Undecidability for certain subvarieties of commutative residuated lattices.

Gavin St. John

Under the advisement of Nikolaos Galatos
University of Denver
Department of Mathematics
Fall AMS Special Session in Algebraic Logic
University of Denver
October 8, 2016

Outline

(1) Equations in the signature $\{\vee, \cdot, 1\}$
(2) d-rules
(3) Undecidability for certain d-rules
(4) Approach

Residuated Lattices

Definition

A (commutative) residuated lattice is a structure
$\mathbf{R}=\{R, \cdot, \vee, \wedge, \backslash, /, 1\}$, such that

- (R, \vee, \wedge) is a lattice
- ($R, \cdot, 1$) is a (commutative) monoid
- For all $x, y, z \in R$

$$
x \cdot y \leq z \Longleftrightarrow y \leq x \backslash z \Longleftrightarrow x \leq z / y
$$

where \leq is the lattice order.
We denote the variety of (commutative) residuated lattices by $(\mathcal{C R} \mathcal{L}) \mathcal{R} \mathcal{L}$.
If (r) is a a rule $($ axiom $)$, then $(\mathcal{C}) \mathcal{R} \mathcal{L}_{\mathrm{r}}:=(\mathcal{C}) \mathcal{R} \mathcal{L}+(\mathrm{r})$.

Knotted rules

Knotted rules

$\mathcal{R L}$	FL
$\left(\mathrm{k}_{1}^{2}\right)$	$x \leq x^{2}$
$\left(\mathrm{k}_{1}^{0}\right)$	$x \leq 1$

Knotted rules

$\mathcal{R} \mathcal{L}$	FL
$\left(\mathrm{k}_{1}^{2}\right)$	$x \leq x^{2}$
$\left(\mathrm{k}_{1}^{0}\right)$	$x \leq 1$
$\left(\mathrm{k}_{2}^{1}\right)$	$x^{2} \leq x$

Knotted rules

	$\mathcal{R L}$	FL
$\left(\mathrm{k}_{1}^{2}\right)$	$x \leq x^{2}$	$\frac{X, Z, Z, Y \Rightarrow C}{X, Z, Y \Rightarrow C}[c]$
$\left(k_{1}^{0}\right)$	$x \leq 1$	$\frac{X, Y \Rightarrow C}{X, Z, Y \Rightarrow C}[\mathrm{w}]$
$\left(\mathrm{k}_{2}^{1}\right)$	$x^{2} \leq x$	$\left.\frac{X, Z_{1}, Y \Rightarrow C \quad X, Z_{2}, Y \Rightarrow C}{X, Z_{1}, Z_{2}, Y \Rightarrow C} \text { [mingle }\right]$
$\left(\mathrm{k}_{n}^{m}\right)$	For $n \neq m$, $x^{n} \leq x^{m}$	$\frac{\Gamma}{X, Z_{1}, \ldots, Z_{n}, Y \Rightarrow C}\left[\mathrm{k}_{n}^{m}\right]$

Equations in the signature $\{\vee, \cdot, 1\}$

Some known results

- [van Alten 2005]
$\mathcal{C} \mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)$ has the finite embedability property (FEP).

Some known results

- [van Alten 2005]
$\mathcal{C R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)$ has the finite embedability property (FEP).
- $\mathbf{F} \mathbf{L}_{e}+\left[\mathrm{k}_{n}^{m}\right]$ is dedidable.
$\circ \mathcal{C} \mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)+\Gamma$, has the FEP for any set of $\{\vee, \cdot, 1\}$-equations Γ. [Galatos \& Jipsen 2013]

Some known results

- [van Alten 2005]
$\mathcal{C} \mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)$ has the finite embedability property (FEP).
- $\mathbf{F} \mathbf{L}_{e}+\left[\mathrm{k}_{n}^{m}\right]$ is dedidable.
- $\mathcal{C} \mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)+\Gamma$, has the FEP for any set of
$\{\mathrm{V}, \cdot, 1\}$-equations Γ. [Galatos \& Jipsen 2013]
- [Chvalovský \& Horčík 2016]
$\mathbf{F L}_{c}$ is undecidable.

Some known results

- [van Alten 2005]
$\mathcal{C} \mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)$ has the finite embedability property (FEP).
- $\mathbf{F} \mathbf{L}_{e}+\left[\mathrm{k}_{n}^{m}\right]$ is dedidable.
- $\mathcal{C} \mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)+\Gamma$, has the FEP for any set of
$\{\vee, \cdot, 1\}$-equations Γ. [Galatos \& Jipsen 2013]
- [Chvalovský \& Horčík 2016]
$\mathbf{F L}_{c}$ is undecidable.
- $\mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)$ is undecidable for $1 \leq n<m$.
- For any variety \mathcal{V}, if $\mathbf{W}_{L}^{+} \in \mathcal{V}$ then \mathcal{V} is undecidable.

