There is no finite-variable equational axiomatization of representable relation algebras over weakly representable relation algebras

Jeremy F. Alm, Illinois College Robin Hirsch, University College London Roger D. Maddux (presenter), Iowa State University Dedication: to Bjarni Jónsson (1920–2016)

AMS Fall Western Sectional Meeting #1122, University of Denver, Denver CO
Oct. 8–9, 2016 (Saturday – Sunday)
Special Session on Algebraic Logic, III
8:30 a.m.–8:50 a.m., Room 453, Sturm Hall

- **Theorem** Any equational basis that defines representable relation algebras (RRA) over weakly representable relation algebras must contain infinitely many variables.
- **Proof** For every positive integer *n*, there is a finite relation algebra
 - that has a weak representation (on a finite set BTW),
 - whose n-generated subalgebras are representable (all n-variable equations true in RRA are satisfied),
 - that is not representable.
- Example The smallest (7 atoms) known non-representable relation algebra that has a weak representation on a finite set.

- **Theorem** Any equational basis that defines representable relation algebras (RRA) over weakly representable relation algebras must contain infinitely many variables.
- **Proof** For every positive integer *n*, there is a finite relation algebra
 - that has a weak representation (on a finite set BTW),
 - whose *n*-generated subalgebras are representable (all *n*-variable equations true in RRA are satisfied),
 - that is not representable.
- Example The smallest (7 atoms) known non-representable relation algebra that has a weak representation on a finite set.

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

- **Theorem** Any equational basis that defines representable relation algebras (RRA) over weakly representable relation algebras must contain infinitely many variables.
- **Proof** For every positive integer *n*, there is a finite relation algebra
 - that has a weak representation (on a finite set BTW),
 - whose *n*-generated subalgebras are representable (all *n*-variable equations true in RRA are satisfied),
 - that is not representable.
- Example The smallest (7 atoms) known non-representable relation algebra that has a weak representation on a finite set.

・ロン ・回 と ・ ヨ と ・ ヨ と

- **Theorem** Any equational basis that defines representable relation algebras (RRA) over weakly representable relation algebras must contain infinitely many variables.
- **Proof** For every positive integer *n*, there is a finite relation algebra
 - that has a weak representation (on a finite set BTW),
 - whose *n*-generated subalgebras are representable (all *n*-variable equations true in RRA are satisfied),
 - that is not representable.
- Example The smallest (7 atoms) known non-representable relation algebra that has a weak representation on a finite set.

- **Theorem** Any equational basis that defines representable relation algebras (RRA) over weakly representable relation algebras must contain infinitely many variables.
- **Proof** For every positive integer *n*, there is a finite relation algebra
 - that has a weak representation (on a finite set BTW),
 - whose *n*-generated subalgebras are representable (all *n*-variable equations true in RRA are satisfied),
 - that is not representable.
- Example The smallest (7 atoms) known non-representable relation algebra that has a weak representation on a finite set.

<ロ> (四) (四) (注) (注) (注) (三)

- **Theorem** Any equational basis that defines representable relation algebras (RRA) over weakly representable relation algebras must contain infinitely many variables.
- **Proof** For every positive integer *n*, there is a finite relation algebra
 - that has a weak representation (on a finite set BTW),
 - whose *n*-generated subalgebras are representable (all *n*-variable equations true in RRA are satisfied),
 - that is not representable.
- Example The smallest (7 atoms) known non-representable relation algebra that has a weak representation on a finite set.

<ロ> (四) (四) (注) (注) (注) (三)

- **Theorem** Any equational basis that defines representable relation algebras (RRA) over weakly representable relation algebras must contain infinitely many variables.
- **Proof** For every positive integer *n*, there is a finite relation algebra
 - that has a weak representation (on a finite set BTW),
 - whose *n*-generated subalgebras are representable (all *n*-variable equations true in RRA are satisfied),
 - that is not representable.
- **Example** The smallest (7 atoms) known non-representable relation algebra that has a weak representation on a finite set.

▲□→ ▲ □→ ▲ □→

 $\mathfrak{A} = \langle A, +, \cdot, -, ;, \check{}, 1' \rangle$ is a relation algebra if

 $\langle A, +, \cdot, - \rangle$ is a Boolean algebra (3 equations) (a;b); c = a; (b;c) (a+b); c = a; c+b; c 1'; a = a = a; 1' $\check{a} = a$ $(a;b)\check{} = \check{b}; \check{a}$ $(a+b)\check{} = \check{a} + \check{b}$ $\check{a}: a: b+b = b$

伺下 イヨト イヨト

Representable and weakly representable

- A relation algebra is **representable** if it is isomorphic to an algebra whose elements are binary relations and whose operations +, ·, ⁻, ;, ⁻, and 1' are union, intersection, complementation, composition, converse, and the identity relation, resp. (JT52)
- To change **representable** to **weakly representable**, delete "+", "-", "union", and "complemention". (J59)
- A relation algebra is **weakly representable** if it is isomorphic to an algebra whose elements are binary relations and whose operations ·, ;, `, and 1' are intersection, composition, converse, and the identity relation, resp.

(日本) (日本) (日本)

Representable and weakly representable

- A relation algebra is representable if it is isomorphic to an algebra whose elements are binary relations and whose operations +, ·, ⁻, ;, ⁻, and 1' are union, intersection, complementation, composition, converse, and the identity relation, resp. (JT52)
- To change **representable** to **weakly representable**, delete "+", "-", "union", and "complemention". (J59)
- A relation algebra is **weakly representable** if it is isomorphic to an algebra whose elements are binary relations and whose operations ·, ;, `, and 1' are intersection, composition, converse, and the identity relation, resp.

