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Residuated Lattices

Definition

A (commutative) residuated lattice is a structure
R = {R, ·,∨,∧, \, /, 1}, such that

(R,∨,∧) is a lattice

(R, ·, 1) is a (commutative) monoid

For all x, y, z ∈ R

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y,

where ≤ is the lattice order.

We denote the variety of (commutative) residuated lattices by
(CRL) RL.
If (r) is a a rule (axiom), then (C)RLr := (C)RL+ (r).
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Knotted rules

RL FL

(k2
1) x ≤ x2

X,Z,Z, Y ⇒ C

X,Z, Y ⇒ C
[c]

(k0
1) x ≤ 1

X,Y ⇒ C

X,Z, Y ⇒ C
[w]

(k1
2) x2 ≤ x

X,Z1, Y ⇒ C X,Z2, Y ⇒ C

X,Z1, Z2, Y ⇒ C
[mingle]

For n 6= m,

(kmn ) xn ≤ xm
Γ

X,Z1, ..., Zn, Y ⇒ C
[kmn ]
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Some known results

[van Alten 2005]
CRL+ (kmn ) has the finite embedability property (FEP).

◦ FLe + [kmn ] is dedidable.
◦ CRL+ (kmn ) + Γ, has the FEP for any set of
{∨, ·, 1}-equations Γ. [Galatos & Jipsen 2013]

[Chvalovský & Horč́ık 2016]
FLc is undecidable.
◦ RL+ (kmn ) is undecidable for 1 ≤ n < m.
◦ For any variety V, if W+

L ∈ V then V is undecidable.

[Urquhart 1999]
FLec, although decidable, does not admit a primitive
recursive decision procedure.
◦ The decidability of FLe + [kmn ] is not primitive

recursive for 1 ≤ n < m.

5 / 29



D
RA
FT

2
Equations in the signature {∨, ·, 1}

d-rules
Undecidability for certain d-rules

Approach

Some known results

[van Alten 2005]
CRL+ (kmn ) has the finite embedability property (FEP).
◦ FLe + [kmn ] is dedidable.
◦ CRL+ (kmn ) + Γ, has the FEP for any set of
{∨, ·, 1}-equations Γ. [Galatos & Jipsen 2013]
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FLc is undecidable.
◦ RL+ (kmn ) is undecidable for 1 ≤ n < m.
◦ For any variety V, if W+

L ∈ V then V is undecidable.

[Urquhart 1999]
FLec, although decidable, does not admit a primitive
recursive decision procedure.
◦ The decidability of FLe + [kmn ] is not primitive

recursive for 1 ≤ n < m.

5 / 29



D
RA
FT

2
Equations in the signature {∨, ·, 1}

d-rules
Undecidability for certain d-rules

Approach

Some known results

[van Alten 2005]
CRL+ (kmn ) has the finite embedability property (FEP).
◦ FLe + [kmn ] is dedidable.
◦ CRL+ (kmn ) + Γ, has the FEP for any set of
{∨, ·, 1}-equations Γ. [Galatos & Jipsen 2013]

[Chvalovský & Horč́ık 2016]
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How do general equations in the signature {∨, ·, 1} effect
decidability?

We will take an algebraic, rather than proof-theoretic,
approach via the theory of residuated lattices.

We will only inspect {∨, ·, 1}-equations in CRL.
◦ Undecidability results for many {∨, ·, 1}-equations in
RL are consequences of [Chvalovský & Horč́ık 2016].
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Linearization

x ≤ y ⇐⇒ x ∨ y = y

x ∨ y ≤ z ⇐⇒ x ≤ z and y ≤ z

For any n ≥ 1 and m ≥ 0,

(∀z) zn ≤ zm ⇐⇒ x1 · · ·xn ≤ (x1 ∨ ... ∨ xn)m , (∀x1, ..., xn)

=
∨{

xa11 · · ·x
an
n :

n∑
i=1

ai = m

}
Thus, any equation s = t in the signature {∨, ·, 1} is
equivalent to some conjunction of simple rules, i.e. linear
inequations of the form:

x1 · · ·xn ≤
∨
{xa11 · · ·x

an
n : (ai)

n
i=1 ∈ A} ,

for some finite set A ⊂ Nn.
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Observations

When does a simple rule entail a knotted rule?

CRLr |= (kmn ) =⇒ CRLr has the FEP.

Definition

We say a simple rule (d) is a d-rule iff for all knotted rules (kmn ),

CRLd 6|= (kmn ).

