Separability for lattice-ordered Abelian groups and MV-algebras: a characterisation theorem

Vincenzo Marra
vincenzo.marra@unimi.it

Dipartimento di Matematica Federigo Enriques
Università degli Studi di Milano
Italy
Joint work with Matías Menni, CONICET, Argentina

AMS Fall Western Sectional Meeting - Special session on Algebraic Logic
University of Denver, Colorado, USA
October 8-9, 2016

Commutative algebra: Given field k, a k-algebra A is separable if for every field extension $K \supseteq k$, the algebra $A \otimes_{k} K$ is semisimple (=has trivial radical).

Generalisation to categories: A. Carboni, G. Janelidze, S. Lack, W. Lawvere, S. Schanuel, R. Walters et al.

Preliminary question: for which categories C can we think of $C^{0 p}$ as a category of spaces?

Commutative algebra: Given field k, a k-algebra A is separable if for every field extension $K \supseteq k$, the algebra $A \otimes_{k} K$ is semisimple (=has trivial radical).

Generalisation to categories: A. Carboni, G. Janelidze, S. Lack, W. Lawvere, S. Schanuel, R. Walters et al.

Preliminary question: for which categories C can we think of $C^{\circ p}$ as a category of spaces?

A space is just an object in the category of spaces!
F. W. Lawvere, What is a space?, Seminario di Matematica, 18 giugno 2010. Scuola Normale Superiore Pisa

Commutative algebra: Given field k, a k-algebra A is separable if for every field extension $K \supseteq k$, the algebra $A \otimes_{k} K$ is semisimple (=has trivial radical).

Generalisation to categories: A. Carboni, G. Janelidze, S. Lack, W. Lawvere, S. Schanuel, R. Walters et al.

Preliminary question: for which categories C can we think of $C^{\circ p}$ as a category of spaces?

A space is just an object in the category of spaces! The implied further question is given a very general answer involving lextensivity, as well as a much more structured answer involving [...] toposes. [...]
F. W. Lawvere, What is a space?, Seminario di Matematica, 18 giugno 2010. Scuola Normale Superiore Pisa

Commutative algebra: Given field k, a k-algebra A is separable if for every field extension $K \supseteq k$, the algebra $A \otimes_{k} K$ is semisimple ($=$ has trivial radical).

Generalisation to categories: A. Carboni, G. Janelidze, S. Lack, W. Lawvere, S. Schanuel, R. Walters et al.

Preliminary question: for which categories C can we think of C^{Op} as a category of spaces?

Minimal requirement: C must be co-extensive, or equivalently, C must be extensive (=has well-behaved sums, see below).

Blanket assumption. "Lextensive" means "Left exact (=with finite limits) and extensive". From now on C is a variety, so C is complete and co-complete. Far too strong an assumption for the general theory, but convenient here.

Definition (Extensive category)
The category $\mathrm{C}^{\circ \mathrm{p}}$ is extensive if for each pair of objects A_{1}, A_{2} the commutative diagram below comprises a pair of pullback squares.

Definition (Extensive category)

The category C^{op} is extensive if for each pair of objects A_{1}, A_{2} the commutative diagram below comprises a pair of pullback squares.

Examples (Picture!). The categories of topological spaces, of posets, and of Priestley spaces are extensive. The opposite of the category of finitely generated k-algebras (=affine schemes) is extensive. The opposite of the category of groups is not extensive.

Definition (Separable algebra)

An object A in C is separable if there exists a morphism $\mathrm{b}: A+A \rightarrow B$ such that the morphism $i: A+A \rightarrow A \times B$ induced by the co-diagonal map $c: A+A \rightarrow A$, by the projections p_{A}, p_{B} of the product $A \times B$, and by b, is an isomorphism.

Definition (Separable algebra)

An object A in C is separable if there exists a morphism $b: A+A \rightarrow B$ such that the morphism $i: A+A \rightarrow A \times B$ induced by the co-diagonal map $c: A+A \rightarrow A$, by the projections p_{A}, p_{B} of the product $A \times B$, and by b, is an isomorphism.