(4回) (注) (注) (注) (三)

Representable and weakly representable

- A relation algebra is representable if it is isomorphic to an algebra whose elements are binary relations and whose operations +, ·, ⁻, ;, ⁻, and 1' are union, intersection, complementation, composition, converse, and the identity relation, resp. (JT52)
- To change **representable** to **weakly representable**, delete "+", "-", "union", and "complemention". (J59)
- A relation algebra is **weakly representable** if it is isomorphic to an algebra whose elements are binary relations and whose operations ·, ;, `, and 1' are intersection, composition, converse, and the identity relation, resp.

- 사례가 사용가 사용가 구용

• RA = relation algebras

- RRA = representable relation algebras
- $\mathsf{RRA}\subseteq\mathsf{RA}$ (because the axioms hold: composition is associative,...)
- RA has a 3-variable equational basis (10 equations)
- RRA has an equational basis (T55) but no finite one (M64)
- **Theorem** (J91,T74) RRA has no finite-variable basis (over RA)
- **Proof** For every *n*, there is an algebra in RA ~ RRA whose *n*-generated subalgebras are in RRA, namely
 - the Lyndon algebra £ of a large_n projective line that does <u>not</u> lie in any projective plane (hence £ ∉ RRA, L61)
 - such a line exists by the Bruck-Ryser Theorem (no projective plane of order k if k ≡ 1 or 2(mod 4) and k is not the sum of two squares, e.g. k is 6, 14, 21, 22, 30, 33, 38, 42, 46, 54, 57, 62, 66, 69, 70, 77, 78, 86, 93, 94, 102, 105, 110, 114, 118, 126, 129, 133, 134, 138, 141, 142, 150, 154, ...)
 - atoms of £ = points a, b, ... on the line plus new atom 1'
 ă = a a; 1' = a = 1'; a a; a = 1' + a

- RA = relation algebras
- RRA = representable relation algebras
- $\mathsf{RRA}\subseteq\mathsf{RA}$ (because the axioms hold: composition is associative,...)
- RA has a 3-variable equational basis (10 equations)
- RRA has an equational basis (T55) but no finite one (M64)
- **Theorem** (J91,T74) RRA has no finite-variable basis (over RA)
- **Proof** For every *n*, there is an algebra in RA ~ RRA whose *n*-generated subalgebras are in RRA, namely
 - the Lyndon algebra £ of a large_n projective line that does <u>not</u> lie in any projective plane (hence £ ∉ RRA, L61)
 - such a line exists by the Bruck-Ryser Theorem (no projective plane of order k if k ≡ 1 or 2(mod 4) and k is not the sum of two squares, e.g. k is 6, 14, 21, 22, 30, 33, 38, 42, 46, 54, 57, 62, 66, 69, 70, 77, 78, 86, 93, 94, 102, 105, 110, 114, 118, 126, 129, 133, 134, 138, 141, 142, 150, 154, ...)
 - atoms of £ = points a, b,... on the line plus new atom 1'
 ă = a a; 1' = a = 1'; a a; a = 1' + a

- RA = relation algebras
- RRA = representable relation algebras
- $\mathsf{RRA}\subseteq\mathsf{RA}$ (because the axioms hold: composition is associative,...)
- RA has a 3-variable equational basis (10 equations)
- RRA has an equational basis (T55) but no finite one (M64)
- **Theorem** (J91,T74) RRA has no finite-variable basis (over RA)
- **Proof** For every *n*, there is an algebra in RA ~ RRA whose *n*-generated subalgebras are in RRA, namely
 - the Lyndon algebra £ of a large_n projective line that does <u>not</u> lie in any projective plane (hence £ ∉ RRA, L61)
 - such a line exists by the Bruck-Ryser Theorem (no projective plane of order k if k ≡ 1 or 2(mod 4) and k is not the sum of two squares, e.g. k is 6, 14, 21, 22, 30, 33, 38, 42, 46, 54, 57, 62, 66, 69, 70, 77, 78, 86, 93, 94, 102, 105, 110, 114, 118, 126, 129, 133, 134, 138, 141, 142, 150, 154, ...)
 - atoms of £ = points a, b,... on the line plus new atom 1'
 ă = a a; 1' = a = 1'; a a; a = 1' + a

- RA = relation algebras
- RRA = representable relation algebras
- $\mathsf{RRA}\subseteq\mathsf{RA}$ (because the axioms hold: composition is associative,...)
- RA has a 3-variable equational basis (10 equations)
- RRA has an equational basis (T55) but no finite one (M64)
- **Theorem** (J91,T74) RRA has no finite-variable basis (over RA)
- **Proof** For every *n*, there is an algebra in RA ~ RRA whose *n*-generated subalgebras are in RRA, namely
 - the Lyndon algebra £ of a large_n projective line that does <u>not</u> lie in any projective plane (hence £ ∉ RRA, L61)
 - such a line exists by the Bruck-Ryser Theorem (no projective plane of order k if k ≡ 1 or 2(mod 4) and k is not the sum of two squares, e.g. k is 6, 14, 21, 22, 30, 33, 38, 42, 46, 54, 57, 62, 66, 69, 70, 77, 78, 86, 93, 94, 102, 105, 110, 114, 118, 126, 129, 133, 134, 138, 141, 142, 150, 154, ...)
 - atoms of £ = points a, b,... on the line plus new atom 1'
 ă = a a; 1' = a = 1'; a a; a = 1' + a