Some known results

- [van Alten 2005]
$\mathcal{C} \mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)$ has the finite embedability property (FEP).
- $\mathbf{F} \mathbf{L}_{e}+\left[\mathrm{k}_{n}^{m}\right]$ is dedidable.
- $\mathcal{C} \mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)+\Gamma$, has the FEP for any set of
$\{\vee, \cdot, 1\}$-equations Γ. [Galatos \& Jipsen 2013]
- [Chvalovský \& Horčík 2016]
$\mathbf{F L}_{c}$ is undecidable.
- $\mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)$ is undecidable for $1 \leq n<m$.
- For any variety \mathcal{V}, if $\mathbf{W}_{L}^{+} \in \mathcal{V}$ then \mathcal{V} is undecidable.
- [Urquhart 1999]
$\mathbf{F L}_{e c}$, although decidable, does not admit a primitive recursive decision procedure.

Some known results

- [van Alten 2005]
$\mathcal{C} \mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)$ has the finite embedability property (FEP).
- $\mathbf{F} \mathbf{L}_{e}+\left[\mathrm{k}_{n}^{m}\right]$ is dedidable.
$\circ \mathcal{C} \mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)+\Gamma$, has the FEP for any set of
$\{\vee, \cdot, 1\}$-equations Γ. [Galatos \& Jipsen 2013]
- [Chvalovský \& Horčík 2016]
$\mathbf{F L}_{c}$ is undecidable.
- $\mathcal{R} \mathcal{L}+\left(\mathrm{k}_{n}^{m}\right)$ is undecidable for $1 \leq n<m$.
- For any variety \mathcal{V}, if $\mathbf{W}_{L}^{+} \in \mathcal{V}$ then \mathcal{V} is undecidable.
- [Urquhart 1999]
$\mathbf{F L}_{e c}$, although decidable, does not admit a primitive recursive decision procedure.
- The decidability of $\mathbf{F} \mathbf{L}_{e}+\left[\mathrm{k}_{n}^{m}\right]$ is not primitive recursive for $1 \leq n<m$.

How do general equations in the signature $\{\vee, \cdot, 1\}$ effect decidability?

How do general equations in the signature $\{\vee, \cdot, 1\}$ effect decidability?

- We will take an algebraic, rather than proof-theoretic, approach via the theory of residuated lattices.

How do general equations in the signature $\{\vee, \cdot, 1\}$ effect decidability?

- We will take an algebraic, rather than proof-theoretic, approach via the theory of residuated lattices.
- We will only inspect $\{\vee, \cdot, 1\}$-equations in $\mathcal{C} \mathcal{R} \mathcal{L}$.
- Undecidability results for many $\{\mathrm{V}, \cdot, 1\}$-equations in $\mathcal{R} \mathcal{L}$ are consequences of [Chvalovský \& Horčík 2016].

Linearization

- $x \leq y \Longleftrightarrow x \vee y=y$
- $x \vee y \leq z \Longleftrightarrow x \leq z$ and $y \leq z$

Linearization

- $x \leq y \Longleftrightarrow x \vee y=y$
- $x \vee y \leq z \Longleftrightarrow x \leq z$ and $y \leq z$
- For any $n \geq 1$ and $m \geq 0$,
$(\forall z) z^{n} \leq z^{m} \Longleftrightarrow x_{1} \cdots x_{n} \leq\left(x_{1} \vee \ldots \vee x_{n}\right)^{m},\left(\forall x_{1}, \ldots, x_{n}\right)$

$$
=\bigvee\left\{x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}: \sum_{i=1}^{n} a_{i}=m\right\}
$$

Linearization

- $x \leq y \Longleftrightarrow x \vee y=y$
- $x \vee y \leq z \Longleftrightarrow x \leq z$ and $y \leq z$
- For any $n \geq 1$ and $m \geq 0$,

$$
(\forall z) z^{n} \leq z^{m} \Longleftrightarrow x_{1} \cdots x_{n} \leq\left(x_{1} \vee \ldots \vee x_{n}\right)^{m},\left(\forall x_{1}, \ldots, x_{n}\right)
$$

$$
=\bigvee\left\{x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}: \sum_{i=1}^{n} a_{i}=m\right\}
$$

Thus, any equation $s=t$ in the signature $\{\mathrm{V}, \cdot, 1\}$ is equivalent to some conjunction of simple rules, i.e. linear inequations of the form:

$$
x_{1} \cdots x_{n} \leq \bigvee\left\{x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}:\left(a_{i}\right)_{i=1}^{n} \in A\right\}
$$

for some finite set $A \subset \mathbb{N}^{n}$.

Equations in the signature $\{\vee, \cdot, 1\}$

Observations

When does a simple rule entail a knotted rule?

