Partial right orders on free groups and the word problem for free *l*-groups

George Metcalfe

Mathematical Institute University of Bern

Joint work with Almudena Colacito

AMS Fall Western Sectional Meeting, Denver, 8-9 October, 2016

- 1. Does a given finitely generated partial right order on a free group extend to a total right order?
- 2. Is a given equation valid in all lattice-ordered groups?

4 A N

$$a \leq b \implies ac \leq bc.$$

Its positive cone $\{a \in G : a > e\}$ is a subsemigroup of *G* omitting e. Conversely, any such subsemigroup *P* produces a partial right order

$$a \leq b \iff ba^{-1} \in P \cup \{e\}.$$

So we can identify partial right orders with subsemigroups omitting e.

< 回 > < 三 > < 三 >

$$a \leq b \implies ac \leq bc.$$

Its positive cone $\{a \in G : a > e\}$ is a subsemigroup of *G* omitting e. Conversely, any such subsemigroup *P* produces a partial right order

$$a \leq b \iff ba^{-1} \in P \cup \{e\}.$$

So we can identify partial right orders with subsemigroups omitting e.

< 回 > < 三 > < 三 >

$$a \leq b \implies ac \leq bc.$$

Its positive cone $\{a \in G : a > e\}$ is a subsemigroup of *G* omitting e. Conversely, any such subsemigroup *P* produces a partial right order

$$a \leq b \iff ba^{-1} \in P \cup \{e\}.$$

So we can identify partial right orders with subsemigroups omitting e.

$$a \leq b \implies ac \leq bc.$$

Its positive cone $\{a \in G : a > e\}$ is a subsemigroup of *G* omitting e. Conversely, any such subsemigroup *P* produces a partial right order

$$a \leq b \iff ba^{-1} \in P \cup \{e\}.$$

So we can identify partial right orders with subsemigroups omitting e.

イロト イ押ト イヨト イヨト

A partial right order *P* on a group *G* is a (total) **right order** on *G* if

$$P\cup P^{-1}\cup \{e\}=G.$$

Question: When does a partial right order extend to a right order?

A partial right order P on a group G is a (total) right order on G if

$$P \cup P^{-1} \cup \{e\} = G.$$

Question: When does a partial right order extend to a right order?

Theorem (Kopytov and Medvedev 1994)

The following are equivalent for any partial right order P on a group G: (1) B outends to a right order of C

(2) For all $a_1, \ldots, a_n \in G \setminus \{e\}$, there exist $\delta_1, \ldots, \delta_n \in \{-1, 1\}$ so that

$$\mathbf{e} \not\in \langle \{ \boldsymbol{a}_1^{\delta_1}, \ldots, \boldsymbol{a}_n^{\delta_n} \} \cup \boldsymbol{P} \rangle.$$

Problem: Can we check if a partial right order extends to a right order?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Kopytov and Medvedev 1994)

The following are equivalent for any partial right order P on a group G:

(1) P extends to a right order of G.

(2) For all $a_1, \ldots, a_n \in G \setminus \{e\}$, there exist $\delta_1, \ldots, \delta_n \in \{-1, 1\}$ so that

$$\mathbf{e} \not\in \langle \{ \boldsymbol{a}_1^{\delta_1}, \ldots, \boldsymbol{a}_n^{\delta_n} \} \cup \boldsymbol{P} \rangle.$$

Problem: Can we check if a partial right order extends to a right order?

Theorem (Kopytov and Medvedev 1994)

The following are equivalent for any partial right order P on a group G:

- (1) P extends to a right order of G.
- (2) For all $a_1, \ldots, a_n \in G \setminus \{e\}$, there exist $\delta_1, \ldots, \delta_n \in \{-1, 1\}$ so that

$$e \not\in \langle \{ \pmb{a}_1^{\delta_1}, \dots, \pmb{a}_n^{\delta_n} \} \cup \pmb{P} \rangle.$$

Problem: Can we check if a partial right order extends to a right order?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Kopytov and Medvedev 1994)

The following are equivalent for any partial right order P on a group G:

- (1) P extends to a right order of G.
- (2) For all $a_1, \ldots, a_n \in G \setminus \{e\}$, there exist $\delta_1, \ldots, \delta_n \in \{-1, 1\}$ so that

$$e \not\in \langle \{ \pmb{a}_1^{\delta_1}, \dots, \pmb{a}_n^{\delta_n} \} \cup \pmb{P} \rangle.$$

Problem: Can we check if a partial right order extends to a right order?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Extending Partial Right Orders on Free Groups

Let *F* denote a **finitely generated free group** of rank at least 2, writing *t* for both an element of *F* and the reduced term of length |t|, and let F_N denote the set of all elements of *F* of length $\leq N$.