- RA = relation algebras
- RRA = representable relation algebras
- $\mathsf{RRA}\subseteq\mathsf{RA}$ (because the axioms hold: composition is associative,...)
- RA has a 3-variable equational basis (10 equations)
- RRA has an equational basis (T55) but no finite one (M64)
- **Theorem** (J91,T74) RRA has no finite-variable basis (over RA)
- **Proof** For every *n*, there is an algebra in RA ~ RRA whose *n*-generated subalgebras are in RRA, namely
 - the Lyndon algebra £ of a large_n projective line that does <u>not</u> lie in any projective plane (hence £ ∉ RRA, L61)
 - such a line exists by the Bruck-Ryser Theorem (no projective plane of order k if k ≡ 1 or 2(mod 4) and k is not the sum of two squares, e.g. k is 6, 14, 21, 22, 30, 33, 38, 42, 46, 54, 57, 62, 66, 69, 70, 77, 78, 86, 93, 94, 102, 105, 110, 114, 118, 126, 129, 133, 134, 138, 141, 142, 150, 154, ...)
 - atoms of £ = points a, b,... on the line plus new atom 1'
 ă = a a; 1' = a = 1'; a a; a = 1' + a

(ロ) (同) (E) (E) (E)

- RA = relation algebras
- RRA = representable relation algebras
- $\mathsf{RRA}\subseteq\mathsf{RA}$ (because the axioms hold: composition is associative,...)
- RA has a 3-variable equational basis (10 equations)
- RRA has an equational basis (T55) but no finite one (M64)
- **Theorem** (J91,T74) RRA has no finite-variable basis (over RA)
- **Proof** For every *n*, there is an algebra in RA ~ RRA whose *n*-generated subalgebras are in RRA, namely
 - the Lyndon algebra £ of a large_n projective line that does <u>not</u> lie in any projective plane (hence £ ∉ RRA, L61)
 - such a line exists by the Bruck-Ryser Theorem (no projective plane of order k if k ≡ 1 or 2(mod 4) and k is not the sum of two squares, e.g. k is 6, 14, 21, 22, 30, 33, 38, 42, 46, 54, 57, 62, 66, 69, 70, 77, 78, 86, 93, 94, 102, 105, 110, 114, 118, 126, 129, 133, 134, 138, 141, 142, 150, 154, ...)
 - atoms of £ = points a, b,... on the line plus new atom 1'
 ă = a a; 1' = a = 1'; a a; a = 1' + a

(日) (同) (E) (E) (E)

- RA = relation algebras
- RRA = representable relation algebras
- $\mathsf{RRA}\subseteq\mathsf{RA}$ (because the axioms hold: composition is associative,...)
- RA has a 3-variable equational basis (10 equations)
- RRA has an equational basis (T55) but no finite one (M64)
- **Theorem** (J91,T74) RRA has no finite-variable basis (over RA)
- **Proof** For every *n*, there is an algebra in RA ~ RRA whose *n*-generated subalgebras are in RRA, namely
 - the Lyndon algebra £ of a large_n projective line that does <u>not</u> lie in any projective plane (hence £ ∉ RRA, L61)
 - such a line exists by the Bruck-Ryser Theorem (no projective plane of order k if k ≡ 1 or 2(mod 4) and k is not the sum of two squares, e.g. k is 6, 14, 21, 22, 30, 33, 38, 42, 46, 54, 57, 62, 66, 69, 70, 77, 78, 86, 93, 94, 102, 105, 110, 114, 118, 126, 129, 133, 134, 138, 141, 142, 150, 154, ...)
 - atoms of $\mathfrak{L} = \mathsf{points}\ a, b, \ldots$ on the line plus new atom 1'
 - $\breve{a} = a$ a; 1' = a = 1'; a a; a = 1' + a

(日) (同) (E) (E) (E)

- RA = relation algebras
- RRA = representable relation algebras
- $\bullet\ RRA\subseteq RA$ (because the axioms hold: composition is associative,...)
- RA has a 3-variable equational basis (10 equations)
- RRA has an equational basis (T55) but no finite one (M64)
- **Theorem** (J91,T74) RRA has no finite-variable basis (over RA)
- **Proof** For every *n*, there is an algebra in RA ~ RRA whose *n*-generated subalgebras are in RRA, namely
 - the Lyndon algebra £ of a large_n projective line that does <u>not</u> lie in any projective plane (hence £ ∉ RRA, L61)
 - such a line exists by the Bruck-Ryser Theorem (no projective plane of order k if k ≡ 1 or 2(mod 4) and k is not the sum of two squares, e.g. k is 6, 14, 21, 22, 30, 33, 38, 42, 46, 54, 57, 62, 66, 69, 70, 77, 78, 86, 93, 94, 102, 105, 110, 114, 118, 126, 129, 133, 134, 138, 141, 142, 150, 154, ...)
 - atoms of $\mathfrak{L} = \mathsf{points}\; a, b, \ldots$ on the line plus new atom 1'
 - $\check{a} = a$ a; 1' = a = 1'; a a; a = 1' + a $a; b = a + b + \dots = \overline{1'}$

(日) (四) (王) (王) (王)

- RA = relation algebras
- RRA = representable relation algebras
- $\bullet\ RRA\subseteq RA$ (because the axioms hold: composition is associative,...)
- RA has a 3-variable equational basis (10 equations)
- RRA has an equational basis (T55) but no finite one (M64)
- **Theorem** (J91,T74) RRA has no finite-variable basis (over RA)
- **Proof** For every *n*, there is an algebra in RA ~ RRA whose *n*-generated subalgebras are in RRA, namely
 - the Lyndon algebra £ of a large_n projective line that does <u>not</u> lie in any projective plane (hence £ ∉ RRA, L61)
 - such a line exists by the Bruck-Ryser Theorem (no projective plane of order k if k ≡ 1 or 2(mod 4) and k is not the sum of two squares, e.g. k is 6, 14, 21, 22, 30, 33, 38, 42, 46, 54, 57, 62, 66, 69, 70, 77, 78, 86, 93, 94, 102, 105, 110, 114, 118, 126, 129, 133, 134, 138, 141, 142, 150, 154, ...)
 - atoms of $\mathfrak{L} = \mathsf{points}\; a, b, \ldots$ on the line plus new atom 1'
 - $\breve{a} = a$ a; 1' = a = 1'; a a; a = 1' + a

