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Motivation

I Partially ordered sets are the basic structures of algebraic
logic:

I A set (of “propositions”)
I An “entailment” relation between them: p ⇒ q

I Additional logical structure: connectives with rules.
I Want to put this onto a category-theoretic footing.
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Order Enriched Categories

Definition
Order Enriched Category: a category in which hom sets are
partially ordered and composition is monotonic in both
arguments.

Examples

I Pos itself
I Any category that is concrete over Pos
I Rel – morphisms ordered by ⊆
I Pos∗ – posets with weakening relations: R : A # B s.t.

a ≤ a′ R b′ ≤ b implies a R b

I DLat∗ – bounded dist. lattices with weakening relations
R : A # B that are also sublattices of A× B
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Map-like Behavior of Weakening Relations
Between posets, two weakening relations arise naturally from a
monotonic function.
For f : A→ B, define

I f̂ : A # B by a f̂ b iff f (a) ≤ b
I f̌ : B # A by b f̌ a iff b ≤ f (a).

Lemma
For any monotonic function f : A→ B,

idB ≤ f̌ ; f̂ and f̂ ; f̌ ≤ idA

Definition
In any poset enriched category A,

I A map is a morphism with a lower adjoint.
I Map(A) is the subcategory of maps.
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From map-like behavior to honest functions

Lemma
The categories Map(Pos∗) and Pos are equivalent.

Proof.
For function f : A→ B, we have f̂ adjoint to f̌ .
For an adjoint pair of weakening relations (R∗,R∗), define

fm(a) = b iff a R∗ b R∗ a.

Note: An analogous fact is true for
I DLat∗ and DLat
I Set∗ (also known as Rel) and Set (discrete partial orders)
I many others.
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Cartesian Bicategories

Definition (Carboni & Walter)
A cartesian bicategory is

I Poset enriched
I Symmetric monoidal: ⊗, I with the usual natural isos
I ⊗ is monotonic on hom sets
I every object is equipped with a comonoid:

I δ̂A : A→ A⊗ A
I κ̂A : A→ I

I all morphims are lax homomorphisms for the comonoid:

R; δ̂B ≤ δ̂A; (R ⊗ R)

R; κ̂B ≤ κ̂A

I δ̂A and κ̂A are maps [they have lower adjoints δ̌A and κ̌A].
I δ̂A; δ̌A = idA
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Pos∗, Lat∗, DLat∗, BA∗ and Set∗ are cartesian bicategories

In Pos∗

I Cartesian product A⊗ B and I = {?} yield the symmetric
monoidal structure.

I The relations
I a δ̂A (b, c) if and only if a ≤ b and a ≤ c
I a κ̂ ? (all a)

determine cartesian bicategory structure (≤ is equality in
Set∗)

I Also Pos∗ is compact closed: The order dual A∂ of a poset
is again such an object. One has to check that these are
duals in the correct sense.

I In Set∗, A∂ = A.
I In Lat∗, DLat∗ and BA∗, same as in Pos∗.
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String Diagrams For Symmetric Monoidal Categories

Symmetric monoidal (and compact closed) categories have a
coherence theorem based on string diagrams

A diagram of A⊗ B ⊗ C∂ :

A
B
C

A diagram of R : A⊗ B # C∂ ⊗ D: R
A

B

C

D

Theorem (Joyal & Street)
Two diagrams denote the same morphism in all compact closed
categories iff they are homotopically equivalent (in R4).
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Some Details of Diagrams

Symmetry is “crossed wires”. Unit and counit are “u-turns”.

γ̂ η ε

So the compact closed structure is reflected in various

equations: =

=
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Bicartesian Enrichment

Diagrams for the diagonals

δ̂ δ̌ κ̂ κ̌

Map axioms

≤ ≤
≤ ≤
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More Axioms (and Lemmas)

Comonoid/monoid

Comonoid Axioms Monoid lemmas

≤ ≤

≤ ≤

Split monicity axiom for δ

≤
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Lax Naturality Axioms and lemmas

Weak Frobenius Axiom (laxity for δ̌ wrt δ̂)

≤

Laxity for basic morphisms

Axioms Lemmas

R ≤

R

R

R ≤

R

R

R ≤ R ≤
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Coherence Theorems

Theorem
Let ≤ be the least pre-order on string diagrams including the
axioms and closed under composition and ⊗ (stacking). Then
the poset reflection of ≤ determines an initial cartesian
bicategory (for a given set of basic objects and morphisms).

Theorem
The same construction works for compact closed cartesian
bicategories.

Theorem
The same construction also works when ≤ is augmented with
an inequational theory (a set of pairs of diagrams).
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Lattice-like Objects in Cartesian Bicategories

Meets and joins

I And object is meet semilattice-like if δ̂A is a comap (it is
already a map).

That is, there is a morphism ∧ satisfying

∧ ≤

≤ ∧

It is easy to show that ∧ is idempotent, associative and

commutative and deflating: ∧ ≤

I Dually, A is join semilattice-like if δ̌A is a map.
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More on Lattices

Lemma
In Pos∗:

I A poset P is an actual meet semilattice iff it is meet
semilattice-like.

I A poset P is an actual join semilattice iff it is join
semilattice-like.

Moreover
I Boundedness is characterized by κ̂A being a comap (>) or
κ̌A being a map (⊥).

I What about distributivity?
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Distributivity

Lemma
A lattice-like object in a cartesian bicategory is distributive (i.e.,
∧ distributes over δ̌) if and only if

∨ ∧ ≤ ∨∧

The proof is entirely “stringy”. That is, we can use only the
string rewriting in the initial bicartesian category of string
diagrams.
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Complementedness

Lemma
In Pos∗, if an object is a distributive lattice, then it is
complemented if and only if

∨ ∧ ≥ ∨∧

Remark
I This condition is dual to the Frobenius Law (FL) for the

bialgebra (δ̂, δ̌, κ̂, κ̌).
I If FL holds for all objects, the bicartesian category is a

regular allegory (objects ares “discrete”).
I “Complemented distributive lattice” is dual to “discrete”. [I

do not yet know how to make this precise.]
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Other Examples and Constructions

Examples

I Compact pospaces by taking closed weakening relations
as morphisms. Then maps are bijective with continuous
monotonic functions.

I Proximity lattices (not quite discussed yesterday).
I Rel – all objects satisfy Frobenius Law

Constructions
I Map-comma: Objects are maps into a base poset B.

Morphisms are lax homomorphisms.
I Karoubi envelope of a given cartesian bicategory
I (Pos∗)A

op
– “presheaves” over the base Pos∗.
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Thanks
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