We call $S \subseteq F$ an **N-truncated right order** on F if $S = \langle S \rangle \cap F_N$, e $\notin S$, and $S \cup S^{-1} \cup \{e\} = F_N$.

Theorem (Smith 2005, Clay and Smith 2009)

The following are equivalent for any finite subset S of F:

(1) S extends to a right order of F.

(2) S extends to an N-truncated right order on F for some $N \in \mathbb{N}$.

Let *F* denote a **finitely generated free group** of rank at least 2, writing *t* for both an element of *F* and the reduced term of length |t|, and let F_N denote the set of all elements of *F* of length $\leq N$.

We call $S \subseteq F$ an **N-truncated right order** on F if $S = \langle S \rangle \cap F_N$, $e \notin S$, and $S \cup S^{-1} \cup \{e\} = F_N$.

Theorem (Smith 2005, Clay and Smith 2009)

The following are equivalent for any finite subset S of F:

(1) S extends to a right order of F.

(2) S extends to an N-truncated right order on F for some $N \in \mathbb{N}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *F* denote a **finitely generated free group** of rank at least 2, writing *t* for both an element of *F* and the reduced term of length |t|, and let F_N denote the set of all elements of *F* of length $\leq N$.

We call $S \subseteq F$ an **N-truncated right order** on F if $S = \langle S \rangle \cap F_N$, $e \notin S$, and $S \cup S^{-1} \cup \{e\} = F_N$.

Theorem (Smith 2005, Clay and Smith 2009)

The following are equivalent for any finite subset S of F:

(1) S extends to a right order of F.

(2) S extends to an N-truncated right order on F for some $N \in \mathbb{N}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Corollary

Checking if a given finitely generated partial right order of a free group extends to a right order is decidable.

Consider the partial right order $\langle S_1 \rangle$ on the 2-generated free group for

$$S_1 = \{x^2, xy, yx^{-1}\}.$$

We add all products in F_2 of members of S_1 , producing

$$S_2 = \{x^2, xy, yx^{-1}, yx, y^2\}.$$

We choose a sign δ for each of the remaining members of F_2 to obtain

$$S_3 = \{x^2, xy, yx^{-1}, yx, y^2, x, y, x^{-1}y\}.$$

Then S_3 is a 2-truncated right order on F and, using the previous theorem, the partial right order $\langle S_1 \rangle$ extends to a right order of F.

Consider the partial right order $\langle S_1 \rangle$ on the 2-generated free group for

$$S_1 = \{x^2, xy, yx^{-1}\}.$$

We add all products in F_2 of members of S_1 , producing

$$S_2 = \{x^2, xy, yx^{-1}, yx, y^2\}.$$

We choose a sign δ for each of the remaining members of F_2 to obtain

$$S_3 = \{x^2, xy, yx^{-1}, yx, y^2, x, y, x^{-1}y\}.$$

Then S_3 is a 2-truncated right order on F and, using the previous theorem, the partial right order $\langle S_1 \rangle$ extends to a right order of F.

Consider the partial right order $\langle \mathcal{S}_1 \rangle$ on the 2-generated free group for

$$S_1 = \{x^2, xy, yx^{-1}\}.$$

We add all products in F_2 of members of S_1 , producing

$$S_2 = \{x^2, xy, yx^{-1}, yx, y^2\}.$$

We choose a sign δ for each of the remaining members of F_2 to obtain

$$S_3 = \{x^2, xy, yx^{-1}, yx, y^2, x, y, x^{-1}y\}.$$

Then S_3 is a 2-truncated right order on F and, using the previous theorem, the partial right order $\langle S_1 \rangle$ extends to a right order of F.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider the partial right order $\langle \mathcal{S}_1 \rangle$ on the 2-generated free group for

$$S_1 = \{x^2, xy, yx^{-1}\}.$$

We add all products in F_2 of members of S_1 , producing

$$S_2 = \{x^2, xy, yx^{-1}, yx, y^2\}.$$

We choose a sign δ for each of the remaining members of F_2 to obtain

$$S_3 = \{x^2, xy, yx^{-1}, yx, y^2, x, y, x^{-1}y\}.$$

Then S_3 is a 2-truncated right order on F and, using the previous theorem, the partial right order $\langle S_1 \rangle$ extends to a right order of F.