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

- RA = relation algebras
- RRA = representable relation algebras
- $\bullet\ RRA\subseteq RA$ (because the axioms hold: composition is associative,...)
- RA has a 3-variable equational basis (10 equations)
- RRA has an equational basis (T55) but no finite one (M64)
- **Theorem** (J91,T74) RRA has no finite-variable basis (over RA)
- **Proof** For every *n*, there is an algebra in RA ~ RRA whose *n*-generated subalgebras are in RRA, namely
 - the Lyndon algebra £ of a large_n projective line that does <u>not</u> lie in any projective plane (hence £ ∉ RRA, L61)
 - such a line exists by the Bruck-Ryser Theorem (no projective plane of order k if k ≡ 1 or 2(mod 4) and k is not the sum of two squares, e.g. k is 6, 14, 21, 22, 30, 33, 38, 42, 46, 54, 57, 62, 66, 69, 70, 77, 78, 86, 93, 94, 102, 105, 110, 114, 118, 126, 129, 133, 134, 138, 141, 142, 150, 154, ...)
 - atoms of $\mathfrak{L} = \text{points } a, b, \dots$ on the line plus new atom 1'
 - $\breve{a} = a$ a; 1' = a = 1'; a a; a = 1' + a $a; b = a + b + \dots = \overline{1'}$

- RA = relation algebras
- RRA = representable relation algebras
- $\mathsf{RRA}\subseteq\mathsf{RA}$ (because the axioms hold: composition is associative,...)
- RA has a 3-variable equational basis (10 equations)
- RRA has an equational basis (T55) but no finite one (M64)
- **Theorem** (J91,T74) RRA has no finite-variable basis (over RA)
- **Proof** For every *n*, there is an algebra in RA ~ RRA whose *n*-generated subalgebras are in RRA, namely
 - the Lyndon algebra £ of a large_n projective line that does <u>not</u> lie in any projective plane (hence £ ∉ RRA, L61)
 - such a line exists by the Bruck-Ryser Theorem (no projective plane of order k if k ≡ 1 or 2(mod 4) and k is not the sum of two squares, e.g. k is 6, 14, 21, 22, 30, 33, 38, 42, 46, 54, 57, 62, 66, 69, 70, 77, 78, 86, 93, 94, 102, 105, 110, 114, 118, 126, 129, 133, 134, 138, 141, 142, 150, 154, ...)
 - atoms of $\mathfrak{L} = \mathsf{points}\ a, b, \ldots$ on the line plus new atom 1'
 - $\breve{a} = a$ a; 1' = a = 1'; a a; a = 1' + a $a; b = a + b + \dots = \overline{1'}$

 $\mathfrak{L}(3,0)$ is the Lyndon algebra of a 4-point line (a line of order 3) $\mathfrak{L}(3,0)$ is representable on 9 points

 $\mathfrak{L}(6,0) \notin \mathsf{RRA}$ is the Lyndon algebra of a 7-point line (a line of order 6)

▲□→ ▲目→ ▲目→ 三日

• larger algebras require more generators

- proper subalgebras occur in all larger algebras
- there are arbitrarily large representable algebras (by finite fields)
- hence proper subalgebras are representable
- there are arbitrarily large non-representable algebras (by Bruck-Ryser)

- 4 同 6 4 日 6 4 日 6

- larger algebras require more generators
- proper subalgebras occur in all larger algebras
- there are arbitrarily large representable algebras (by finite fields)
- hence proper subalgebras are representable
- there are arbitrarily large non-representable algebras (by Bruck-Ryser)

(4月) イヨト イヨト

- larger algebras require more generators
- proper subalgebras occur in all larger algebras
- there are arbitrarily large representable algebras (by finite fields)
- hence proper subalgebras are representable
- there are arbitrarily large non-representable algebras (by Bruck-Ryser)

(日) (日) (日)

- larger algebras require more generators
- proper subalgebras occur in all larger algebras
- there are arbitrarily large representable algebras (by finite fields)
- hence proper subalgebras are representable
- there are arbitrarily large non-representable algebras (by Bruck-Ryser)

・ 同 ト ・ ヨ ト ・ ヨ ト

- larger algebras require more generators
- proper subalgebras occur in all larger algebras
- there are arbitrarily large representable algebras (by finite fields)
- hence proper subalgebras are representable
- there are arbitrarily large non-representable algebras (by Bruck-Ryser)

向下 イヨト イヨト

- Are <u>all</u> the Lyndon algebras of lines weakly representable? If so, use them, otherwise
- Does the Bruck-Ryser Theorem also show there are arbitrarily large algebras that are not even weakly representable?

伺下 イヨト イヨト

- Are <u>all</u> the Lyndon algebras of lines weakly representable? If so, use them, otherwise
- Does the Bruck-Ryser Theorem also show there are arbitrarily large algebras that are not even weakly representable?

- wRRA = weakly representable relation algebras
- $\mathsf{RRA} \subseteq \mathsf{wRRA} \ (\subseteq \mathsf{RA})$
- wRRA has an equational basis (P09), no finite basis (HH01),
- RRA has an equational basis, but
- Theorem RRA has no finite-variable basis over wRRA
- **Proof** For every *n*, there is an algebra in wRRA ~ RRA whose *n*-generated subalgebras are in RRA
- start with the Lyndon algebra of a large_n projective line (with p + 1 points) that <u>does</u> lie in a projective plane (e.g. any big_n prime p), add t = (p + 1)/2 new atoms, get algebra $\mathcal{L}(p, t)$
 - the *n*-generated subalgebras of $\mathfrak{L}(p, t)$ are in RRA
 - $\mathfrak{L}(p,t)$ is not in RRA (t is too big)
 - $\mathfrak{L}(p, t)$ is in wRRA (on a finite set!)

