On Paraconsistent Weak Kleene Logic and Involutive Bisemilattices

José Gil-Férez
Vanderbilt University
(Joint work with S. Bonzio, L. Peruzzi, and F. Paoli)

Denver, Colorado, 2016

Paraconsistent Week Kleene Logic

- The language: $\wedge, \vee, \neg, 0,1$

Paraconsistent Week Kleene Logic

- The language: $\wedge, \vee, \neg, 0,1$
- The matrix: $\mathbf{P W K}=\langle\mathbf{W K},\{1,1 / 2\}\rangle$

Paraconsistent Week Kleene Logic

- The language: $\wedge, \vee, \neg, 0,1$
- The matrix: $\mathbf{P W K}=\langle\mathbf{W K},\{1,1 / 2\}\rangle$
- WK is given by the Weak Kleene tables:

\wedge	0	$1 / 2$	1
0	0	$1 / 2$	0
$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$
1	0	$1 / 2$	1

\vee	0	$1 / 2$	1
0	0	$1 / 2$	1
$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$
1	1	$1 / 2$	1

\neg	
1	0
$1 / 2$	$1 / 2$
0	1

Paraconsistent Week Kleene Logic

- The language: $\wedge, \vee, \neg, 0,1$
- The matrix: $\mathbf{P W K}=\langle\mathbf{W K},\{1,1 / 2\}\rangle$
- WK is given by the Weak Kleene tables:

\wedge	0	$1 / 2$	1
0	0	$1 / 2$	0
$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$
1	0	$1 / 2$	1

\vee	0	$1 / 2$	1
0	0	$1 / 2$	1
$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$
1	1	$1 / 2$	1

\neg	
1	0
$1 / 2$	$1 / 2$
0	1

Paraconsistent Week Kleene Logic

- The language: $\wedge, \vee, \neg, 0,1$
- The matrix: $\mathbf{P W K}=\langle\mathbf{W K},\{1,1 / 2\}\rangle$
- WK is given by the Weak Kleene tables:

\wedge	0	$1 / 2$	1
0	0	$1 / 2$	0
$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$
1	0	$1 / 2$	1

\vee	0	$1 / 2$	1
0	0	$1 / 2$	1
$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$
1	1	$1 / 2$	1

\neg	
1	0
$1 / 2$	$1 / 2$
0	1

$\Gamma \vDash_{\text {PWK }} \alpha \Longleftrightarrow$ for every $v, \quad v[\Gamma] \subseteq\{1,1 / 2\} \Rightarrow v(\alpha) \in\{1,1 / 2\}$

Theorem (Ciuni, Carrrara)
For all Γ and α, the following are equivalent:

- $\Gamma \vDash_{\text {PWK }} \alpha$
- there is a subset $\Delta \subseteq \Gamma$ s.t. $\operatorname{var}(\Delta) \subseteq \operatorname{var}(\alpha)$ and $\Delta \vdash_{\mathrm{CL}} \alpha$.

Theorem (Ciuni, Carrrara)
For all Γ and α, the following are equivalent:

- $\Gamma \vDash_{\text {PWK }} \alpha$
- there is a subset $\Delta \subseteq \Gamma$ s.t. $\operatorname{var}(\Delta) \subseteq \operatorname{var}(\alpha)$ and $\Delta \vdash_{\mathrm{CL}} \alpha$.
- Hilbert system for PWK:
- any set of axioms for Classical Logic and
- the rule:

$$
[\mathrm{RMP}] \frac{\alpha \rightarrow \beta}{\beta} \quad \text { provided that } \operatorname{var}(\alpha) \subseteq \operatorname{var}(\beta)
$$

Involutive Bisemilattices

Definition
An involutive bisemilattice is an algebra $\mathbf{B}=\langle B, \wedge, \vee, \neg, 0,1\rangle$
11. $x \vee x \approx x$;
12. $x \vee y \approx y \vee x$;
13. $x \vee(y \vee z) \approx(x \vee y) \vee z$;
14. $\neg \neg x \approx x$;
15. $x \wedge y \approx \neg(\neg x \vee \neg y)$;
16. $x \wedge(\neg x \vee y) \approx x \wedge y$;
17. $0 \vee x \approx x$;
18. $1 \approx \neg 0$.

Thus, the class of involutive bisemilattices is an equational class, which we denote by $\mathcal{I B S L}$.