B

Definition (Separable algebra)

An object A in C is separable if there exists a morphism $\mathrm{b}: A+A \rightarrow B$ such that the morphism $i: A+A \rightarrow A \times B$ induced by the co-diagonal map $c: A+A \rightarrow A$, by the projections p_{A}, p_{B} of the product $A \times B$, and by b, is an isomorphism.

Definition (Separable algebra)

An object A in C is separable if there exists a morphism $\mathrm{b}: A+A \rightarrow B$ such that the morphism $i: A+A \rightarrow A \times B$ induced by the co-diagonal map $c: A+A \rightarrow A$, by the projections p_{A}, p_{B} of the product $A \times B$, and by b, is an isomorphism.

Definition (Separable algebra)

An object A in C is separable if there exists a morphism $\mathrm{b}: A+A \rightarrow B$ such that the morphism $i: A+A \rightarrow A \times B$ induced by the co-diagonal map $c: A+A \rightarrow A$, by the projections p_{A}, p_{B} of the product $A \times B$, and by b, is an isomorphism.

Definition (Separable algebra)

An object A in C is separable if there exists a morphism $\mathrm{b}: A+A \rightarrow B$ such that the morphism $i: A+A \rightarrow A \times B$ induced by the co-diagonal map $c: A+A \rightarrow A$, by the projections p_{A}, p_{B} of the product $A \times B$, and by b, is an isomorphism.

Decidability

The formally opposite property is called decidability (from topos theory).

Example: Decidability in KHaus (or in Top).
Consider the Stone-Yosida-Gelfand duality between vector lattices (or rings) of continuous functions $\mathrm{C}(X), X$ compact Hausdorff, and compact Hausdorff spaces.
Trivially (definition!):
$\mathrm{C}(X)$ is separable $\Leftrightarrow X$ is decidable.

Example: Decidability in KHaus (or in Top).
Consider the Stone-Yosida-Gelfand duality between vector lattices (or rings) of continuous functions $\mathrm{C}(X), X$ compact Hausdorff, and compact Hausdorff spaces.
Trivially (definition!):

$$
\mathrm{C}(X) \text { is separable } \Leftrightarrow X \text { is decidable. }
$$

Easy observation

A space KHaus is decidable precisely when it is finite and discrete.

Proof: Picture!
Hence, TFAE:
(1) $\mathrm{C}(X)$ is separable.
(2) $\mathrm{C}(X)$ is a finite product of copies of \mathbb{R}.

Theorem (VM, M. Menni, 2016)

For any $M V$-algebra A, the following are equivalent.
(1) A is separable.
(2) A is a finite product of subalgebras of $[0,1] \cap \mathbb{Q}$.

Remark

For Abelian ℓ-groups with unit: (G, u) is separable if, and only if, (G, u) is a finite direct product of subgroups of $(\mathbb{Q}, 1)$.

First deal with $1 \Rightarrow 2$: separable \Rightarrow finite product of subalgebras of $[0,1] \cap \mathbb{Q}$. Key steps in the proof. If A is separable, then:
(1) Use spectral functor Max to show A must be finite product of local algebras (=with precisely maximal ideal).

First deal with $1 \Rightarrow 2$: separable \Rightarrow finite product of subalgebras of $[0,1] \cap \mathbb{Q}$. Key steps in the proof. If A is separable, then:
(1) Use spectral functor Max to show A must be finite product of local algebras (=with precisely maximal ideal).
(2) Use general theory of extensive categories to show it suffices to characterise separable local algebras. If A is separable and local, then:

First deal with $1 \Rightarrow 2$: separable \Rightarrow finite product of subalgebras of $[0,1] \cap \mathbb{Q}$. Key steps in the proof. If A is separable, then:
(1) Use spectral functor Max to show A must be finite product of local algebras (=with precisely maximal ideal).
(2) Use general theory of extensive categories to show it suffices to characterise separable local algebras. If A is separable and local, then:
(3) Use behaviour of non-trivial radical under co-products to show A must have trivial radical, and hence be simple.