Equations in the signature $\{\vee, \cdot, 1\}$

Observations

When does a simple rule entail a knotted rule?
$\mathcal{C R} \mathcal{L}_{\mathrm{r}} \models\left(\mathrm{k}_{n}^{m}\right) \Longrightarrow \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{r}}$ has the FEP.

Observations

When does a simple rule entail a knotted rule?
$\mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{r}}=\left(\mathrm{k}_{n}^{m}\right) \Longrightarrow \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{r}}$ has the FEP.

Definition

We say a simple rule (d) is a d-rule iff for all knotted rules $\left(\mathrm{k}_{n}^{m}\right)$,

$$
\mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}} \not \vDash\left(\mathrm{k}_{n}^{m}\right) .
$$

Observations

When does a simple rule entail a knotted rule?
$\mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{r}}=\left(\mathrm{k}_{n}^{m}\right) \Longrightarrow \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{r}}$ has the FEP.

Definition

We say a simple rule (d) is a d-rule iff for all knotted rules $\left(\mathrm{k}_{n}^{m}\right)$,

$$
\mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}} \not \vDash\left(\mathrm{k}_{n}^{m}\right) .
$$

We denote the set of \mathbf{d}-rules by \mathcal{D}.

Observations

When does a simple rule entail a knotted rule?
$\mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{r}}=\left(\mathrm{k}_{n}^{m}\right) \Longrightarrow \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{r}}$ has the FEP.

Definition

We say a simple rule (d) is a d-rule iff for all knotted rules $\left(\mathrm{k}_{n}^{m}\right)$,

$$
\mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}} \not \vDash\left(\mathrm{k}_{n}^{m}\right) .
$$

We denote the set of \mathbf{d}-rules by \mathcal{D}.
Example:

$$
x \leq x^{2} \vee 1
$$

Characterization of \mathcal{D}

Consider the cancelative monoid $(\mathbb{N},+)$. By adjoining bounds \perp, \top, we form the residuated lattice $\mathbf{M}_{\mathbb{N}}$:

Characterization of \mathcal{D}

Consider the cancelative monoid $(\mathbb{N},+)$. By adjoining bounds \perp, \top, we form the residuated lattice $\mathbf{M}_{\mathbb{N}}$:

$$
\begin{aligned}
\mathbf{M}_{\mathbb{N}}=\left(x^{n} \leq x^{m}\right) & \Longleftrightarrow \mathbf{M}_{\mathbb{N}}=(\forall x) n x \leq m x \\
& \Longleftrightarrow n=m
\end{aligned}
$$

Characterization of \mathcal{D}

Consider the cancelative monoid $(\mathbb{N},+)$. By adjoining bounds \perp, \rceil, we form the residuated lattice $\mathbf{M}_{\mathbb{N}}$:

$$
\begin{aligned}
\mathbf{M}_{\mathbb{N}} \equiv\left(x^{n} \leq x^{m}\right) & \Longleftrightarrow \mathbf{M}_{\mathbb{N}}=(\forall x) n x \leq m x \\
& \Longleftrightarrow n=m
\end{aligned}
$$

Therefore, $\mathbf{M}_{\mathbb{N}}$ satisfies no knotted rules.

$$
\mathbf{M}_{\mathbb{N}} \models(\mathrm{r}) \Longrightarrow(\mathrm{r}) \in \mathcal{D}
$$

d-rules

Let (d) be an n-variable d-rule given by $x_{1} \cdots x_{n} \leq t$.

d-rules

Let (d) be an n-variable d-rule given by $x_{1} \cdots x_{n} \leq t$.

- No single-variable substitution instance of (d) can yield a knotted rule.

d-rules

Let (d) be an n-variable d-rule given by $x_{1} \cdots x_{n} \leq t$.

- No single-variable substitution instance of (d) can yield a knotted rule.
- I.e., for every valuation $\sigma:\left\{x_{i}\right\}_{i=1}^{n} \rightarrow \mathbf{M}_{\mathbb{N}}$,

$$
\mathbf{M}_{\mathbb{N}} \equiv \sigma\left(\prod_{i=1}^{n} x_{i}\right) \leq \sigma(t) \Longrightarrow \mathbf{M}_{\mathbb{N}} \in \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}}
$$

d-rules

Let (d) be an n-variable d-rule given by $x_{1} \cdots x_{n} \leq t$.

- No single-variable substitution instance of (d) can yield a knotted rule.
- I.e., for every valuation $\sigma:\left\{x_{i}\right\}_{i=1}^{n} \rightarrow \mathbf{M}_{\mathbb{N}}$,

$$
\mathbf{M}_{\mathbb{N}} \equiv \sigma\left(\prod_{i=1}^{n} x_{i}\right) \leq \sigma(t) \Longrightarrow \mathbf{M}_{\mathbb{N}} \in \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}}
$$

Hence,

- (d) is a d-rule $\Longleftrightarrow \mathbf{M}_{\mathbb{N}} \models(\mathrm{d}) \Longleftrightarrow$ no single-variable substitution instance of (d) yields a knotted rule.

