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Strong Maltsev Conditions

A strong Maltsev condition is a p.p. sentence in the language
of clones. That is, it is an assertion, satisfied by an algebra or
class of algebras, that there exists a finite set of term
operations satisfying a finite set of identities.

For example, “A has underlying group structure”, or “algebras
in V have underlying lattice structure”.

Or A has a Maltsev term: m
(

x y y
y y x

)
=

(
x
x

)
.

Or A has a near-unanimity term:

M


y x x · · · x
x y x x
x x y x
...

. . .
x x x y

 =


x
x
x
...
x

 .
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Cube terms generalize Maltsev terms

x1 m(x1, x2, x3)

x2 x3

Identities:
x x

y y

y x

y x

Keith Kearnes & Ágnes Szendrei Cube Term Blockers



Cube terms generalize Maltsev terms

x1 m(x1, x2, x3)

x2 x3

Identities:
x x

y y

y x

y x

Keith Kearnes & Ágnes Szendrei Cube Term Blockers



Cube terms generalize Maltsev terms

x1 m(x1, x2, x3)

x2 x3

Identities:

x x

y y

y x

y x

Keith Kearnes & Ágnes Szendrei Cube Term Blockers



Cube terms generalize Maltsev terms

x1 m(x1, x2, x3)

x2 x3

Identities:
x x

y y

y x

y x

Keith Kearnes & Ágnes Szendrei Cube Term Blockers



Cube terms generalize NU terms

c(x1, . . . , xn) is a cube term for A iff, for every i ∈ [1,n], c is
weakly independent of its i th variable for each i :

A |= c(. . . , y︸︷︷︸
i

, . . .) = x .

c is a d-dimensional cube term if its weak independence can
be expressed with d identities.

M


y x x · · · x
x y x x
x x y x
...

. . .
x x x y

 =


x
x
x
...
x

 . (NU)
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Cube terms are equivalent to parallelogram terms

P



x y y
x y y

...
x y y
y y x

...
y y x
y y x

z x · · · x x · · · x x
x z x x x x
...

. . .
...

x x z x x x
x x x z x x
...

. . .
...

x x x x z x
x x · · · x x · · · x z


=



x
x
...
x
x
...
x
x


.

Keith Kearnes & Ágnes Szendrei Cube Term Blockers



The 3-dimensional cube term

The general 3-dimensional cube term, c(x1, x2, x3, x4, x5, x6, x7),
is 7-ary.

c

y y y y x x x
y y x x y y x
y x y x y x y

 =

x
x
x

 .

But it can be shown that any variety/algebra that has one of
these 7-ary terms also has one that depends on only four of its
variables. It can be defined by:

e

y y x x
x y y x
x x x y

 =

x
x
x

 .
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Origination

If A is an algebra, then a subuniverse R ≤ An is a compatible
relation on A.

The compatible relations of an algebra
determine the clone of the algebra. An algebra is finitely
related, or of finite degree, if its clone is determined by finitely
many of its compatible relations.

In 2005, Berman, Idziak, Markovic, McKenzie, Valeriote and
Willard proved that a finite algebra A has “few compatible
relations” in the sense that the number of compatible n-ary
relations of A is 2O(nd ) iff it has a d-dimensional cube term.
Purpose: to establish, in some circumstances, the tractability
of the problem of deciding if a p.p. sentence is true in a finite
relational structure.

At the same time, Ági and I proved a structure theorem for
critical relations of a finite algebra having a parallelogram term.
Purpose: to prove theorems abut finiteness of degree, e.g. to
count clones or prove duality theorems.
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Cube terms control compatible relations

Some recent results.

(Idz-Mar-McK-Val-Wil) A finite relational structure Γ has a
tractable constraint satisfaction problem if the
polymorphism clone of Γ has a cube term.

(K-Sz) A finite algebra with a d-dimensional cube term has
a finitely related clone if it generates an RS variety. There
are finitely many such clones on a finite set for each d .

(Aich-Mayr-McK) A finite algebra with a cube term has a
finitely related clone. There are countably many such
clones on a finite set.

(Barto) If a finite algebra A generates a congruence
modular variety and has a finitely related clone, then A
must have a cube term.
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Cube terms control compatible relations

(Aich-Mayr) A subvariety of a finitely generated variety with
a cube term is also finitely generated.

(Moore) If A is a finite dualizable algebra, and SP(A) omits
types 1 and 5, then A must have a cube term.

(K-Sz) If finite A has a cube term (+ 2 other hypotheses),
then A is dualizable.

(K-Kiss-Sz) If A has a d-dimensional cube term and Ad is
finitely generated, then An is finitely generated for all n,
and the minimal number of generators for An is O(n).
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Crosses

The d-ary cross on F with bases U1, . . . ,Ud (∅ ( Ui ( F ) is

Cross(U1, . . . ,Ud ) = U1 × F × · · · × F
∪ F × U2 × · · · × F

...
∪ F × F × · · · × Ud

F

F

U1

U2

Cross(U1,U2)
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Cube terms avoid crosses

Theorem
1 If A has a compatible d-ary cross, then A has no

d-dimensional cube term.
2 If V is idempotent and has no d-dimensional cube term,

then F = FV(x , y) has a compatible d-ary cross.

Idea for the easy direction: Assume m(x , y , y) = x = m(y , y , x),
so m is a 2-dimensional cube term.

Claim: Cross(U1,U2) ⊆ F 2 is not compatible with m.

Choose
[

a
b

]
∈ F 2 − Cross(U1,U2). Write

[
a
b

]
= m

([
u1
b

]
,

[
u1
u2

] [
a
u2

])
.
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Arity of a cube term

Suppose that V is an idempotent variety defined in a finite
signature σ that has finitely many operations of arities
n1, . . . ,nk . Define ‖σ‖ = 1 +

∑
(ni − 1).

Theorem
If V has a cube term, then it has a d-dimensional cube term for
some d ≤ ‖σ‖. Moreover, this bound is sharp.

Corollary
If V is an idempotent variety defined with a single binary
operation, then V has a Maltsev term or no cube term at all.

The results are proved by employing Hall’s Marriage Theorem.
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Join primeness

Theorem
Let Γ and ∆ be sets of identities in disjoint languages, both of
which entail that all operations involved are idempotent. If every
model of Γ ∪∆ has a d-cube term, then either (i) every model
of Γ already has a d-cube term or (ii) every model of ∆ already
has a d-cube term.

Proving this involves showing that if an algebra in a variety has
a compatible d-ary cross, then some infinite algebra in the
variety has a compatible d-ary “generic” cross.
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