George Metcalfe (University of Bern)

Consider the partial right order $\langle \mathcal{S}_1 \rangle$ on the 2-generated free group for

$$S_1 = \{x^2, xy, yx^{-1}\}.$$

We add all products in F_2 of members of S_1 , producing

$$S_2 = \{x^2, xy, yx^{-1}, yx, y^2\}.$$

We choose a sign δ for each of the remaining members of F_2 to obtain

$$S_3 = \{x^2, xy, yx^{-1}, yx, y^2, x, y, x^{-1}y\}.$$

Then S_3 is a 2-truncated right order on F and, using the previous theorem, the partial right order $\langle S_1 \rangle$ extends to a right order of F.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A lattice-ordered group (or *l*-group) is an algebraic structure

$$\langle L, \wedge, \vee, \cdot, ^{-1}, \mathbf{e} \rangle$$

satisfying the following conditions:

- $\langle L, \wedge, \vee \rangle$ is a lattice
- $\langle L, \cdot, -1, e \rangle$ is a group
- $a(b \lor c)d = abd \lor acd$ for all $a, b, c, d \in L$.

It follows also that *L* is distributive and satisfies $e \le a \lor a^{-1}$.

$$f \leq g \qquad \Longleftrightarrow \qquad f(a) \leq g(a) \text{ for all } a \in \Omega.$$

Theorem (Holland 1963)

Every ℓ -group embeds into Aut (Ω) for some chain Ω .

Theorem (Holland 1976)

The variety \mathcal{LG} of ℓ -groups is generated by Aut(\mathbb{R}).

Problem: Can we *check* if an equation is valid in all ℓ -groups?

$$f \leq g \qquad \Longleftrightarrow \qquad f(a) \leq g(a) ext{ for all } a \in \Omega.$$

Theorem (Holland 1963)

Every ℓ -group embeds into Aut(Ω) for some chain Ω .

Theorem (Holland 1976)

The variety \mathcal{LG} of ℓ -groups is generated by Aut(\mathbb{R}).

Problem: Can we *check* if an equation is valid in all ℓ -groups?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$f \leq g \qquad \Longleftrightarrow \qquad f(a) \leq g(a) \ \ ext{for all} \ a \in \Omega.$$

Theorem (Holland 1963)

Every ℓ -group embeds into Aut(Ω) for some chain Ω .

Theorem (Holland 1976)

The variety \mathcal{LG} of ℓ -groups is generated by $Aut(\mathbb{R})$.

Problem: Can we *check* if an equation is valid in all ℓ -groups?

$$f \leq g \qquad \Longleftrightarrow \qquad f(a) \leq g(a) \ \ ext{for all} \ a \in \Omega.$$

Theorem (Holland 1963)

Every ℓ -group embeds into Aut(Ω) for some chain Ω .

Theorem (Holland 1976)

The variety \mathcal{LG} of ℓ -groups is generated by $Aut(\mathbb{R})$.

Problem: Can we check if an equation is valid in all *l*-groups?

For any term *t*, there exist *I*, J_i ($i \in I$) and group terms t_{ij} such that

$$\mathcal{LG} \models t \approx \bigwedge_{i \in I} \bigvee_{j \in J_i} t_{ij}.$$

It follows easily that for checking the validity of ℓ -group equations, it suffices to be able to check for group terms t_1, \ldots, t_n whether or not

 $\mathcal{LG} \models \mathbf{e} \leq t_1 \lor \ldots \lor t_n.$

George Metcalfe (University of Bern)

For any term *t*, there exist *I*, J_i ($i \in I$) and group terms t_{ij} such that

$$\mathcal{LG} \models t \approx \bigwedge_{i \in I} \bigvee_{j \in J_i} t_{ij}.$$

It follows easily that for checking the validity of ℓ -group equations, it suffices to be able to check for group terms t_1, \ldots, t_n whether or not

$$\mathcal{LG} \models \mathbf{e} \leq t_1 \lor \ldots \lor t_n.$$

4 3 > 4 3

4 A N

Lemma If $\{t_1, \ldots, t_n\}$ extends to a right order on *F*, then $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

Proof.