・ロト ・回ト ・ヨト ・ヨト

- wRRA = weakly representable relation algebras
- $\mathsf{RRA} \subseteq \mathsf{wRRA} \ (\subseteq \mathsf{RA})$
- wRRA has an equational basis (P09), no finite basis (HH01),
- RRA has an equational basis, but
- Theorem RRA has no finite-variable basis over wRRA
- **Proof** For every *n*, there is an algebra in wRRA ~ RRA whose *n*-generated subalgebras are in RRA
- start with the Lyndon algebra of a large_n projective line (with p + 1 points) that does lie in a projective plane (e.g. any big_n prime p), add t = (p + 1)/2 new atoms, get algebra $\mathcal{L}(p, t)$
 - the *n*-generated subalgebras of $\mathcal{L}(p, t)$ are in RRA
 - $\mathfrak{L}(p,t)$ is not in RRA (t is too big)
 - $\mathfrak{L}(p,t)$ is in wRRA (on a finite set!)

・ロト ・回ト ・ヨト ・ヨト

- wRRA = weakly representable relation algebras
- $\mathsf{RRA} \subseteq \mathsf{wRRA} \ (\subseteq \mathsf{RA})$
- wRRA has an equational basis (P09), no finite basis (HH01),
- RRA has an equational basis, but
- Theorem RRA has no finite-variable basis over wRRA
- **Proof** For every *n*, there is an algebra in wRRA ~ RRA whose *n*-generated subalgebras are in RRA
- start with the Lyndon algebra of a large_n projective line (with p + 1 points) that does lie in a projective plane (e.g. any big_n prime p), add t = (p + 1)/2 new atoms, get algebra $\mathcal{L}(p, t)$
 - the *n*-generated subalgebras of $\mathcal{L}(p, t)$ are in RRA
 - $\mathfrak{L}(p,t)$ is not in RRA (t is too big)
 - $\mathfrak{L}(p, t)$ is in wRRA (on a finite set!)

・ロト ・回ト ・ヨト ・ヨト

- wRRA = weakly representable relation algebras
- $\mathsf{RRA} \subseteq \mathsf{wRRA} \ (\subseteq \mathsf{RA})$
- wRRA has an equational basis (P09), no finite basis (HH01),
- RRA has an equational basis, but
- Theorem RRA has no finite-variable basis over wRRA
- **Proof** For every *n*, there is an algebra in wRRA ~ RRA whose *n*-generated subalgebras are in RRA
- start with the Lyndon algebra of a large_n projective line (with p + 1 points) that does lie in a projective plane (e.g. any big_n prime p), add t = (p + 1)/2 new atoms, get algebra $\mathcal{L}(p, t)$
 - the *n*-generated subalgebras of $\mathcal{L}(p, t)$ are in RRA
 - $\mathfrak{L}(p,t)$ is not in RRA (t is too big)
 - $\mathfrak{L}(p,t)$ is in wRRA (on a finite set!)

・ロン ・回 と ・ ヨ と ・ ヨ と

- wRRA = weakly representable relation algebras
- $\mathsf{RRA} \subseteq \mathsf{wRRA} \ (\subseteq \mathsf{RA})$
- wRRA has an equational basis (P09), no finite basis (HH01),
- RRA has an equational basis, but
- Theorem RRA has no finite-variable basis over wRRA
- **Proof** For every *n*, there is an algebra in wRRA ~ RRA whose *n*-generated subalgebras are in RRA
- start with the Lyndon algebra of a large_n projective line (with p + 1 points) that does lie in a projective plane (e.g. any big_n prime p), add t = (p + 1)/2 new atoms, get algebra $\mathcal{L}(p, t)$
 - the *n*-generated subalgebras of $\mathfrak{L}(p, t)$ are in RRA
 - $\mathfrak{L}(p, t)$ is not in RRA (t is too big)
 - $\mathfrak{L}(p, t)$ is in wRRA (on a finite set!)

- wRRA = weakly representable relation algebras
- $\mathsf{RRA} \subseteq \mathsf{wRRA} \ (\subseteq \mathsf{RA})$
- wRRA has an equational basis (P09), no finite basis (HH01),
- RRA has an equational basis, but
- Theorem RRA has no finite-variable basis over wRRA
- **Proof** For every *n*, there is an algebra in wRRA ~ RRA whose *n*-generated subalgebras are in RRA
- start with the Lyndon algebra of a large_n projective line (with p + 1 points) that <u>does</u> lie in a projective plane (e.g. any big_n prime p), add t = (p + 1)/2 new atoms, get algebra $\mathfrak{L}(p, t)$
 - the *n*-generated subalgebras of $\mathfrak{L}(p, t)$ are in RRA
 - $\mathfrak{L}(p,t)$ is not in RRA (t is too big)
 - $\mathfrak{L}(p,t)$ is in wRRA (on a finite set!)

(日) (同) (E) (E) (E)

- wRRA = weakly representable relation algebras
- $\mathsf{RRA} \subseteq \mathsf{wRRA} \ (\subseteq \mathsf{RA})$
- wRRA has an equational basis (P09), no finite basis (HH01),
- RRA has an equational basis, but
- Theorem RRA has no finite-variable basis over wRRA
- **Proof** For every *n*, there is an algebra in wRRA ~ RRA whose *n*-generated subalgebras are in RRA
- start with the Lyndon algebra of a large_n projective line (with p + 1 points) that <u>does</u> lie in a projective plane (e.g. any big_n prime p), add t = (p + 1)/2 new atoms, get algebra $\mathfrak{L}(p, t)$
 - the *n*-generated subalgebras of $\mathfrak{L}(p, t)$ are in RRA
 - $\mathfrak{L}(p,t)$ is not in RRA (*t* is too big)
 - $\mathfrak{L}(p,t)$ is in wRRA (on a finite set!)