Definition

Define the collection $D_{q} \subset \mathcal{D}$ by

$$
(\mathrm{d}) \in D_{q} \Longleftrightarrow(\forall n \neq m \geq 1) \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}} \not \vDash x^{n} \leq x^{m} \vee 1
$$

Definition

Define the collection $D_{q} \subset \mathcal{D}$ by

$$
(\mathrm{d}) \in D_{q} \Longleftrightarrow(\forall n \neq m \geq 1) \mathcal{C R} \mathcal{L}_{\mathrm{d}} \not \vDash x^{n} \leq x^{m} \vee 1
$$

and define $D_{e} \subset D_{q}$ by

$$
(\mathrm{d}) \in D_{e} \Longleftrightarrow \mathcal{C R} \mathcal{L}_{\mathrm{d}} \models x^{n} \leq \bigvee_{i=1}^{k} x^{n+c_{i}}
$$

for some $k>1$ and $n, c_{i}>0$, for each $i=1, \ldots, k$.

Definition

Define the collection $D_{q} \subset \mathcal{D}$ by

$$
(\mathrm{d}) \in D_{q} \Longleftrightarrow(\forall n \neq m \geq 1) \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}} \not \vDash x^{n} \leq x^{m} \vee 1
$$

and define $D_{e} \subset D_{q}$ by

$$
(\mathrm{d}) \in D_{e} \Longleftrightarrow \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}} \models x^{n} \leq \bigvee_{i=1}^{k} x^{n+c_{i}}
$$

for some $k>1$ and $n, c_{i}>0$, for each $i=1, \ldots, k$.
Examples:

$$
D_{q}: \quad x \leq x^{3} \vee x^{2} \quad x \leq x^{3} \vee x^{2} \vee 1 \quad x y \leq x y^{2} \vee x^{2} y^{3} \vee x^{2} y
$$

Definition

Define the collection $D_{q} \subset \mathcal{D}$ by

$$
(\mathrm{d}) \in D_{q} \Longleftrightarrow(\forall n \neq m \geq 1) \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}} \not \vDash x^{n} \leq x^{m} \vee 1
$$

and define $D_{e} \subset D_{q}$ by

$$
(\mathrm{d}) \in D_{e} \Longleftrightarrow \mathcal{C R} \mathcal{L}_{\mathrm{d}} \models x^{n} \leq \bigvee_{i=1}^{k} x^{n+c_{i}}
$$

for some $k>1$ and $n, c_{i}>0$, for each $i=1, \ldots, k$.
Examples:

$$
\left.\begin{array}{lll}
D_{q}: & x \leq x^{3} \vee x^{2} & x \leq x^{3} \vee x^{2} \vee 1
\end{array} \quad x y \leq x y^{2} \vee x^{2} y^{3} \vee x^{2} y\right]
$$

Main Result

Theorem

Let $(\mathrm{d}) \in D_{q}$. Then there exists $\mathbf{R}_{\mathrm{d}} \in \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}}$ such that for every variety \mathcal{V},
$\mathbf{R}_{\mathrm{d}} \in \mathcal{V} \Longrightarrow \mathcal{V}$ has an undecidable quasi-equational theory.

Main Result

Theorem

Let $(\mathrm{d}) \in D_{q}$. Then there exists $\mathbf{R}_{\mathrm{d}} \in \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}}$ such that for every variety \mathcal{V},
$\mathbf{R}_{\mathrm{d}} \in \mathcal{V} \Longrightarrow \mathcal{V}$ has an undecidable quasi-equational theory.

Corollary

Let $(\mathrm{d}) \in D_{e}$. Then there exists $\mathbf{R}_{\mathrm{d}} \in \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}}$ such that for every variety \mathcal{V},
$\mathbf{R}_{\mathrm{d}} \in \mathcal{V} \Longrightarrow \mathcal{V}$ has an undecidable equational theory.

Approach

(1) As in Lincoln \& Mitchell et. al. (1992) and Urquhart (1999), we will use counter machines (CM) for our undecidable problem.

Approach

(1) As in Lincoln \& Mitchell et. al. (1992) and Urquhart (1999), we will use counter machines (CM) for our undecidable problem.
(2) Given a CM M, we construct another machine M^{\prime} and a commutative idempotent semi-ring $\mathbf{A}_{M^{\prime}}=\left(A_{M^{\prime}}, \vee, \cdot, \perp, 1\right)$.

Approach

(1) As in Lincoln \& Mitchell et. al. (1992) and Urquhart (1999), we will use counter machines (CM) for our undecidable problem.
(2) Given a CM M, we construct another machine M^{\prime} and a commutative idempotent semi-ring $\mathbf{A}_{M^{\prime}}=\left(A_{M^{\prime}}, \vee, \cdot, \perp, 1\right)$.