First deal with $1 \Rightarrow 2$: separable \Rightarrow finite product of subalgebras of $[0,1] \cap \mathbb{Q}$. Key steps in the proof. If A is separable, then:
(1) Use spectral functor Max to show A must be finite product of local algebras (=with precisely maximal ideal).
(2) Use general theory of extensive categories to show it suffices to characterise separable local algebras. If A is separable and local, then:
(3) Use behaviour of non-trivial radical under co-products to show A must have trivial radical, and hence be simple.
(4) Use Hölder's Theorem to identify simple algebras with subalgebras of $[0,1]$.

First deal with $1 \Rightarrow 2$: separable \Rightarrow finite product of subalgebras of $[0,1] \cap \mathbb{Q}$. Key steps in the proof. If A is separable, then:
(1) Use spectral functor Max to show A must be finite product of local algebras (=with precisely maximal ideal).
(2) Use general theory of extensive categories to show it suffices to characterise separable local algebras. If A is separable and local, then:
(3) Use behaviour of non-trivial radical under co-products to show A must have trivial radical, and hence be simple.
(4) Use Hölder's Theorem to identify simple algebras with subalgebras of $[0,1]$.
(5) Use behaviour of simple algebras with irrational elements under co-products to show A must be subalgebra of $[0,1] \cap \mathbb{Q}$.

The converse implication $2 \Rightarrow 1$: finite product of subalgebras of $[0,1] \cap \mathbb{Q} \Rightarrow$ separable amounts to a (non-trivial) co-product computation.

Step 1: The Max functor

Basic spectral adjunction:

$$
\mathrm{C} \dashv \operatorname{Max}
$$

Step 1: The Max functor

Basic spectral adjunction:

$$
\mathrm{C} \dashv \operatorname{Max}
$$

Max preserves all existing limits, and in particular products. That is,

$$
\operatorname{Max} \prod_{i \in I} A_{i}=\sum_{i \in I} \operatorname{Max} A_{i}
$$

Basic spectral adjunction:

$$
\mathrm{C} \dashv \operatorname{Max}
$$

In analogy with spectra of commutative rings, we can also prove:

Lemma

Max preserves finite co-products. That is,

$$
\operatorname{Max} A_{1}+\cdots+A_{n}=\operatorname{Max} A_{1} \times \cdots \times \operatorname{Max} A_{n}
$$

For example, $\operatorname{Max} F(1)=[0,1]$, so that

$$
\operatorname{Max} F(n)=[0,1]^{n}
$$

By the preservation properties of the Max functor above, we obtain:

Lemma

If A is separable then $\operatorname{Max} A$ is a decidable space (in Top, or in KHaus).

By the preservation properties of the Max functor above, we obtain:

Lemma

If A is separable then $\operatorname{Max} A$ is a decidable space (in Top, or in KHaus).

Next note: by definition, A is local $\Leftrightarrow \operatorname{Max} A$ is a point.

Easy observation

A space in KHaus is decidable precisely when it is finite and discrete.

By the preservation properties of the Max functor above, we obtain:

Lemma

If A is separable then $\operatorname{Max} A$ is a decidable space (in Top, or in KHaus).

Next note: by definition, A is local $\Leftrightarrow \operatorname{Max} A$ is a point.

Easy observation

A space in KHaus is decidable precisely when it is finite and discrete.

Corollary
 If A is separable, it is a finite product of local algebras.

Hence we can consider $A=A_{1} \times \cdots \times A_{n}$ separable with each A_{i} local.

Step 2: Extensivity

Lemma (A. Carboni and G. Janelidze, 1996)
In any co-extensive variety, for any finite family of objects A_{1}, \ldots, A_{n} the following are equivalent.
(1) $A_{1} \times \cdots \times A_{n}$ is separable.
(2) Each A_{i} is separable, $i=1, \ldots, n$.

Step 2: Extensivity

Lemma (A. Carboni and G. Janelidze, 1996)
In any co-extensive variety, for any finite family of objects A_{1}, \ldots, A_{n} the following are equivalent.
(1) $A_{1} \times \cdots \times A_{n}$ is separable.
(2) Each A_{i} is separable, $i=1, \ldots, n$.