(4回) (注) (注) (注) (注)

- wRRA = weakly representable relation algebras
- $\mathsf{RRA} \subseteq \mathsf{wRRA} \ (\subseteq \mathsf{RA})$
- wRRA has an equational basis (P09), no finite basis (HH01),
- RRA has an equational basis, but
- Theorem RRA has no finite-variable basis over wRRA
- **Proof** For every *n*, there is an algebra in wRRA ~ RRA whose *n*-generated subalgebras are in RRA
- start with the Lyndon algebra of a large_n projective line (with p + 1 points) that does lie in a projective plane (e.g. any big_n prime p), add t = (p + 1)/2 new atoms, get algebra $\mathfrak{L}(p, t)$
 - the *n*-generated subalgebras of $\mathfrak{L}(p,t)$ are in RRA
 - $\mathfrak{L}(p,t)$ is not in RRA (*t* is too big)
 - $\mathfrak{L}(p, t)$ is in wRRA (on a finite set!)

- wRRA = weakly representable relation algebras
- $\mathsf{RRA} \subseteq \mathsf{wRRA} \ (\subseteq \mathsf{RA})$
- wRRA has an equational basis (P09), no finite basis (HH01),
- RRA has an equational basis, but
- Theorem RRA has no finite-variable basis over wRRA
- **Proof** For every *n*, there is an algebra in wRRA ~ RRA whose *n*-generated subalgebras are in RRA
- start with the Lyndon algebra of a large_n projective line (with p + 1 points) that does lie in a projective plane (e.g. any big_n prime p), add t = (p + 1)/2 new atoms, get algebra $\mathfrak{L}(p, t)$
 - the *n*-generated subalgebras of $\mathfrak{L}(p,t)$ are in RRA
 - $\mathfrak{L}(p, t)$ is not in RRA (t is too big)
 - $\mathfrak{L}(p,t)$ is in wRRA (on a finite set!)

(本間) (本語) (本語) (語)

- wRRA = weakly representable relation algebras
- $\mathsf{RRA} \subseteq \mathsf{wRRA} \ (\subseteq \mathsf{RA})$
- wRRA has an equational basis (P09), no finite basis (HH01),
- RRA has an equational basis, but
- Theorem RRA has no finite-variable basis over wRRA
- **Proof** For every *n*, there is an algebra in wRRA ~ RRA whose *n*-generated subalgebras are in RRA
- start with the Lyndon algebra of a large_n projective line (with p + 1 points) that does lie in a projective plane (e.g. any big_n prime p), add t = (p + 1)/2 new atoms, get algebra $\mathfrak{L}(p, t)$
 - the *n*-generated subalgebras of $\mathfrak{L}(p,t)$ are in RRA
 - $\mathfrak{L}(p, t)$ is not in RRA (t is too big)
 - $\mathfrak{L}(p, t)$ is in wRRA (on a finite set!)

(4月) (3日) (3日) 日

Key facts about the class of $\mathfrak{L}(p, t)$ algebras

larger algebras require more generators

- proper subalgebras occur in larger algebras
- p < 2t implies $\mathfrak{L}(p,t) \notin \mathsf{RRA}$
- prime power p implies $\mathfrak{L}(p,t) \in \mathsf{wRRA}$ (on finite sets!)
 - prime power p, hence L(p, 0) has a (unique) representation Q on p² points
 - the kth direct power of Q is a weak representation of L(p, 0) on (p²)^k points (key observation!)
 - take two copies of a big_t direct power of Q
 - randomly assign edges between the copies to the t new atoms
 - non-zero probability of a weak representation on $2(p^2)^k$ points

・ロト ・回ト ・ヨト ・ ヨト

Key facts about the class of $\mathfrak{L}(p, t)$ algebras

- larger algebras require more generators
- proper subalgebras occur in larger algebras
- p < 2t implies $\mathfrak{L}(p,t) \notin \mathsf{RRA}$
- prime power p implies $\mathfrak{L}(p,t) \in \mathsf{wRRA}$ (on finite sets!)
 - prime power p, hence L(p, 0) has a (unique) representation Q on p² points
 - the kth direct power of Q is a weak representation of L(p, 0) on (p²)^k points (key observation!)
 - take two copies of a big_t direct power of Q
 - randomly assign edges between the copies to the t new atoms
 - non-zero probability of a weak representation on $2(p^2)^k$ points

ヘロン 人間 とくほと くほとう

Key facts about the class of $\mathfrak{L}(p, t)$ algebras

- larger algebras require more generators
- proper subalgebras occur in larger algebras
- p < 2t implies $\mathfrak{L}(p, t) \notin \mathsf{RRA}$
- prime power p implies $\mathfrak{L}(p, t) \in \mathsf{wRRA}$ (on finite sets!)
 - prime power p, hence L(p, 0) has a (unique) representation Q on p² points
 - the kth direct power of Q is a weak representation of L(p, 0) on (p²)^k points (key observation!)
 - take two copies of a big_t direct power of Q
 - randomly assign edges between the copies to the t new atoms
 - non-zero probability of a weak representation on 2(p²)^k points