- We interpret machine instruction as relations on $\mathbf{A}_{M^{\prime}}$.

Approach

(1) As in Lincoln \& Mitchell et. al. (1992) and Urquhart (1999), we will use counter machines (CM) for our undecidable problem.
(2) Given a CM M, we construct another machine M^{\prime} and a commutative idempotent semi-ring $\mathbf{A}_{M^{\prime}}=\left(A_{M^{\prime}}, \vee, \cdot, \perp, 1\right)$.

- We interpret machine instruction as relations on $\mathbf{A}_{M^{\prime}}$.
- We define a relation $<_{M^{\prime}}$ on $\mathbf{A}_{M^{\prime}}$ such that M halts on input C iff $\theta(C)<_{M^{\prime}} q_{f}$ for terms $\theta(C), q_{f} \in A_{M^{\prime}}$.

Approach

(1) As in Lincoln \& Mitchell et. al. (1992) and Urquhart (1999), we will use counter machines (CM) for our undecidable problem.
(2) Given a CM M, we construct another machine M^{\prime} and a commutative idempotent semi-ring $\mathbf{A}_{M^{\prime}}=\left(A_{M^{\prime}}, \vee, \cdot, \perp, 1\right)$.

- We interpret machine instruction as relations on $\mathbf{A}_{M^{\prime}}$.
- We define a relation $<_{M^{\prime}}$ on $\mathbf{A}_{M^{\prime}}$ such that M halts on input C iff $\theta(C)<_{M^{\prime}} q_{f}$ for terms $\theta(C), q_{f} \in A_{M^{\prime}}$.
(3) Following Chvalovský \& Horčík (2016), we use the theory of residuated frames [Galatos \& Jipsen 2013] to encode the halting problem for M as a decision problem in $\mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}}$, for a given $(\mathrm{d}) \in D_{q}$

Counter Machines

A k-CM $M=\left(R_{k}, Q, P\right)$ is a finite state automaton where:

Counter Machines

A k-CM $M=\left(R_{k}, Q, P\right)$ is a finite state automaton where:

- $k \geq 1, R_{k}=\left\{r_{1}, \ldots, r_{k}\right\}$ is a set of registers (or bins) capable of containing a nonzero number.
- $|r|$ represents the contents of a register $r \in R_{k}$.

Counter Machines

A k-CM $M=\left(R_{k}, Q, P\right)$ is a finite state automaton where:

- $k \geq 1, R_{k}=\left\{r_{1}, \ldots, r_{k}\right\}$ is a set of registers (or bins) capable of containing a nonzero number.
- $|r|$ represents the contents of a register $r \in R_{k}$.
- Q is a finite set of states with a designated final state q_{F}.

Counter Machines

A k-CM $M=\left(R_{k}, Q, P\right)$ is a finite state automaton where:

- $k \geq 1, R_{k}=\left\{r_{1}, \ldots, r_{k}\right\}$ is a set of registers (or bins) capable of containing a nonzero number.
- $|r|$ represents the contents of a register $r \in R_{k}$.
- Q is a finite set of states with a designated final state q_{F}.
- P is a finite set of instructions of the form:
(increment) $q+r q^{\prime}, \quad$ (decrement) $q-r q^{\prime}, \quad$ (zero-test) $q 0 r q^{\prime}$.
- There are no instructions of the form $q_{F} \cdots$.

Counter Machines

A k-CM $M=\left(R_{k}, Q, P\right)$ is a finite state automaton where:

- $k \geq 1, R_{k}=\left\{r_{1}, \ldots, r_{k}\right\}$ is a set of registers (or bins) capable of containing a nonzero number.
- $|r|$ represents the contents of a register $r \in R_{k}$.
- Q is a finite set of states with a designated final state q_{F}.
- P is a finite set of instructions of the form:
(increment) $q+r q^{\prime}, \quad$ (decrement) $q-r q^{\prime}, \quad$ (zero-test) $q 0 r q^{\prime}$.
- There are no instructions of the form $q_{F} \cdots$.
- A configuration $C \in \operatorname{Conf}(M):=Q \times \mathbb{N}^{k}$ is a tuple $\left\langle q ; n_{1}, \ldots, n_{k}\right\rangle$, where $n_{i}=\left|r_{i}\right|$ for each $i=1, \ldots, k$.
- M has a designated final (or halting) configuration C_{F}.

Counter machines cont.

We interpret instructions by their effect on configurations:

Counter machines cont.

