/2 1/2 1/2

1 0 1/2 1

∨ 0 1/2 1

0 0 1/2 1

1/2 1/2 1/2 1/2

1 1 1/2 1

¬
1 0

1/2 1/2

0 1

Γ �PWK α ⇐⇒ for every v, v[Γ] ⊆ {1, 1/2} ⇒ v(α) ∈ {1, 1/2}
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Theorem (Ciuni, Carrrara)
For all Γ and α, the following are equivalent:

• Γ �PWK α

• there is a subset ∆ ⊆ Γ s.t. var(∆) ⊆ var(α) and ∆ `CL α.

• Hilbert system for PWK:
• any set of axioms for Classical Logic and
• the rule:

α α→ β
[RMP] provided that var(α) ⊆ var(β)

β
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Involutive Bisemilattices

Definition

An involutive bisemilattice is an algebra B = 〈B,∧,∨,¬, 0, 1〉

I1. x ∨ x ≈ x;
I2. x ∨ y ≈ y ∨ x;
I3. x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z;
I4. ¬¬x ≈ x;
I5. x ∧ y ≈ ¬(¬x ∨ ¬y);
I6. x ∧ (¬x ∨ y) ≈ x ∧ y;
I7. 0 ∨ x ≈ x;
I8. 1 ≈ ¬0.

Thus, the class of involutive bisemilattices is an equational class,
which we denote by IBSL.



Involutive Bisemilatices

Theorem

The only nontrivial subdirectly irreducible bisemilattices are WK,
S2, and B2, up to isomorphism.

Corollary

IBSL is the variety generated by WK.

Corollary

The only nontrivial proper subvarieties of IBSL are the disjoint
varieties BA of Boolean algebras and SL of semilattices with zero.
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• Positive elements: P (B) = {x ∈ B : 1 6 x}.
• Fibers: [¬c, c] for every c ∈ P (B). They are Boolean algebras.
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Płonka sums
A direct system of algebras: T = 〈(ϕij : i 6 j), I〉 such that:

• I = 〈I,6〉 is a join semilattice;
• ϕij : Ai → Aj is a homomorphism, for each i 6 j,

ϕii is the identity in Ai and ϕjk ◦ ϕij = ϕik;

• If i, j ∈ I are different, then Ai and Aj are disjoint.

Płonka sum over T is the algebra T = 〈
⋃

I Ai, {gT : g ∈ ν}〉,

• for every n-ary g ∈ ν, and a1, . . . , an ∈ T , where n > 1 and
ar ∈ Air , we set j = i1 ∨ · · · ∨ in and define

gT(a1, . . . , an) = gAj (ϕi1j(a1), . . . , ϕinj(an));

• if g ∈ ν is a constant, we assume that I has a least element ⊥,
and gT = gA⊥ .
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Theorem

• The Płonka sum of a direct system of Boolean algebras is an
involutive bisemilattice.

• If B is an involutive bisemilattice, then B is isomorphic to the
Płonka sum over the direct system of the fibers:

ϕcd : [¬c, c]→ [¬d, d]; ϕcd(a) = ¬d ∨ a.

Corollary

IBSL is the variety satisfying exactly the regular equations
satisfied by Boolean algebras.
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Theorem
IBSL is not the equivalent algebraic semantics of any logic L.

• Suppose IBSL is the equivalent algebraic semantics of an
algebraizable logic L.

• Consider the algebra C ∈ IBSL and its congruence lattice:

C =

3

2

1

0

∇

θ3 : |0, 1|2, 3| θ4 : |0, 1, 2|3|

θ1 : |0|1|2, 3| θ2 : |0, 1|2|3|

∆

• There is a lattice isomorphism ΩC : F iLC→ CoC.
• {2} is the only subset of C such that ΩC{2} = θ2, and hence
it is an L-filter.

• It follows that ∅ is also an L-filter, L is purely inferential, and
this leads to a contradiction.
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Theorem

PWK is not protoalgebraic.

• Suppose PWK is protoalgebraic.
• Therefore, there is a set of formulas p⇒ q satisfying:

1 �PWK p⇒ p,
2 p, p⇒ q �PWK q.

• Consider the valuation v on WK: v(p) = 1/2, v(q) = 0.
• Thus, v[{p} ∪ p⇒ q] = {1/2}, while v(q) = 0, which is a
contradiction.
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Theorem
PWK is not selfextensional, and therefore it is non-Fregean.

• Notice that ¬p ∨ p ��PWK ¬q ∨ q.
• Consider the valuation v on WK: v(p) = 1/2, v(q) = 0.

• v(¬(¬p ∨ p)) = 1/2.
• v(¬(¬q ∨ q)) = 0.