We denote the set of d-rules by D.
Example:

x ≤ x2 ∨ 1

8 / 29
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Characterization of D
Consider the cancelative monoid (N,+). By adjoining bounds
⊥,>, we form the residuated lattice MN:

>

0 1 2 3 4 5 6 . . .

⊥

MN |= (xn ≤ xm) ⇐⇒ MN |= (∀x) nx ≤ mx
⇐⇒ n = m.

Therefore, MN satisfies no knotted rules.

MN |= (r) =⇒ (r) ∈ D.

9 / 29
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d-rules

Let (d) be an n-variable d-rule given by x1 · · ·xn ≤ t.

No single-variable substitution instance of (d) can yield a
knotted rule.

I.e., for every valuation σ : {xi}ni=1 →MN,
MN |= σ(

∏n
i=1 xi) ≤ σ(t) =⇒ MN ∈ CRLd.

Hence,

(d) is a d-rule ⇐⇒ MN |= (d) ⇐⇒ no single-variable
substitution instance of (d) yields a knotted rule.
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Definition

Define the collection Dq ⊂ D by

(d) ∈ Dq ⇐⇒ (∀n 6= m ≥ 1) CRLd 6|= xn ≤ xm ∨ 1,

and define De ⊂ Dq by

(d) ∈ De ⇐⇒ CRLd |= xn ≤
k∨
i=1

xn+ci ,

for some k > 1 and n, ci > 0, for each i = 1, ..., k.

Examples:

Dq : x ≤ x3∨x2 x ≤ x3∨x2∨1 xy ≤ xy2∨x2y3∨x2y

De : x ≤ x3∨x2 xy ≤ xy2∨x2y3∨x2y

11 / 29
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Main Result

Theorem

Let (d) ∈ Dq. Then there exists Rd ∈ CRLd such that for every
variety V,

Rd ∈ V =⇒ V has an undecidable quasi-equational theory.

Corollary

Let (d) ∈ De. Then there exists Rd ∈ CRLd such that for every
variety V,

Rd ∈ V =⇒ V has an undecidable equational theory.
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Approach

1 As in Lincoln & Mitchell et. al. (1992) and Urquhart
(1999), we will use counter machines (CM) for our
undecidable problem.

2 Given a CM M , we construct another machine M ′ and a
commutative idempotent semi-ring AM ′ = (A′M ′ ,∨, ·,⊥, 1).
◦ We interpret machine instruction as relations on AM ′ .
◦ We define a relation <M ′ on AM ′ such that M halts on

input C iff θ(C) <M ′ qf for terms θ(C), qf ∈ AM ′ .
3 Following Chvalovský & Horč́ık (2016), we use the theory

of residuated frames [Galatos & Jipsen 2013] to encode the
halting problem for M as a decision problem in CRLd, for
a given (d)∈ Dq
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3 Following Chvalovský & Horč́ık (2016), we use the theory
of residuated frames [Galatos & Jipsen 2013] to encode the
halting problem for M as a decision problem in CRLd, for
a given (d)∈ Dq

13 / 29



D
RA
FT

2
Equations in the signature {∨, ·, 1}

d-rules
Undecidability for certain d-rules

Approach

Approach

1 As in Lincoln & Mitchell et. al. (1992) and Urquhart
(1999), we will use counter machines (CM) for our
undecidable problem.

2 Given a CM M , we construct another machine M ′ and a
commutative idempotent semi-ring AM ′ = (A′M ′ ,∨, ·,⊥, 1).
◦ We interpret machine instruction as relations on AM ′ .
◦ We define a relation <M ′ on AM ′ such that M halts on

input C iff θ(C) <M ′ qf for terms θ(C), qf ∈ AM ′ .
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3 Following Chvalovský & Horč́ık (2016), we use the theory

of residuated frames [Galatos & Jipsen 2013] to encode the
halting problem for M as a decision problem in CRLd, for
a given (d)∈ Dq

13 / 29



D
RA
FT

2
Equations in the signature {∨, ·, 1}

d-rules
Undecidability for certain d-rules

Approach

Counter Machines

A k-CM M = (Rk, Q, P ) is a finite state automaton where:

k ≥ 1, Rk = {r1, ..., rk} is a set of registers (or bins)
capable of containing a nonzero number.
◦ |r| represents the contents of a register r ∈ Rk.

Q is a finite set of states with a designated final state qF .

P is a finite set of instructions of the form:

(increment) q + rq′, (decrement) q − rq′, (zero-test) q0rq′.
◦ There are no instructions of the form qF · · · .