We interpret instructions by their effect on configurations:

$$
\begin{array}{rll}
\left\langle q ; n_{1}, \ldots, n_{i}, \ldots, n_{k}\right\rangle & \xrightarrow{q+r_{i} q^{\prime}} & \left\langle q^{\prime} ; n_{1}, \ldots, n_{i}+1, \ldots, n_{k}\right\rangle \\
\left\langle q ; n_{1}, \ldots, n_{i}+1, \ldots, n_{k}\right\rangle & \xrightarrow{q-r_{i} q^{\prime}} & \left\langle q^{\prime} ; n_{1}, \ldots, n_{i}, \ldots, n_{k}\right\rangle \\
\left\langle q ; n_{1}, \ldots, 0, \ldots, n_{k}\right\rangle & \xrightarrow{q 0 r_{i} q^{\prime}} & \left\langle q^{\prime} ; n_{1}, \ldots, 0, \ldots, n_{k}\right\rangle .
\end{array}
$$

Counter machines cont.

We interpret instructions by their effect on configurations:

$$
\begin{array}{rll}
\left\langle q ; n_{1}, \ldots, n_{i}, \ldots, n_{k}\right\rangle & \xrightarrow{q+r_{i} q^{\prime}} & \left\langle q^{\prime} ; n_{1}, \ldots, n_{i}+1, \ldots, n_{k}\right\rangle \\
\left\langle q ; n_{1}, \ldots, n_{i}+1, \ldots, n_{k}\right\rangle & \xrightarrow{q-r_{i} q^{\prime}} & \left\langle q^{\prime} ; n_{1}, \ldots, n_{i}, \ldots, n_{k}\right\rangle \\
\left\langle q ; n_{1}, \ldots, 0, \ldots, n_{k}\right\rangle & \xrightarrow{q 0 r_{i} q^{\prime}} & \left\langle q^{\prime} ; n_{1}, \ldots, 0, \ldots, n_{k}\right\rangle .
\end{array}
$$

We define the M-computation relation $\rightsquigarrow M_{M}$ on $\operatorname{Conf}(M)$ to be the transitive closure of $\bigcup_{p \in P} \xrightarrow{p}$.

Counter machines cont.

We interpret instructions by their effect on configurations:

$$
\begin{array}{rll}
\left\langle q ; n_{1}, \ldots, n_{i}, \ldots, n_{k}\right\rangle & \xrightarrow{q+r_{i} q^{\prime}} & \left\langle q^{\prime} ; n_{1}, \ldots, n_{i}+1, \ldots, n_{k}\right\rangle \\
\left\langle q ; n_{1}, \ldots, n_{i}+1, \ldots, n_{k}\right\rangle & \xrightarrow{q-r_{i} q^{\prime}} & \left\langle q^{\prime} ; n_{1}, \ldots, n_{i}, \ldots, n_{k}\right\rangle \\
\left\langle q ; n_{1}, \ldots, 0, \ldots, n_{k}\right\rangle & \xrightarrow{q 0 r_{i} q^{\prime}} & \left\langle q^{\prime} ; n_{1}, \ldots, 0, \ldots, n_{k}\right\rangle .
\end{array}
$$

We define the M-computation relation \rightsquigarrow_{M} on $\operatorname{Conf}(M)$ to be the transitive closure of $\bigcup_{p \in P} \xrightarrow{p}$.
We say a configuration $C \in \operatorname{Conf}(M)$ terminates if $C \rightsquigarrow_{M} C_{F}$

Counter machines cont.

We interpret instructions by their effect on configurations:

$$
\begin{aligned}
\left\langle q ; n_{1}, \ldots, n_{i}, \ldots, n_{k}\right\rangle & \xrightarrow{q+r_{i} q^{\prime}}
\end{aligned}\left\langle q^{\prime} ; n_{1}, \ldots, n_{i}+1, \ldots, n_{k}\right\rangle .
$$

We define the M-computation relation \rightsquigarrow_{M} on $\operatorname{Conf}(M)$ to be the transitive closure of $\bigcup_{p \in P} \xrightarrow{p}$.
We say a configuration $C \in \operatorname{Conf}(M)$ terminates if $C \rightsquigarrow_{M} C_{F}$

Theorem

There exists a 2-CM M such that membership in set of terminating configurations of M is undecidable.

The algebra \mathbf{A}_{M}

Let $M=\left(R_{k}, Q, P\right)$ be a k-CM, and let $Z=\left\{z_{1}, \ldots, z_{k}, q_{f}\right\}$ be a set of $(k+1)$-many fresh states.

The algebra \mathbf{A}_{M}

Let $M=\left(R_{k}, Q, P\right)$ be a k-CM, and let $Z=\left\{z_{1}, \ldots, z_{k}, q_{f}\right\}$ be a set of $(k+1)$-many fresh states.

Let $\mathbf{A}_{M}=\left(A_{M}, \vee, \cdot, \perp, 1\right)$ to be the commutative idempotent semiring generated by $R_{k} \cup Q \cup Z \cup\{\perp, 1\}$, where

The algebra \mathbf{A}_{M}

Let $M=\left(R_{k}, Q, P\right)$ be a k-CM, and let $Z=\left\{z_{1}, \ldots, z_{k}, q_{f}\right\}$ be a set of $(k+1)$-many fresh states.