Relatively easy lemma

The category of $M V$-algebras is co-extensive.
(Holds for the same reason that rings are co-extensive: direct product splittings are induced by idempotents. For MV, idempotents are known as Boolean elements. In the literature on ℓ-groups with unit, idempotents are known as components of the unit.)

Step 2: Extensivity

Lemma (A. Carboni and G. Janelidze, 1996)
In any co-extensive variety, for any finite family of objects A_{1}, \ldots, A_{n} the following are equivalent.
(1) $A_{1} \times \cdots \times A_{n}$ is separable.
(2) Each A_{i} is separable, $i=1, \ldots, n$.

Relatively easy lemma

The category of $M V$-algebras is co-extensive.
(Holds for the same reason that rings are co-extensive: direct product splittings are induced by idempotents. For MV, idempotents are known as Boolean elements. In the literature on ℓ-groups with unit, idempotents are known as components of the unit.)
Now it is enough to identify which local algebras are separable!

Step 3: From local to simple

Intuition. If A is local and has non-trivial radical, its dual spectral space (primes included!) is a point equipped with (at least one) infinitesimal displacement.

Step 3: From local to simple

Intuition. If A is local and has non-trivial radical, its dual spectral space (primes included!) is a point equipped with (at least one) infinitesimal displacement.

Lemma
 If A is separable and local, $\operatorname{Rad} A=\{0\}$ - hence A is simple.

Proof: Picture!

Step 4: From simple to real

Theorem (O. Hölder, 1901)

If A is a non-trivial, local $M V$-algebra, there is exactly one homomorphism

$$
A \xrightarrow{h_{A}}[0,1] .
$$

Furthermore, h_{A} is injective if, and only if, A is simple.

In particular, simple MV-algebras can be identified in one and only one way with subalgebras of $[0,1]$. So, for example, it makes perfect sense to say that an element $a \in A$ of a simple MV-algebra is rational, irrational, transcendental etc.

Step 5: From real to rational

Intuition. If $A \subseteq[0,1]$ contains an irrational number, its dual space is an ordinary point p with no infinitesimal displacements. However, this point should be thought of as "irrational", and different in nature from the dual of a rational subalgebra of $[0,1]$. Indeed, due to its "irrationality", the co-product $A+A$ is no longer simple! That is, the product $p \times p$ is again a "point with infinitesimal displacements"! Then A can't be separable. This phenomenon is the analogue for MV/ ℓ-groups of ramification in algebraic geometry and Galois theory. It doesn't happen if A is rational (converse implication!).

Step 5: From real to rational

Intuition. If $A \subseteq[0,1]$ contains an irrational number, its dual space is an ordinary point p with no infinitesimal displacements. However, this point should be thought of as "irrational", and different in nature from the dual of a rational subalgebra of $[0,1]$. Indeed, due to its "irrationality", the co-product $A+A$ is no longer simple! That is, the product $p \times p$ is again a "point with infinitesimal displacements"! Then A can't be separable. This phenomenon is the analogue for MV/ ℓ-groups of ramification in algebraic geometry and Galois theory. It doesn't happen if A is rational (converse implication!).

Lemma

If $A \subseteq[0,1]$ is separable, then $A \subseteq[0,1] \cap \mathbb{Q}$.
Proof: Picture!

Epilogue: Motivation

Theorem (VM, M. Menni, 2016)

For any $M V$-algebra A, the following are equivalent.
(1) A is separable.
(2) A is a finite product of subalgebras of $[0,1] \cap \mathbb{Q}$.

Remark

For Abelian ℓ-groups with unit: (G, u) is separable if, and only if, (G, u) is a finite direct product of subgroups of $(\mathbb{Q}, 1)$.

In particular:

- Simple separable MV-algebras are precisely the subalgebras of $[0,1] \cap \mathbb{Q}$, i.e. the extensions of $\{0,1\}$ by rational numbers.
- Simple separable Abelian ℓ-groups with unit are precisely the unital ℓ-sugroups $(\mathbb{Q}, 1)$, i.e. the extensions of $(\mathbb{Z}, 1)$ by rational numbers.

The Five Platonic Solids
(In Plato's Timaeus, ca. 350 B.C., after his friend mathematician Theaetetus.)

Thank you for your attention.