Suppose that $\{t_1, \ldots, t_n\}$ extends to a right order on *F*. Then we obtain also a right order of *F* where t_1, \ldots, t_n are negative. Consider the ℓ -group Aut(F) and evaluate each variable *x* by the map $s \mapsto sx$. Then each t_i maps e to $t_i < e$, and $t_1 \lor \ldots \lor t_n$ maps e to some $t_j < e$. So $e \not\leq t_1 \lor \ldots \lor t_n$ in Aut(F), and $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

(日)

Lemma

If $\{t_1, \ldots, t_n\}$ extends to a right order on F, then $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

Proof.

Suppose that $\{t_1, \ldots, t_n\}$ extends to a right order on *F*. Then we obtain also a right order of *F* where t_1, \ldots, t_n are negative. Consider the ℓ -group Aut(F) and evaluate each variable *x* by the map $s \mapsto sx$. Then each t_i maps e to $t_i < e$, and $t_1 \lor \ldots \lor t_n$ maps e to some $t_j < e$. So $e \not\leq t_1 \lor \ldots \lor t_n$ in Aut(F), and $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

< 日 > < 同 > < 回 > < 回 > < □ > <

Lemma

If $\{t_1, \ldots, t_n\}$ extends to a right order on F, then $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

Proof.

Suppose that $\{t_1, \ldots, t_n\}$ extends to a right order on *F*. Then we obtain also a right order of *F* where t_1, \ldots, t_n are negative. Consider the ℓ -group Aut(F) and evaluate each variable *x* by the map $s \mapsto sx$. Then each t_i maps e to $t_i < e$, and $t_1 \lor \ldots \lor t_n$ maps e to some $t_j < e$. So $e \not\leq t_1 \lor \ldots \lor t_n$ in Aut(F), and $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

イロン イ団と イヨン 一

Lemma

If $\{t_1, \ldots, t_n\}$ extends to a right order on F, then $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

Proof.

Suppose that $\{t_1, \ldots, t_n\}$ extends to a right order on *F*. Then we obtain also a right order of *F* where t_1, \ldots, t_n are negative. Consider the ℓ -group Aut(F) and evaluate each variable *x* by the map $s \mapsto sx$. Then each t_i maps e to $t_i < e$, and $t_1 \lor \ldots \lor t_n$ maps e to some $t_j < e$. So $e \not\leq t_1 \lor \ldots \lor t_n$ in Aut(F), and $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

イロン イ団と イヨン 一

Lemma

If $\{t_1, \ldots, t_n\}$ extends to a right order on F, then $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

Proof.

Suppose that $\{t_1, \ldots, t_n\}$ extends to a right order on *F*. Then we obtain also a right order of *F* where t_1, \ldots, t_n are negative. Consider the ℓ -group Aut(F) and evaluate each variable *x* by the map $s \mapsto sx$. Then each t_i maps e to $t_i < e$, and $t_1 \lor \ldots \lor t_n$ maps e to some $t_j < e$. So $e \leq t_1 \lor \ldots \lor t_n$ in Aut(F), and $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

イロト 不得 トイヨト イヨト

Lemma

If $\{t_1, \ldots, t_n\}$ extends to a right order on F, then $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

Proof.

Suppose that $\{t_1, \ldots, t_n\}$ extends to a right order on *F*. Then we obtain also a right order of *F* where t_1, \ldots, t_n are negative. Consider the ℓ -group Aut(F) and evaluate each variable *x* by the map $s \mapsto sx$. Then each t_i maps e to $t_i < e$, and $t_1 \lor \ldots \lor t_n$ maps e to some $t_j < e$. So $e \leq t_1 \lor \ldots \lor t_n$ in Aut(F), and $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

イロト イポト イヨト イヨト 三日

Lemma

If $\{t_1, \ldots, t_n\}$ extends to a right order on F, then $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

Proof.

Suppose that $\{t_1, \ldots, t_n\}$ extends to a right order on *F*. Then we obtain also a right order of *F* where t_1, \ldots, t_n are negative. Consider the ℓ -group Aut(F) and evaluate each variable *x* by the map $s \mapsto sx$. Then each t_i maps e to $t_i < e$, and $t_1 \lor \ldots \lor t_n$ maps e to some $t_j < e$. So $e \leq t_1 \lor \ldots \lor t_n$ in Aut(F), and $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

イロト イポト イヨト イヨト 三日

Lemma

If $\{t_1, \ldots, t_n\}$ extends to a right order on F, then $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

Proof.