ヘロン 人間 とくほと くほとう

- larger algebras require more generators
- proper subalgebras occur in larger algebras
- p < 2t implies $\mathfrak{L}(p, t) \notin \mathsf{RRA}$
- prime power p implies $\mathfrak{L}(p,t) \in \mathsf{wRRA}$ (on finite sets!)
 - prime power p, hence L(p, 0) has a (unique) representation Q on p² points
 - the kth direct power of Q is a weak representation of $\mathfrak{L}(p,0)$ on $(p^2)^k$ points (key observation!)
 - take two copies of a big_t direct power of Q
 - randomly assign edges between the copies to the t new atoms
 - non-zero probability of a weak representation on $2(p^2)^k$ points

ヘロン 人間 とくほと くほとう

- larger algebras require more generators
- proper subalgebras occur in larger algebras
- p < 2t implies $\mathfrak{L}(p, t) \notin \mathsf{RRA}$
- prime power p implies $\mathfrak{L}(p, t) \in \mathsf{wRRA}$ (on finite sets!)
 - prime power p, hence $\mathfrak{L}(p,0)$ has a (unique) representation Q on p^2 points
 - the *k*th direct power of *Q* is a weak representation of $\mathcal{L}(p, 0)$ on $(p^2)^k$ points (key observation!)
 - take two copies of a big_t direct power of Q
 - randomly assign edges between the copies to the t new atoms
 - non-zero probability of a weak representation on $2(p^2)^k$ points

・ロン ・回 と ・ 回 と ・ 回 と

- larger algebras require more generators
- proper subalgebras occur in larger algebras
- p < 2t implies $\mathfrak{L}(p, t) \notin \mathsf{RRA}$
- prime power p implies $\mathfrak{L}(p, t) \in \mathsf{wRRA}$ (on finite sets!)
 - prime power p, hence L(p,0) has a (unique) representation Q on p² points
 - the kth direct power of Q is a weak representation of $\mathfrak{L}(p,0)$ on $(p^2)^k$ points (key observation!)
 - take two copies of a big_t direct power of Q
 - randomly assign edges between the copies to the t new atoms
 - non-zero probability of a weak representation on $2(p^2)^k$ points

<ロ> (四) (四) (注) (注) (注) (三)

- larger algebras require more generators
- proper subalgebras occur in larger algebras
- p < 2t implies $\mathfrak{L}(p, t) \notin \mathsf{RRA}$
- prime power p implies $\mathfrak{L}(p, t) \in \mathsf{wRRA}$ (on finite sets!)
 - prime power p, hence L(p,0) has a (unique) representation Q on p² points
 - the kth direct power of Q is a weak representation of $\mathfrak{L}(p,0)$ on $(p^2)^k$ points (key observation!)
 - take two copies of a big_t direct power of Q
 - randomly assign edges between the copies to the *t* new atoms
 - non-zero probability of a weak representation on $2(p^2)^k$ points

<ロ> (四) (四) (注) (注) (注) (三)

- larger algebras require more generators
- proper subalgebras occur in larger algebras
- p < 2t implies $\mathfrak{L}(p, t) \notin \mathsf{RRA}$
- prime power p implies $\mathfrak{L}(p, t) \in \mathsf{wRRA}$ (on finite sets!)
 - prime power p, hence $\mathfrak{L}(p,0)$ has a (unique) representation Q on p^2 points
 - the kth direct power of Q is a weak representation of $\mathfrak{L}(p,0)$ on $(p^2)^k$ points (key observation!)
 - take two copies of a big_t direct power of Q
 - randomly assign edges between the copies to the t new atoms
 - non-zero probability of a weak representation on $2(p^2)^k$ points

- larger algebras require more generators
- proper subalgebras occur in larger algebras
- p < 2t implies $\mathfrak{L}(p, t) \notin \mathsf{RRA}$
- prime power p implies $\mathfrak{L}(p, t) \in \mathsf{wRRA}$ (on finite sets!)
 - prime power p, hence L(p,0) has a (unique) representation Q on p² points
 - the kth direct power of Q is a weak representation of $\mathfrak{L}(p,0)$ on $(p^2)^k$ points (key observation!)
 - take two copies of a big_t direct power of Q
 - randomly assign edges between the copies to the t new atoms
 - non-zero probability of a weak representation on $2(p^2)^k$ points

$\mathfrak{L}(3,0)$

 $\mathfrak{L}(3,0)$ is the Lyndon algebra of a 4-point line

	1'	а	b	С	d
1'	1'	а	b	С	d
а	а	1' + a	c + d	b+d	b + c
b	b	c + d	1' + b	a + d	a + c
с	с	b+d	a + d	1' + c	a + b
d	d	b + c	a + c	a + b	1' + d

	1'	а	b	С	d
1'	1'	а	b	С	d
а	а	1' a	cd	bd	bc
b	b	cd	1' <i>b</i>	ad	ас
с	с	bd	ad	1' <i>c</i>	ab
d	d	bс	ас	ab	1' d

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

 $\mathfrak{L}(3,1)$ is the Lyndon algebra of a 4-point line, plus one atom r $\mathfrak{L}(3,1)$ is representable on 18 points

	1'	а	Ь	с	d	r
1'	1'	а	Ь	с	d	r
a	a	1' + a	c + d	b + d	b + c	r
Ь	Ь	c + d	1' + b	a + d	a + c	r
c	c	b + d	a + d	1' + c	a + b	r
d	d	b + c	a + c	a + b	1' + d	r
r	r	r	r	r	r	1' + a + b + c + d

	1'	а	b	С	d	r
1'	1'	а	b	С	d	r
а	а	1' <i>a</i>	cd	bd	bc	r
b	b	cd	1' <i>b</i>	ad	ас	r
c	с	bd	ad	1' <i>c</i>	ab	r
d	d	bc	ас	ab	1' d	r
r	r	r	r	r	r	1' abcd

