
Algebras in type-2 fuzzy sets

John Harding, Carol and Elbert Walker

New Mexico State University
www.math.nmsu.edu/∼JohnHarding.html

jharding@nmsu.edu

Denver, October 2016



Type-1 fuzzy sets

X = {50,60,70,80,90}

A type-1 fuzzy subset of X is a map Cold ∶ X → [0,1]

The expert’s belief that 60 is cold is 0.8.
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Interval valued fuzzy sets

This is a map Cold ∶ X → {(a,b) ∈ [0,1]2 ∶ a ≤ b}.

The expert’s belief that 60 is cold is between [0.6,0.9].
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Type-2 fuzzy sets

A type-2 fuzzy subset is Cold ∶ X → {f ∣ f ∶ [0,1]→ [0,1]}
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Truth value algebras

The truth value algebras for fuzzy sets, interval valued fuzzy sets,
and type-2 fuzzy sets are

I = [0,1]

I[2] = {(a,b) ∶ a ≤ b ∈ I}

M = {f ∣ f ∶ I→ I}

I and I[2] sit in M as characteristic functions of points and intervals
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Operations

I and I[2] are De Morgan algebras. One also considers t-norms and
conorms on these.

Definition (Zadeh) Define the following operations on M

1. (f ⊓ g)(x) =⋁{(f (y) ∧ g(z)) ∶ y ∧ z = x}

2. (f ⊓ g)(x) =⋁{(f (y) ∧ g(z)) ∶ y ∨ z = x}

3. f ∗(x) = f (1 − x)

4. 0(x) = 1 if x = 0 and 0 otherwise

5. 1(x) = 1 if x = 1 and 0 otherwise

These are convolutions of the corresponding operations on I. We
can also convolute t-norms △ and conorms on I.
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Equations

Theorem M satisfies the equations for De Morgan algebras except
that absorption and distributivity are weakened to the following.

1. x ⊓ (x ⊔ y) = x ⊔ (x ⊓ y)

2. (x ⊓ y) ⊔ (x ⊓ z) ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z) ⊓ (y ⊔ z)

M is not a lattice.

The unbalanced distributive laws do not hold.

M is a type of thing known as a De Morgan Birkhoff system.
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Equations

Theorem The variety V (M) is generated by a finite algebra. The
variety generated by the reduct (M,⊓,⊔) is generated by

qa

qb

qc

qd

q aq c
q bq d

⊓ ⊔

Proof V (M) is generated by the complex algebra of any bounded
chain with involution that has at least 5 elements.

So these varieties have solvable free word problems. We do not
know if they are finitely based.
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A related algebra

Definition A function f ∶ I→ I is convex normal if it goes up to 1,
then down.

1

Convex normal functions are a not too restrictive setting for our
desired use as belief functions.
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A related algebra

Theorem The convex normal functions are a subalgebra of M. For
the quotient L of this subalgebra modulo agreement c.a.e.

1. L is a complete, completely distributive DeMorgan algebra

2. L is a compact Hausdorff topological algebra

3. ∫ 1
0 ∣f (x) − g(x)∣dx is a metric on it

Further, the convolution △ of any continuous t-norm on I gives a
commutative quantale structure (L,△,⋁).
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A purpose

Aim: extend the theory of fuzzy controllers to the type-2 setting.

An example

We have a room with a device in it to heat and cool the room and
a sensor that measures approximate temperature. Our controller is
to adjust the setting of the device.

X = {50,60,70,80,90} possible temperatures

Y = {−2,−1,0,+1,+2} settings of the device

A setting of -2 puts lots of cold air in the room, +2 lots of hot air.
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Type-1 fuzzy controllers

Make linguistic variables Cold, Nice, and Hot for temperature;
Air and Furnace for settings. Experts give fuzzy sets for these.

1
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Type-1 fuzzy controllers

We represent the fuzzy sets for temperature as a matrix

1

50 60 70 80 90

Cold

1

50 60 70 80 90

Nice

1

50 60 70 80 90

Hot

P =
⎛
⎜
⎝

1 .5 0 0 0
0 .5 1 .5 0
0 0 0 .5 1

⎞
⎟
⎠

50 60 70 80 90

Cold 1 .5 0 0 0
Nice 0 .5 1 .5 0
Hot 0 0 0 .5 1
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Type-1 fuzzy controllers

And do the same for adjustments

1

-2 -1 0 1 2

Air

1

-2 -1 0 1 2

Furnace

Q = ( 1 .7 .3 0 0
0 0 .3 .7 1

)
-2 -1 0 1 2

Air 1 .7 .3 0 0
Furnace 0 0 .3 .7 1
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Type-1 fuzzy controllers

We are given a rule base that says what should be done in each
case.

R = ( 0 1 1
1 0 0

)
Cold Nice Hot

Air 0 1 1
Furnace 1 0 0
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Type-1 fuzzy controllers

Then if our sensor gives a reading of 80 for temperature we make a
column vector T̂ with a 1 in the spot for 80 and 0’s elsewhere and
compute QTRP(T̂ )

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0
.7 0
.3 .3
0 .7
0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

( 0 1 1
1 0 0

)
⎛
⎜
⎝

1 .5 0 0 0
0 .5 1 .5 0
0 0 0 .5 1

⎞
⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

.5

.3

.2
0
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

The result is a fuzzy subset of Y = {−2,−1,0,1,2} that we then
“defuzzify” to get an adjustment to the device.
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Type-1 fuzzy controllers

Matrix multiplication computes entries as sums of products.

This multiplication was done using ⋅ as product and ⋁ as sum. It
can be done using any continuous t-norm △ as product and ⋁ as
sum. This requires

x △⋁ yi = ⋁(x △ yi)

to obtain associativity of matrix multiplication.
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Symmetric monoidal categories

Ordinary fuzzy controllers live in the symmetric monoidal category
of matrices over (I,△,⋁).

Objects: sets
Morphisms: matrices composed by multiplication

Tesnor product is ordinary product of sets and Kronecker products
of matrices. It allows to have more dependent or independent
variables in the controller.
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Type-2 fuzzy controllers

Do exactly the same with the category of matrices over (L,△,⋁).
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Practicality

Implementations would require some restriction on the functions
f ∶ I→ I (taking n values, or with n linear peices)

Algorithms for ⊓, ⊔ of convex normal functions are linear in n.
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Thanks for listening.

Papers at www.math.nmsu.edu/∼jharding