Suppose that $\{t_1, \ldots, t_n\}$ extends to a right order on *F*. Then we obtain also a right order of *F* where t_1, \ldots, t_n are negative. Consider the ℓ -group Aut(F) and evaluate each variable *x* by the map $s \mapsto sx$. Then each t_i maps e to $t_i < e$, and $t_1 \lor \ldots \lor t_n$ maps e to some $t_j < e$. So $e \not\leq t_1 \lor \ldots \lor t_n$ in Aut(F), and $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

Lemma

If $\{t_1, \ldots, t_n\}$ extends to a right order on F, then $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

Proof.

Suppose that $\{t_1, \ldots, t_n\}$ extends to a right order on *F*. Then we obtain also a right order of *F* where t_1, \ldots, t_n are negative. Consider the ℓ -group Aut(F) and evaluate each variable *x* by the map $s \mapsto sx$. Then each t_i maps e to $t_i < e$, and $t_1 \lor \ldots \lor t_n$ maps e to some $t_j < e$. So $e \not\leq t_1 \lor \ldots \lor t_n$ in Aut(F), and $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$.

Lemma

If $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$, then $\{t_1, \ldots, t_n\}$ extends to a right order on F.

Proof.

Suppose that $\{t_1, \ldots, t_n\}$ does not extend to a right order on *F*. Then there exist $s_1, \ldots, s_m \in F \setminus \{e\}$ such that for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$

$$\mathbf{e} \in \langle \{\mathbf{t}_1, \ldots, \mathbf{t}_n, \mathbf{s}_1^{\delta_1}, \ldots, \mathbf{s}_m^{\delta_m}\} \rangle.$$

We prove $\mathcal{LG} \models e \leq t_1 \vee \ldots \vee t_n$ by induction on *m*.

Base case: We have $e \in \langle \{t_1, \ldots, t_n\} \rangle$ and the result follows easily.

Inductive step: We use the (non-trivial) fact that for any $s \in F \setminus \{e\}$ and join *t* of elements from *F*,

 $\mathcal{LG} \models e \leq t \lor s$ and $\mathcal{LG} \models e \leq t \lor s^{-1} \implies \mathcal{LG} \models e \leq t$. \Box

Lemma

If $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$, then $\{t_1, \ldots, t_n\}$ extends to a right order on F.

Proof.

Suppose that $\{t_1, \ldots, t_n\}$ does not extend to a right order on F. Then there exist $s_1, \ldots, s_m \in F \setminus \{e\}$ such that for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$

$$\mathbf{e} \in \langle \{t_1,\ldots,t_n,s_1^{\delta_1},\ldots,s_m^{\delta_m}\} \rangle.$$

We prove $\mathcal{LG} \models \mathbf{e} \leq t_1 \vee \ldots \vee t_n$ by induction on *m*.

Base case: We have $e \in \langle \{t_1, \ldots, t_n\} \rangle$ and the result follows easily.

Inductive step: We use the (non-trivial) fact that for any $s \in F \setminus \{e\}$ and join *t* of elements from *F*,

 $\mathcal{LG} \models e \leq t \lor s$ and $\mathcal{LG} \models e \leq t \lor s^{-1} \implies \mathcal{LG} \models e \leq t$. \Box

Lemma

If $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$, then $\{t_1, \ldots, t_n\}$ extends to a right order on F.

Proof.

Suppose that $\{t_1, \ldots, t_n\}$ does not extend to a right order on *F*. Then there exist $s_1, \ldots, s_m \in F \setminus \{e\}$ such that for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$

$$\mathbf{e} \in \langle \{t_1, \ldots, t_n, s_1^{\delta_1}, \ldots, s_m^{\delta_m}\} \rangle.$$

We prove $\mathcal{LG} \models e \leq t_1 \vee \ldots \vee t_n$ by induction on *m*.

Base case: We have $e \in \langle \{t_1, \ldots, t_n\} \rangle$ and the result follows easily.

Inductive step: We use the (non-trivial) fact that for any $s \in F \setminus \{e\}$ and join *t* of elements from *F*,

 $\mathcal{LG} \models e \leq t \lor s$ and $\mathcal{LG} \models e \leq t \lor s^{-1} \implies \mathcal{LG} \models e \leq t$.