個 と く き と く き と … き

Tables for $\mathfrak{L}(3,2) \in \mathsf{wRRA} \sim \mathsf{RRA}$

 $\mathfrak{L}(3,2)$ is the Lyndon algebra of a 4-point line, plus atoms r,sIs $\mathfrak{L}(3,2)$ weakly representable on $2 \cdot 9^2 = 162$ points? (unlikely) on $2 \cdot 9^3 = 1458$? (maybe) on $2 \cdot 9^4 = 13122$? (probably)

	1'	а	Ь	с	d	r	5
1'	1'	а	Ь	с	d	r	s
а	а	1' + a	c + d	b + d	b + c	r + s	r + s
Ь	Ь	c + d	1' + b	a + d	a + c	r + s	r + s
с	с	b + d	a + d	1' + c	a + b	r + s	r + s
d	d	b + c	a + c	a + b	1' + d	r + s	r + s
r	r	r + s	r + s	r + s	r + s	1' + a + b + c + d	a + b + c + d
s	r	r + s	r + s	r + s	r + s	a+b+c+d	1' + a + b + c + d

-							
	1'	а	b	С	d	r	5
1'	1'	а	b	С	d	r	5
а	а	1' <i>a</i>	cd	bd	bс	rs	rs
b	b	cd	1' <i>b</i>	ad	ac	rs	rs
с	С	bd	ad	1' <i>c</i>	ab	rs	rs
d	d	bc	ас	ab	1' <i>d</i>	rs	rs
r	r	rs	rs	rs	rs	1' abcd	abcd
5	r	rs	rs	rs	rs	abcd	1' abcd

Alm, Hirsch, Maddux No finite-variable axiom set for RRA over wRRA

[J59] B. Jónsson. Representation of modular lattices and of relation algebras. *Trans. Amer. Math. Soc.*, 92:449–464, 1959.
[JT52] B. Jónsson and A. Tarski. Boolean algebras with operators II. *Amer. Journal of Math.*, 74:127–162, 1952.

[J91] B. Jónsson. The theory of binary relations. In *Algebraic Logic*, Colloq. Math. Soc. J. Bolyai, 54:245–292, North Holland, 1991.

[L61] R. Lyndon. Relation algebras and projective geometries. *Michigan Mathematics Journal*, 8(1):22–28, 1961.

[M64] J. Donald Monk, On representable relation algebras, *Michigan Math. J.*, 11:207–210, 1964.

[P09] B. Pécsi. Weakly representable relation algebras form a variety. *Algebra Universalis*, 60(4):369–380, 2009.

[J59] B. Jónsson. Representation of modular lattices and of relation algebras. *Trans. Amer. Math. Soc.*, 92:449–464, 1959.
[JT52] B. Jónsson and A. Tarski. Boolean algebras with operators II. *Amer. Journal of Math.*, 74:127–162, 1952.

[J91] B. Jónsson. The theory of binary relations. In *Algebraic Logic*, Colloq. Math. Soc. J. Bolyai, 54:245–292, North Holland, 1991.

[L61] R. Lyndon. Relation algebras and projective geometries. *Michigan Mathematics Journal*, 8(1):22–28, 1961.

[M64] J. Donald Monk, On representable relation algebras, *Michigan Math. J.*, 11:207–210, 1964.

[P09] B. Pécsi. Weakly representable relation algebras form a variety. *Algebra Universalis*, 60(4):369–380, 2009.

[J59] B. Jónsson. Representation of modular lattices and of relation algebras. *Trans. Amer. Math. Soc.*, 92:449–464, 1959.
[JT52] B. Jónsson and A. Tarski. Boolean algebras with operators II. *Amer. Journal of Math.*, 74:127–162, 1952.

[J91] B. Jónsson. The theory of binary relations. In *Algebraic Logic*, Colloq. Math. Soc. J. Bolyai, 54:245–292, North Holland, 1991.

[L61] R. Lyndon. Relation algebras and projective geometries. *Michigan Mathematics Journal*, 8(1):22–28, 1961.

[M64] J. Donald Monk, On representable relation algebras, *Michigan Math. J.*, 11:207–210, 1964.

[P09] B. Pécsi. Weakly representable relation algebras form a variety. *Algebra Universalis*, 60(4):369–380, 2009.

[J59] B. Jónsson. Representation of modular lattices and of relation algebras. *Trans. Amer. Math. Soc.*, 92:449–464, 1959.
[JT52] B. Jónsson and A. Tarski. Boolean algebras with operators II. *Amer. Journal of Math.*, 74:127–162, 1952.

[J91] B. Jónsson. The theory of binary relations. In *Algebraic Logic*, Colloq. Math. Soc. J. Bolyai, 54:245–292, North Holland, 1991.

[L61] R. Lyndon. Relation algebras and projective geometries. *Michigan Mathematics Journal*, 8(1):22–28, 1961.

[M64] J. Donald Monk, On representable relation algebras, *Michigan Math. J.*, 11:207–210, 1964.

[P09] B. Pécsi. Weakly representable relation algebras form a variety. *Algebra Universalis*, 60(4):369–380, 2009.

[J59] B. Jónsson. Representation of modular lattices and of relation algebras. *Trans. Amer. Math. Soc.*, 92:449–464, 1959.
[JT52] B. Jónsson and A. Tarski. Boolean algebras with operators II. *Amer. Journal of Math.*, 74:127–162, 1952.

[J91] B. Jónsson. The theory of binary relations. In *Algebraic Logic*, Colloq. Math. Soc. J. Bolyai, 54:245–292, North Holland, 1991.

[L61] R. Lyndon. Relation algebras and projective geometries. *Michigan Mathematics Journal*, 8(1):22–28, 1961.

[M64] J. Donald Monk, On representable relation algebras, *Michigan Math. J.*, 11:207–210, 1964.

[P09] B. Pécsi. Weakly representable relation algebras form a variety. *Algebra Universalis*, 60(4):369–380, 2009.