Let $\mathbf{A}_{M}=\left(A_{M}, \vee, \cdot, \perp, 1\right)$ to be the commutative idempotent semiring generated by $R_{k} \cup Q \cup Z \cup\{\perp, 1\}$, where

- $\left(A_{M}, \vee, \perp\right)$ is a \vee-semilattice with bottom element \perp (i.e. it is a commutative idempotent monoid with the additive identity \perp), and

The algebra \mathbf{A}_{M}

Let $M=\left(R_{k}, Q, P\right)$ be a k-CM, and let $Z=\left\{z_{1}, \ldots, z_{k}, q_{f}\right\}$ be a set of $(k+1)$-many fresh states.

Let $\mathbf{A}_{M}=\left(A_{M}, \vee, \cdot, \perp, 1\right)$ to be the commutative idempotent semiring generated by $R_{k} \cup Q \cup Z \cup\{\perp, 1\}$, where

- $\left(A_{M}, \vee, \perp\right)$ is a \vee-semilattice with bottom element \perp (i.e. it is a commutative idempotent monoid with the additive identity \perp), and
- $\left(A_{M}, \cdot, 1\right)$ is a commutative monoid with the multiplicative identity 1.

The algebra \mathbf{A}_{M}

Let $M=\left(R_{k}, Q, P\right)$ be a k-CM, and let $Z=\left\{z_{1}, \ldots, z_{k}, q_{f}\right\}$ be a set of $(k+1)$-many fresh states.

Let $\mathbf{A}_{M}=\left(A_{M}, \vee, \cdot, \perp, 1\right)$ to be the commutative idempotent semiring generated by $R_{k} \cup Q \cup Z \cup\{\perp, 1\}$, where

- $\left(A_{M}, \vee, \perp\right)$ is a \vee-semilattice with bottom element \perp (i.e. it is a commutative idempotent monoid with the additive identity \perp), and
- $\left(A_{M}, \cdot, 1\right)$ is a commutative monoid with the multiplicative identity 1.

Note that $x(y \vee z)=x y \vee x z$ for all $x, y, z \in A_{M}$.

Instructions in \mathbf{A}_{M}

Let $\theta: \operatorname{Conf}(M) \rightarrow A_{M}$ be the map defined by

$$
\left\langle q ; n_{1}, \ldots, n_{k}\right\rangle \stackrel{\theta}{\mapsto} q r_{1}^{n_{1}} \cdots r_{k}^{n_{k}}
$$

Instructions in \mathbf{A}_{M}

Let $\theta: \operatorname{Conf}(M) \rightarrow A_{M}$ be the map defined by

$$
\left\langle q ; n_{1}, \ldots, n_{k}\right\rangle \stackrel{\theta}{\mapsto} q r_{1}^{n_{1}} \cdots r_{k}^{n_{k}}
$$

Define $R_{k}^{*}:=\left\{r_{1}^{n_{1}} \cdots r_{k}^{n_{k}} \in A_{M}: n_{1}, \ldots, n_{k} \in \mathbb{N}\right\}$.

Instructions in \mathbf{A}_{M}

Let $\theta: \operatorname{Conf}(M) \rightarrow A_{M}$ be the map defined by

$$
\left\langle q ; n_{1}, \ldots, n_{k}\right\rangle \stackrel{\theta}{\mapsto} q r_{1}^{n_{1}} \cdots r_{k}^{n_{k}}
$$

Define $R_{k}^{*}:=\left\{r_{1}^{n_{1}} \cdots r_{k}^{n_{k}} \in A_{M}: n_{1}, \ldots, n_{k} \in \mathbb{N}\right\}$.
Our goal is to construct a relation $<_{M}$ such that

$$
\theta(C)<_{M} \theta\left(C_{F}\right) \Longleftrightarrow C \rightsquigarrow_{M} C_{F} .
$$

Instructions in \mathbf{A}_{M}

Let $\theta: \operatorname{Conf}(M) \rightarrow A_{M}$ be the map defined by

$$
\left\langle q ; n_{1}, \ldots, n_{k}\right\rangle \stackrel{\theta}{\mapsto} q r_{1}^{n_{1}} \cdots r_{k}^{n_{k}}
$$

Define $R_{k}^{*}:=\left\{r_{1}^{n_{1}} \cdots r_{k}^{n_{k}} \in A_{M}: n_{1}, \ldots, n_{k} \in \mathbb{N}\right\}$.
Our goal is to construct a relation $<_{M}$ such that

$$
\theta(C)<_{M} \theta\left(C_{F}\right) \Longleftrightarrow C \rightsquigarrow_{M} C_{F} .
$$

Increment and decrement instructions can naturally be simulated, for all $x \in R_{k}^{*}$, by

$$
\begin{array}{rllll}
p: & q+r_{i} q^{\prime} & \Longrightarrow & q x & <_{M}^{p} \\
p: & q-q_{i} q_{i} x & \Longrightarrow & q r_{i} x<_{M}^{p} & q^{\prime} x .
\end{array}
$$

Zero-test instructions in \mathbf{A}_{M}

The zero-test cannot be simulated in a similar "linear" fashion.