Lemma

If $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$, then $\{t_1, \ldots, t_n\}$ extends to a right order on F.

Proof.

Suppose that $\{t_1, \ldots, t_n\}$ does not extend to a right order on *F*. Then there exist $s_1, \ldots, s_m \in F \setminus \{e\}$ such that for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$

$$\mathbf{e} \in \langle \{t_1, \ldots, t_n, s_1^{\delta_1}, \ldots, s_m^{\delta_m}\} \rangle.$$

We prove $\mathcal{LG} \models e \leq t_1 \lor \ldots \lor t_n$ by induction on *m*.

Base case: We have $e \in \langle \{t_1, \ldots, t_n\} \rangle$ and the result follows easily.

Inductive step: We use the (non-trivial) fact that for any $s \in F \setminus \{e\}$ and join *t* of elements from *F*,

 $\mathcal{LG} \models e \leq t \lor s$ and $\mathcal{LG} \models e \leq t \lor s^{-1} \implies \mathcal{LG} \models e \leq t$.

Lemma

If $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$, then $\{t_1, \ldots, t_n\}$ extends to a right order on F.

Proof.

Suppose that $\{t_1, \ldots, t_n\}$ does not extend to a right order on *F*. Then there exist $s_1, \ldots, s_m \in F \setminus \{e\}$ such that for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$

$$\mathbf{e} \in \langle \{t_1, \ldots, t_n, s_1^{\delta_1}, \ldots, s_m^{\delta_m}\} \rangle.$$

We prove $\mathcal{LG} \models e \leq t_1 \lor \ldots \lor t_n$ by induction on *m*.

Base case: We have $e \in \langle \{t_1, \dots, t_n\} \rangle$ and the result follows easily.

Inductive step: We use the (non-trivial) fact that for any $s \in F \setminus \{e\}$ and join *t* of elements from *F*,

 $\mathcal{LG} \models e \leq t \lor s$ and $\mathcal{LG} \models e \leq t \lor s^{-1} \implies \mathcal{LG} \models e \leq t$. \Box

Lemma

If $\mathcal{LG} \not\models e \leq t_1 \lor \ldots \lor t_n$, then $\{t_1, \ldots, t_n\}$ extends to a right order on F.

Proof.

Suppose that $\{t_1, \ldots, t_n\}$ does not extend to a right order on *F*. Then there exist $s_1, \ldots, s_m \in F \setminus \{e\}$ such that for all $\delta_1, \ldots, \delta_m \in \{-1, 1\}$

$$\mathbf{e} \in \langle \{t_1, \ldots, t_n, s_1^{\delta_1}, \ldots, s_m^{\delta_m}\} \rangle.$$

We prove $\mathcal{LG} \models e \leq t_1 \vee \ldots \vee t_n$ by induction on *m*.

Base case: We have $e \in \langle \{t_1, \ldots, t_n\} \rangle$ and the result follows easily.

Inductive step: We use the (non-trivial) fact that for any $s \in F \setminus \{e\}$ and join *t* of elements from *F*,

$$\mathcal{LG} \models \mathbf{e} \leq t \lor s$$
 and $\mathcal{LG} \models \mathbf{e} \leq t \lor s^{-1} \implies \mathcal{LG} \models \mathbf{e} \leq t$. \square

Theorem

Exactly one of the following holds:

(a) $\mathcal{LG} \models \mathbf{e} \leq t_1 \vee \ldots \vee t_n$.

(b) $\{t_1, \ldots, t_n\}$ extends to a right order on *F*.

Corollary

Checking the validity of an equation in all ℓ -groups is decidable.

3

Theorem

Exactly one of the following holds:

(a) $\mathcal{LG} \models \mathbf{e} \leq t_1 \vee \ldots \vee t_n$.

(b) $\{t_1, \ldots, t_n\}$ extends to a right order on *F*.

Corollary

Checking the validity of an equation in all ℓ -groups is decidable.

The Holland-McCleary Theorem Revisited

Given $S \subseteq F$, let $\mathcal{I}(S)$ denote the set of all $s^{-1}t \in F$ such that s and t are **initial subterms** of terms in S.

Theorem (Holland and McCleary 1979)

The following are equivalent:

(1) $\mathcal{LG} \models \mathbf{e} \leq t_1 \vee \ldots \vee t_n$.