Involutive Bisemilatices

Theorem
The only nontrivial subdirectly irreducible bisemilattices are WK, \mathbf{S}_{2}, and \mathbf{B}_{2}, up to isomorphism.

Involutive Bisemilatices

Theorem
The only nontrivial subdirectly irreducible bisemilattices are WK, \mathbf{S}_{2}, and \mathbf{B}_{2}, up to isomorphism.

Corollary
$\mathcal{I B S L}$ is the variety generated by WK.

Involutive Bisemilatices

Theorem
The only nontrivial subdirectly irreducible bisemilattices are WK, \mathbf{S}_{2}, and \mathbf{B}_{2}, up to isomorphism.

Corollary
$\mathcal{I B S L}$ is the variety generated by WK.

Corollary
The only nontrivial proper subvarieties of $\mathcal{I B S L}$ are the disjoint varieties $\mathcal{B A}$ of Boolean algebras and $\mathcal{S L}$ of semilattices with zero.

Example

Example

- Positive elements: $P(\mathbf{B})=\{x \in B: 1 \leqslant x\}$.

Example

- Positive elements: $P(\mathbf{B})=\{x \in B: 1 \leqslant x\}$.
- Fibers: $[\neg c, c]$ for every $c \in P(\mathbf{B})$. They are Boolean algebras.

Płonka sums

A direct system of algebras: $\mathrm{T}=\left\langle\left(\varphi_{i j}: i \leqslant j\right), \mathbf{I}\right\rangle$ such that:

- $\mathbf{I}=\langle I, \leqslant\rangle$ is a join semilattice;
- $\varphi_{i j}: \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}$ is a homomorphism, for each $i \leqslant j$, $\varphi_{i i}$ is the identity in \mathbf{A}_{i} and $\varphi_{j k} \circ \varphi_{i j}=\varphi_{i k} ;$
- If $i, j \in I$ are different, then \mathbf{A}_{i} and \mathbf{A}_{j} are disjoint.

Płonka sums

A direct system of algebras: $\mathrm{T}=\left\langle\left(\varphi_{i j}: i \leqslant j\right), \mathbf{I}\right\rangle$ such that:

- $\mathbf{I}=\langle I, \leqslant\rangle$ is a join semilattice;
- $\varphi_{i j}: \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}$ is a homomorphism, for each $i \leqslant j$, $\varphi_{i i}$ is the identity in \mathbf{A}_{i} and $\varphi_{j k} \circ \varphi_{i j}=\varphi_{i k} ;$
- If $i, j \in I$ are different, then \mathbf{A}_{i} and \mathbf{A}_{j} are disjoint.

Płonka sum over T is the algebra $\mathbf{T}=\left\langle\bigcup_{I} A_{i},\left\{g^{\mathbf{T}}: g \in \nu\right\}\right\rangle$,

- for every n-ary $g \in \nu$, and $a_{1}, \ldots, a_{n} \in T$, where $n \geqslant 1$ and $a_{r} \in A_{i_{r}}$, we set $j=i_{1} \vee \cdots \vee i_{n}$ and define

$$
g^{\mathbf{T}}\left(a_{1}, \ldots, a_{n}\right)=g^{\mathbf{A}_{j}}\left(\varphi_{i_{1} j}\left(a_{1}\right), \ldots, \varphi_{i_{n j}}\left(a_{n}\right)\right)
$$

Płonka sums

A direct system of algebras: $\mathrm{T}=\left\langle\left(\varphi_{i j}: i \leqslant j\right), \mathbf{I}\right\rangle$ such that:

- $\mathbf{I}=\langle I, \leqslant\rangle$ is a join semilattice;
- $\varphi_{i j}: \mathbf{A}_{i} \rightarrow \mathbf{A}_{j}$ is a homomorphism, for each $i \leqslant j$, $\varphi_{i i}$ is the identity in \mathbf{A}_{i} and $\varphi_{j k} \circ \varphi_{i j}=\varphi_{i k} ;$
- If $i, j \in I$ are different, then \mathbf{A}_{i} and \mathbf{A}_{j} are disjoint.