◦ A configuration C ∈ Conf(M) := Q× Nk is a tuple
〈q;n1, ..., nk〉, where ni = |ri| for each i = 1, ..., k.
◦ M has a designated final (or halting) configuration CF .
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Counter machines cont.

We interpret instructions by their effect on configurations:

〈q;n1, ..., ni, ..., nk〉
q+riq

′
−−−−→ 〈q′;n1, ..., ni + 1, ..., nk〉

〈q;n1, ..., ni + 1, ..., nk〉
q−riq′−−−−→ 〈q′;n1, ..., ni, ..., nk〉

〈q;n1, ..., 0, ..., nk〉
q0riq

′
−−−→ 〈q′;n1, ..., 0, ..., nk〉.

We define the M -computation relation  M on Conf(M) to be

the transitive closure of
⋃
p∈P

p−→.

We say a configuration C ∈ Conf(M) terminates if C  M CF

Theorem

There exists a 2-CM M such that membership in set of
terminating configurations of M is undecidable.
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The algebra AM

Let M = (Rk, Q, P ) be a k-CM, and let Z = {z1, ..., zk, qf} be a
set of (k + 1)-many fresh states.

Let AM = (AM ,∨, ·,⊥, 1) to be the commutative idempotent
semiring generated by Rk ∪Q ∪ Z ∪ {⊥, 1}, where

(AM ,∨,⊥) is a ∨-semilattice with bottom element ⊥ (i.e.
it is a commutative idempotent monoid with the additive
identity ⊥), and

(AM , ·, 1) is a commutative monoid with the multiplicative
identity 1.

Note that x(y ∨ z) = xy ∨ xz for all x, y, z ∈ AM .
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Instructions in AM

Let θ : Conf(M)→ AM be the map defined by

〈q;n1, ..., nk〉
θ7−→ qrn1

1 · · · r
nk
k

Define R∗k := {rn1
1 · · · r

nk
k ∈ AM : n1, ..., nk ∈ N}.

Our goal is to construct a relation <M such that
θ(C) <M θ(CF ) ⇐⇒ C  M CF .

Increment and decrement instructions can naturally be
simulated, for all x ∈ R∗k, by

p : q + riq
′ =⇒ qx <pM q′rix

p : q − riq′ =⇒ qrix <
p
M q′x.
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Zero-test instructions in AM

The zero-test cannot be simulated in a similar “linear” fashion.

Following [Lincoln & Mitchell, 1992], we utilize right-∨ and
zero-test states q ∈ Z as follows,

p : q 0 riq
′ =⇒ qx <pM q′x ∨ zix

q = zi =⇒ zixy <
zi
M qfx

q = qf =⇒ θ(CF ) <
qf
M qf ,

for all i ∈ {1, ..., k}, x ∈ R∗k, and y ∈ (R3 \ {ri})∗.

Note

We need qx ∨ zix <M qf =⇒ qx <M qf and zix <M qf .
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The relation <M on Aθ
M

We define the set AθM ⊂ AM by,

u ∈ AθM ⇐⇒ u =
m∨
i=1

qixi, m ≥ 1, qi ∈ Q ∪ Z, xi ∈ R∗k

We construct the computation relation <M on AθM by
◦ Let Γ be the ∨-closure over AθM of⋃

p∈P
<p ∪

⋃
q∈Z
<q

◦ Define <M be the transitive closure of Γ ∪ {(qf , qf )}.

Proposition (Lincoln & Mitchell 1992)

For all configurations C ∈ Conf(M),

C  M CF ⇐⇒ θ(C) <M qf .
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Residuated frames

Definition [Galatos & Jipsen 2013]

A residuated frame is a structure W = (W,W ′, N, ◦,,�, 1),
s.t.

(W◦, 1) is a monoid and W ′ is a set.

N ⊆W ×W ′, called the Galois relation, and

 : W ×W ′ →W ′ and � : W ′ ×W →W ′ such that

N is a nuclear, i.e. for all u, v ∈W and w ∈W ′,
(u ◦ v) N w iff u N (w � v) iff v N (u  w).

Define . : P(W )→ P(W ′) and / : P(W ′)→ P(W ) via
X. = {y ∈W ′ : ∀x ∈ X, xNy} and
Y / = {x ∈W : ∀y ∈ Y, xNy}, for each X ⊆W and Y ⊆W ′.
Then (., /) is a Galois connection.

So X
γN7−−→ X./ is a closure operator on P(W ).
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Residuated frames cont.