(2) There exist $s_1, \ldots, s_m \in \mathcal{I}(\{t_1, \ldots, t_n\}) \setminus \{e\}$ such that for all $\delta_1, \ldots, \delta_m \in \{-1, 1\},$

$$\mathbf{e} \in \langle \{t_1,\ldots,t_n,s_1^{\delta_1},\ldots,s_m^{\delta_m}\} \rangle.$$

Hence checking the validity of an equation in all ℓ -groups is decidable.

< ロ > < 同 > < 回 > < 回 >

Given $S \subseteq F$, let $\mathcal{I}(S)$ denote the set of all $s^{-1}t \in F$ such that s and t are **initial subterms** of terms in S.

Theorem (Holland and McCleary 1979)

The following are equivalent:

- (1) $\mathcal{LG} \models \mathbf{e} \leq t_1 \lor \ldots \lor t_n$.
- (2) There exist $s_1, \ldots, s_m \in \mathcal{I}(\{t_1, \ldots, t_n\}) \setminus \{e\}$ such that for all $\delta_1, \ldots, \delta_m \in \{-1, 1\},$

$$\mathbf{e} \in \langle \{t_1,\ldots,t_n,s_1^{\delta_1},\ldots,s_m^{\delta_m}\} \rangle.$$

Hence checking the validity of an equation in all ℓ -groups is decidable.

イロト イ団ト イヨト イヨト

Fix some $T \subseteq F$. Then we call $S \subseteq F$ a *T*-truncated right order on *F* if $S = \langle S \rangle \cap T$, $e \notin S$, and $S \cup S^{-1} \cup \{e\} = T$.

Corollary

The following are equivalent for any finite subset $S \subseteq F$:

(1) S extends to a right order of F.

(2) S extends to an $\mathcal{I}(S)$ -truncated right order on F.

Fix some $T \subseteq F$. Then we call $S \subseteq F$ a *T*-truncated right order on *F* if $S = \langle S \rangle \cap T$, $e \notin S$, and $S \cup S^{-1} \cup \{e\} = T$.

Corollary

The following are equivalent for any finite subset $S \subseteq F$:

- (1) S extends to a right order of F.
- (2) S extends to an $\mathcal{I}(S)$ -truncated right order on F.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof Theory for Lattice-Ordered Groups. N. Galatos and G. Metcalfe. *Annals of Pure and Applied Logic* 167 (2016), 707–724.

- Checking validity of equations in *l*-groups is co-NP-complete; the extending partial right orders on free groups problem is in NP.
- Extending partial bi-orders on free groups to total bi-orders corresponds to validity in representable *l*-groups (or o-groups).
- For abelian *l*-groups, we obtain a "theorem of the alternative" that extends also to other classes of involutive monoids.

Proof Theory for Lattice-Ordered Groups. N. Galatos and G. Metcalfe. *Annals of Pure and Applied Logic* 167 (2016), 707–724.

- Checking validity of equations in *l*-groups is co-NP-complete; the extending partial right orders on free groups problem is in NP.
- Extending partial bi-orders on free groups to total bi-orders corresponds to validity in representable *l*-groups (or o-groups).
- For abelian *l*-groups, we obtain a "theorem of the alternative" that extends also to other classes of involutive monoids.

Proof Theory for Lattice-Ordered Groups. N. Galatos and G. Metcalfe. *Annals of Pure and Applied Logic* 167 (2016), 707–724.

- Checking validity of equations in *l*-groups is co-NP-complete; the extending partial right orders on free groups problem is in NP.
- Extending partial bi-orders on free groups to total bi-orders corresponds to validity in representable ℓ-groups (or o-groups).
- For abelian *l*-groups, we obtain a "theorem of the alternative" that extends also to other classes of involutive monoids.

< ロ > < 同 > < 回 > < 回 >

Proof Theory for Lattice-Ordered Groups. N. Galatos and G. Metcalfe. *Annals of Pure and Applied Logic* 167 (2016), 707–724.

- Checking validity of equations in *l*-groups is co-NP-complete; the extending partial right orders on free groups problem is in NP.
- Extending partial bi-orders on free groups to total bi-orders corresponds to validity in representable ℓ-groups (or o-groups).
- For abelian *l*-groups, we obtain a "theorem of the alternative" that extends also to other classes of involutive monoids.

< ロ > < 同 > < 回 > < 回 >