Płonka sum over T is the algebra $\mathbf{T}=\left\langle\bigcup_{I} A_{i},\left\{g^{\mathbf{T}}: g \in \nu\right\}\right\rangle$,

- for every n-ary $g \in \nu$, and $a_{1}, \ldots, a_{n} \in T$, where $n \geqslant 1$ and $a_{r} \in A_{i_{r}}$, we set $j=i_{1} \vee \cdots \vee i_{n}$ and define

$$
g^{\mathbf{T}}\left(a_{1}, \ldots, a_{n}\right)=g^{\mathbf{A}_{j}}\left(\varphi_{i_{1} j}\left(a_{1}\right), \ldots, \varphi_{i_{n} j}\left(a_{n}\right)\right)
$$

- if $g \in \nu$ is a constant, we assume that \mathbf{I} has a least element \perp, and $g^{\mathbf{T}}=g^{\mathbf{A}_{\perp}}$.

Theorem

- The Płonka sum of a direct system of Boolean algebras is an involutive bisemilattice.

Theorem

- The Płonka sum of a direct system of Boolean algebras is an involutive bisemilattice.
- If \mathbf{B} is an involutive bisemilattice, then \mathbf{B} is isomorphic to the Płonka sum over the direct system of the fibers:

$$
\varphi_{c d}:[\neg c, c] \rightarrow[\neg d, d] ; \quad \varphi_{c d}(a)=\neg d \vee a
$$

Theorem

- The Płonka sum of a direct system of Boolean algebras is an involutive bisemilattice.
- If \mathbf{B} is an involutive bisemilattice, then \mathbf{B} is isomorphic to the Płonka sum over the direct system of the fibers:

$$
\varphi_{c d}:[\neg c, c] \rightarrow[\neg d, d] ; \quad \varphi_{c d}(a)=\neg d \vee a
$$

Corollary
$\mathcal{I B S L}$ is the variety satisfying exactly the regular equations satisfied by Boolean algebras.

Leibniz Hierarchy

Theorem

$\mathcal{I B S L}$ is not the equivalent algebraic semantics of any logic L .

Theorem
IBSL is not the equivalent algebraic semantics of any logic L .

- Suppose IBSL is the equivalent algebraic semantics of an algebraizable logic L .

Theorem

$\mathcal{I B S L}$ is not the equivalent algebraic semantics of any logic L .

- Suppose IBSL is the equivalent algebraic semantics of an algebraizable logic L.
- Consider the algebra $\mathbf{C} \in \mathcal{I B S L}$ and its congruence lattice:

Theorem

$\mathcal{I B S L}$ is not the equivalent algebraic semantics of any logic L .

- Suppose $\mathcal{I B S L}$ is the equivalent algebraic semantics of an algebraizable logic L.
- Consider the algebra $\mathbf{C} \in \mathcal{I B S L}$ and its congruence lattice:

- There is a lattice isomorphism $\Omega^{\mathbf{C}}: \mathcal{F}_{\mathrm{i}_{\mathrm{L}}} \mathbf{C} \rightarrow \mathrm{Co} \mathbf{C}$.

Theorem

$\mathcal{I B S L}$ is not the equivalent algebraic semantics of any logic L .

- Suppose IBSL is the equivalent algebraic semantics of an algebraizable logic L.
- Consider the algebra $\mathbf{C} \in \mathcal{I B S L}$ and its congruence lattice:

- There is a lattice isomorphism $\Omega^{\mathbf{C}}: \mathcal{F}_{\mathrm{i}_{\mathrm{L}}} \mathbf{C} \rightarrow \mathrm{Co} \mathbf{C}$.
- $\{2\}$ is the only subset of C such that $\Omega^{\mathbf{C}}\{2\}=\theta_{2}$, and hence it is an L-filter.

Theorem

$\mathcal{I B S} \mathcal{L}$ is not the equivalent algebraic semantics of any logic L .

- Suppose $\mathcal{I B S L}$ is the equivalent algebraic semantics of an algebraizable logic L.
- Consider the algebra $\mathbf{C} \in \mathcal{I B S L}$ and its congruence lattice:

- There is a lattice isomorphism $\Omega^{\mathbf{C}}: \mathcal{F i}_{\mathrm{L}} \mathbf{C} \rightarrow \mathrm{Co} \mathbf{C}$.
- $\{2\}$ is the only subset of C such that $\Omega^{\mathbf{C}}\{2\}=\theta_{2}$, and hence it is an L-filter.
- It follows that \emptyset is also an L-filter, L is purely inferential, and this leads to a contradiction.

Theorem
PWK is not protoalgebraic.

Theorem
PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.