Fact [Galatos & Jipsen 2013]

W+ := (γN [P(W )],∪γN ,∩, ◦γN ,,�, γN ({1})),

X ∪γN Y = γN (X ∪ Y ) and X ◦γN Y = γN (X ◦ Y ),

is a residuated lattice.

Define the relation N ⊂ AM ×AM by u N v ⇐⇒ uv <M qf .
Then N is nuclear with  = � since AM is commutative.

Fact

WM = (AM , AM , N, ·,, {1}) is a residuated frame and
W+

M ∈ CRL

21 / 29



D
RA
FT

2
Equations in the signature {∨, ·, 1}

d-rules
Undecidability for certain d-rules

Approach

Residuated frames cont.

Fact [Galatos & Jipsen 2013]

W+ := (γN [P(W )],∪γN ,∩, ◦γN ,,�, γN ({1})),

X ∪γN Y = γN (X ∪ Y ) and X ◦γN Y = γN (X ◦ Y ),

is a residuated lattice.

Define the relation N ⊂ AM ×AM by u N v ⇐⇒ uv <M qf .

Then N is nuclear with  = � since AM is commutative.

Fact

WM = (AM , AM , N, ·,, {1}) is a residuated frame and
W+

M ∈ CRL

21 / 29



D
RA
FT

2
Equations in the signature {∨, ·, 1}

d-rules
Undecidability for certain d-rules

Approach

Residuated frames cont.

Fact [Galatos & Jipsen 2013]

W+ := (γN [P(W )],∪γN ,∩, ◦γN ,,�, γN ({1})),

X ∪γN Y = γN (X ∪ Y ) and X ◦γN Y = γN (X ◦ Y ),

is a residuated lattice.

Define the relation N ⊂ AM ×AM by u N v ⇐⇒ uv <M qf .
Then N is nuclear with  = � since AM is commutative.

Fact

WM = (AM , AM , N, ·,, {1}) is a residuated frame and
W+

M ∈ CRL

21 / 29



D
RA
FT

2
Equations in the signature {∨, ·, 1}

d-rules
Undecidability for certain d-rules

Approach

As a consequence of this construction,

u <M qf ⇐⇒ CRL |=

(
&

x∈P∪Z
θ(x) ⇒ u ≤ qf

)
,

where we view Rk ∪Q ∪ Z as variables in the CRL, and

p : q + riq
′ =⇒ θ(p) : q ≤ q′ri

p : q − riq′ =⇒ θ(p) : qri ≤ q′

p : q0riq
′ =⇒ θ(p) : q ≤ q′ ∨ zi

q = zi =⇒ θ(q) : zirj ≤ zi
& zi ≤ qf

q = qf =⇒ θ(q) : zi ≤ qf ,

for each i ∈ {1, ..., k} and j 6= i.
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The effect of d-rules on the encoding

For (d)∈ D.

Then, in general,

u <M qf 6⇐⇒ CRLd |=

(
&

x∈P∪Z
θ(x) ⇒ u ≤ qf

)
.
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Reductions

Let (d)∈ Dq.

Let M = (R2, Q, P ) be a 2-CM with an undecidable halting
problem.

Construct a special 3-CM MK = (R3, QK , PK) such that:
◦ There is a map (·)K : Conf(M)→ Conf(MK), where

C  M CF ⇐⇒ CK  MK
(CF )K

(Note, in AθMK
we obtain D  MK

(CF )K iff θ(D) <MK
qf ,

for every D ∈ Conf(M)).
◦ MK can “detect” instances of (d) over <MK

.

Construct a new relation <d(MK) with enough instances of
(d) so that:
◦ For all u ∈ AθMK

, u <MK
qf iff u <d(MK) qf , and

◦ W+
d(MK) |= (d).
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In this way, we can show for each (d)∈ Dq, there exists a
machine MK such that

u <d(MK) qf ⇐⇒ CRLd |=

(
&

x∈P∪Z
θ(x) ⇒ u ≤ qf

)
,

and if (d)∈ Qe,

u <d(MK) qf ⇐⇒ CRLd |= u · θ ≤ qf ,

for a term θ ≤ 1 that encodes the machine instructions.
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Questions

For (d)∈ Dq \De, is the equational theory of CRLd
(un)decidable?

For (d)∈ \Dd:
◦ Is the quasi-equational theory of CRLd (un)decidable?
◦ Is the equational theory of CRLd (un)decidable?

e.g.

How does a rule (r) such as

x ≤ x2 ∨ 1

effect decidability in CRLr?
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Thank You!
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