• Therefore ¬(¬p ∨ p) ��PWK ¬(¬q ∨ q), does not hold. That
is, ��PWK is not a congruence.



Theorem
PWK is not selfextensional, and therefore it is non-Fregean.

• Notice that ¬p ∨ p ��PWK ¬q ∨ q.

• Consider the valuation v on WK: v(p) = 1/2, v(q) = 0.

• v(¬(¬p ∨ p)) = 1/2.
• v(¬(¬q ∨ q)) = 0.

• Therefore ¬(¬p ∨ p) ��PWK ¬(¬q ∨ q), does not hold. That
is, ��PWK is not a congruence.



Theorem
PWK is not selfextensional, and therefore it is non-Fregean.

• Notice that ¬p ∨ p ��PWK ¬q ∨ q.
• Consider the valuation v on WK: v(p) = 1/2, v(q) = 0.

• v(¬(¬p ∨ p)) = 1/2.
• v(¬(¬q ∨ q)) = 0.

• Therefore ¬(¬p ∨ p) ��PWK ¬(¬q ∨ q), does not hold. That
is, ��PWK is not a congruence.



Theorem
PWK is not selfextensional, and therefore it is non-Fregean.

• Notice that ¬p ∨ p ��PWK ¬q ∨ q.
• Consider the valuation v on WK: v(p) = 1/2, v(q) = 0.

• v(¬(¬p ∨ p)) = 1/2.

• v(¬(¬q ∨ q)) = 0.
• Therefore ¬(¬p ∨ p) ��PWK ¬(¬q ∨ q), does not hold. That
is, ��PWK is not a congruence.



Theorem
PWK is not selfextensional, and therefore it is non-Fregean.

• Notice that ¬p ∨ p ��PWK ¬q ∨ q.
• Consider the valuation v on WK: v(p) = 1/2, v(q) = 0.

• v(¬(¬p ∨ p)) = 1/2.
• v(¬(¬q ∨ q)) = 0.

• Therefore ¬(¬p ∨ p) ��PWK ¬(¬q ∨ q), does not hold. That
is, ��PWK is not a congruence.



Theorem
PWK is not selfextensional, and therefore it is non-Fregean.

• Notice that ¬p ∨ p ��PWK ¬q ∨ q.
• Consider the valuation v on WK: v(p) = 1/2, v(q) = 0.

• v(¬(¬p ∨ p)) = 1/2.
• v(¬(¬q ∨ q)) = 0.

• Therefore ¬(¬p ∨ p) ��PWK ¬(¬q ∨ q), does not hold. That
is, ��PWK is not a congruence.



AAL

• A matrix M = 〈A, F 〉 is reduced if ΩA F = IdA.

Mod*(L) = class of reduced models of L.

Alg*(L) = {A : there is a reduced model 〈A, F 〉 of L}.
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Lemma

If A is an algebra of type of IBSL and F ∈ F iPWKA, then
for every a, b ∈ A, 〈a, b〉 ∈ ΩA F if and only if for every c ∈ A,

a ∨ c ∈ F ⇐⇒ b ∨ c ∈ F and ¬a ∨ c ∈ F ⇐⇒ ¬b ∨ c ∈ F .

Theorem

Alg*(PWK) ⊆ IBSL.
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PWK in the Leibniz Hierarchy

Theorem
Moreover, 〈B, F 〉 ∈ Mod*(PWK) if and only if B ∈ IBSL, for
every a < b positive elements, there is c ∈ B such that

1 6 ¬b ∨ c but 1 66 ¬a ∨ c

and F = P (B) the set of positive elements of B, which is given by:

P (B) = {c ∈ B : 1 ∨ c = c}

Corollary
PWK is truth-equational but it is not assertional.
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AAL

• A g-matrix is a pair 〈A, C〉 s.t. C is a closure system on A.

• A g-matrix 〈A, C〉 is a g-model of a logic L if C ⊆ F iLA .
• The Tarski congruence of a g-matrix 〈A, C〉 is

∼
ΩAC =

⋂
T∈C

ΩA T
.

• 〈A, C〉 is reduced if
∼
ΩAC = IdA.

Alg(L) = {A : 〈A,F iLA〉 is a reduced g-model of L}.

In general,
Alg*(L) ⊆ Alg(L) ⊆ V(L).
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Alg*(PWK)  Alg(PWK)  V(PWK) = IBSL.

Theorem
Alg(PWK) is the quasivariety of involutive bisemilattices satisfying
the quasi-equation

¬x ≈ x & ¬y ≈ y ⇒ x ≈ y .

Theorem
Alg(PWK) = Q(WK).
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