Theorem
PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.
- Therefore, there is a set of formulas $p \Rightarrow q$ satisfying:

Theorem

PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.
- Therefore, there is a set of formulas $p \Rightarrow q$ satisfying:
$1 \vDash_{\text {PWK }} p \Rightarrow p$,

Theorem

PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.
- Therefore, there is a set of formulas $p \Rightarrow q$ satisfying:

1) $\vDash_{\text {PWK }} p \Rightarrow p$,

2 $p, p \Rightarrow q \vDash_{\text {PWK }} q$.

Theorem

PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.
- Therefore, there is a set of formulas $p \Rightarrow q$ satisfying:

2 $p, p \Rightarrow q \vDash_{\text {PWK }} q$.
- Consider the valuation v on WK: $v(p)=1 / 2, v(q)=0$.

Theorem
PWK is not protoalgebraic.

- Suppose PWK is protoalgebraic.
- Therefore, there is a set of formulas $p \Rightarrow q$ satisfying:

1) $\vDash_{\text {PWK }} p \Rightarrow p$,
(2) $p, p \Rightarrow q \vDash_{\text {PWK }} q$.

- Consider the valuation v on WK: $v(p)=1 / 2, v(q)=0$.
- Thus, $v[\{p\} \cup p \Rightarrow q]=\{1 / 2\}$, while $v(q)=0$, which is a contradiction.

Theorem
PWK is not selfextensional, and therefore it is non-Fregean.

Theorem
PWK is not selfextensional, and therefore it is non-Fregean.

- Notice that $\neg p \vee p=\#_{\mathrm{PWK}} \neg q \vee q$.

Theorem
PWK is not selfextensional, and therefore it is non-Fregean.

- Notice that $\neg p \vee p \not \equiv_{\mathrm{PWK}} \neg q \vee q$.
- Consider the valuation v on WK: $v(p)=1 / 2, v(q)=0$.

Theorem
PWK is not selfextensional, and therefore it is non-Fregean.

- Notice that $\neg p \vee p \not \equiv_{\mathrm{PWK}} \neg q \vee q$.
- Consider the valuation v on WK: $v(p)=1 / 2, v(q)=0$.
- $v(\neg(\neg p \vee p))=1 / 2$.

Theorem

PWK is not selfextensional, and therefore it is non-Fregean.

- Notice that $\neg p \vee p=\#_{\mathrm{PWK}} \neg q \vee q$.
- Consider the valuation v on WK: $v(p)=1 / 2, v(q)=0$.
- $v(\neg(\neg p \vee p))=1 / 2$.
- $v(\neg(\neg q \vee q))=0$.

Theorem
PWK is not selfextensional，and therefore it is non－Fregean．
－Notice that $\neg p \vee p \not \equiv_{\mathrm{PWK}} \neg q \vee q$ ．
－Consider the valuation v on WK：$v(p)=1 / 2, v(q)=0$ ．
－$v(\neg(\neg p \vee p))=1 / 2$ ．
－$v(\neg(\neg q \vee q))=0$ ．
－Therefore $\neg(\neg p \vee p) \not ⿰ ⿰ 三 丨 ⿰ 丨 三_{\mathrm{PWK}} \neg(\neg q \vee q)$ ，does not hold．That is，$\#_{\text {PWK }}$ is not a congruence．

AAL

- A matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$ is reduced if $\Omega^{\mathbf{A}} F=I d_{A}$.
- A matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$ is reduced if $\Omega^{\mathbf{A}} F=I d_{A}$.
$\operatorname{Mod}{ }^{*}(\mathrm{~L})=$ class of reduced models of L .

AAL

- A matrix $\mathbf{M}=\langle\mathbf{A}, F\rangle$ is reduced if $\Omega^{\mathbf{A}} F=I d_{A}$.
$\operatorname{Mod}(\mathrm{L})=$ class of reduced models of L .
$\operatorname{Alg}^{*}(\mathrm{~L})=\{\mathbf{A}$: there is a reduced model $\langle\mathbf{A}, F\rangle$ of L$\}$.

Lemma

If \mathbf{A} is an algebra of type of $\mathcal{I B S L}$ and $F \in \mathcal{F} \mathrm{i}_{\mathrm{PWK}} \mathbf{A}$, then for every $a, b \in A,\langle a, b\rangle \in \Omega^{\mathbf{A}} F$ if and only if for every $c \in A$,

$$
a \vee c \in F \Longleftrightarrow b \vee c \in F \quad \text { and } \quad \neg a \vee c \in F \Longleftrightarrow \neg b \vee c \in F \text {. }
$$

Lemma

If \mathbf{A} is an algebra of type of $\mathcal{I B S L}$ and $F \in \mathcal{F} \mathrm{i}_{\mathrm{PWK}} \mathbf{A}$, then for every $a, b \in A,\langle a, b\rangle \in \Omega^{\mathbf{A}} F$ if and only if for every $c \in A$,

$$
a \vee c \in F \Longleftrightarrow b \vee c \in F \quad \text { and } \quad \neg a \vee c \in F \Longleftrightarrow \neg b \vee c \in F
$$

Theorem
Alg* $(\mathrm{PWK}) \subseteq \mathcal{I B S L}$.

PWK in the Leibniz Hierarchy

Theorem
Moreover, $\langle\mathbf{B}, F\rangle \in \operatorname{Mod}(\mathrm{PWK})$ if and only if $\mathbf{B} \in \mathcal{I B S L}$, for every $a<b$ positive elements, there is $c \in B$ such that

$$
1 \leqslant \neg b \vee c \text { but } 1 \nless \neg a \vee c
$$

and $F=P(\mathbf{B})$ the set of positive elements of \mathbf{B}, which is given by:

$$
P(\mathbf{B})=\{c \in B: 1 \vee c=c\}
$$

PWK in the Leibniz Hierarchy

Theorem
Moreover, $\langle\mathbf{B}, F\rangle \in \operatorname{Mod}$ (PWK) if and only if $\mathbf{B} \in \mathcal{I B S L}$, for every $a<b$ positive elements, there is $c \in B$ such that

$$
1 \leqslant \neg b \vee c \text { but } 1 \nless \neg a \vee c
$$

and $F=P(\mathbf{B})$ the set of positive elements of \mathbf{B}, which is given by:

$$
P(\mathbf{B})=\{c \in B: 1 \vee c=c\}
$$

Corollary
PWK is truth-equational but it is not assertional.

Leibniz Hierarchy

AAL

- A g-matrix is a pair $\langle\mathbf{A}, \mathcal{C}\rangle$ s.t. \mathcal{C} is a closure system on A.
- A g-matrix $\langle\mathbf{A}, \mathcal{C}\rangle$ is a g-model of a logic L if $\mathcal{C} \subseteq \mathcal{F}_{\mathrm{i}} \mathbf{A}$
- The Tarski congruence of a g-matrix $\langle\mathbf{A}, \mathcal{C}\rangle$ is
- $\langle\mathbf{A}, \mathcal{C}\rangle$ is reduced if $\widetilde{\Omega}^{\mathbf{A}} \mathcal{C}=I d_{\mathbf{A}}$.

$$
\operatorname{Alg}(\mathrm{L})=\left\{\mathbf{A}:\left\langle\mathbf{A}, \mathcal{F}_{\mathrm{i}} \mathbf{A}\right\rangle \text { is a reduced } \mathrm{g} \text {-model of } \mathrm{L}\right\} .
$$

In general,

$$
\operatorname{Alg}^{*}(\mathrm{~L}) \subseteq \operatorname{Alg}(\mathrm{L}) \subseteq \mathbb{V}(\mathrm{L})
$$

Theorem
$\mathrm{Alg} *(\mathrm{PWK}) \varsubsetneqq \operatorname{Alg}(\mathrm{PWK}) \nsubseteq \mathbb{V}(\mathrm{PWK})=\mathcal{I B S L}$.

Theorem
$\mathrm{Alg} *(\mathrm{PWK}) \varsubsetneqq \operatorname{Alg}(\mathrm{PWK}) \nsubseteq \mathbb{V}(\mathrm{PWK})=\mathcal{I B S L}$.

Theorem
$\mathrm{Alg}(\mathrm{PWK})$ is the quasivariety of involutive bisemilattices satisfying the quasi-equation

$$
\neg x \approx x \& \neg y \approx y \Rightarrow x \approx y
$$

Theorem
$\mathrm{Alg} *(\mathrm{PWK}) \varsubsetneqq \operatorname{Alg}(\mathrm{PWK}) \nsubseteq \mathbb{V}(\mathrm{PWK})=\mathcal{I B S L}$.

Theorem
$\mathrm{Alg}(\mathrm{PWK})$ is the quasivariety of involutive bisemilattices satisfying the quasi-equation

$$
\neg x \approx x \& \neg y \approx y \Rightarrow x \approx y
$$

Theorem
$\operatorname{Alg}(\mathrm{PWK})=\mathbb{Q}(\mathbf{W K})$.