Zero-test instructions in \mathbf{A}_{M}

The zero-test cannot be simulated in a similar "linear" fashion. Following [Lincoln \& Mitchell, 1992], we utilize right- \vee and zero-test states $q \in Z$ as follows,

$$
p: q 0 r_{i} q^{\prime} \quad \Longrightarrow \quad q x<_{M}^{p} q^{\prime} x \vee z_{i} x
$$

Zero-test instructions in \mathbf{A}_{M}

The zero-test cannot be simulated in a similar "linear" fashion. Following [Lincoln \& Mitchell, 1992], we utilize right- \vee and zero-test states $q \in Z$ as follows,

$$
\begin{aligned}
p: q 0 r_{i} q^{\prime} & \Longrightarrow q x<_{M}^{p} q^{\prime} x \vee z_{i} x \\
q=z_{i} & \Longrightarrow \quad z_{i} x y<_{M}^{z_{i}} q_{f} x \\
q=q_{f} & \Longrightarrow \theta\left(C_{F}\right)<_{M}^{q_{f}} q_{f}
\end{aligned}
$$

for all $i \in\{1, \ldots, k\}, x \in R_{k}^{*}$, and $y \in\left(R_{3} \backslash\left\{r_{i}\right\}\right)^{*}$.

Note

We need $q x \vee z_{i} x<_{M} q_{f} \Longrightarrow q x<_{M} q_{f}$ and $z_{i} x<_{M} q_{f}$.

The relation $<_{M}$ on A_{M}^{θ}

We define the set $A_{M}^{\theta} \subset A_{M}$ by,

$$
u \in A_{M}^{\theta} \Longleftrightarrow u=\bigvee_{i=1}^{m} q_{i} x_{i}, \quad m \geq 1, q_{i} \in Q \cup Z, x_{i} \in R_{k}^{*}
$$

The relation $<_{M}$ on A_{M}^{θ}

We define the set $A_{M}^{\theta} \subset A_{M}$ by,

$$
u \in A_{M}^{\theta} \Longleftrightarrow u=\bigvee_{i=1}^{m} q_{i} x_{i}, \quad m \geq 1, q_{i} \in Q \cup Z, x_{i} \in R_{k}^{*}
$$

We construct the computation relation $<_{M}$ on A_{M}^{θ} by

- Let Γ be the \vee-closure over A_{M}^{θ} of

$$
\bigcup_{p \in P}<_{p} \cup \bigcup_{q \in Z}<_{q}
$$

The relation $<_{M}$ on A_{M}^{θ}

We define the set $A_{M}^{\theta} \subset A_{M}$ by,

$$
u \in A_{M}^{\theta} \Longleftrightarrow u=\bigvee_{i=1}^{m} q_{i} x_{i}, \quad m \geq 1, q_{i} \in Q \cup Z, x_{i} \in R_{k}^{*}
$$

We construct the computation relation $<_{M}$ on A_{M}^{θ} by

- Let Γ be the \vee-closure over A_{M}^{θ} of

$$
\bigcup_{p \in P}<_{p} \cup \bigcup_{q \in Z}^{M}<_{q}
$$

- Define $<_{M}$ be the transitive closure of $\Gamma \cup\left\{\left(q_{f}, q_{f}\right)\right\}$.

The relation $<_{M}$ on A_{M}^{θ}

We define the set $A_{M}^{\theta} \subset A_{m}$ by,

$$
u \in A_{M}^{\theta} \Longleftrightarrow u=\bigvee_{i=1}^{m} q_{i} x_{i}, \quad m \geq 1, q_{i} \in Q \cup Z, x_{i} \in R_{k}^{*}
$$

We construct the computation relation $<_{M}$ on A_{M}^{θ} by

- Let Γ be the \vee-closure over A_{M}^{θ} of

$$
\bigcup_{p \in P}<_{p} \cup \bigcup_{q \in Z}<_{q}
$$

- Define $<_{M}$ be the transitive closure of $\Gamma \cup\left\{\left(q_{f}, q_{f}\right)\right\}$.

Proposition (Lincoln \& Mitchell 1992)

For all configurations $C \in \operatorname{Conf}(M)$,

$$
C \rightsquigarrow_{M} C_{F} \Longleftrightarrow \theta(C)<_{M} q_{f} .
$$

Residuated frames

Definition [Galatos \& Jipsen 2013]

A residuated frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N, \circ, \|, / /, 1\right)$, s.t.

- $(W \circ, 1)$ is a monoid and W^{\prime} is a set.
- $N \subseteq W \times W^{\prime}$, called the Galois relation, and
- $\|: W \times W^{\prime} \rightarrow W^{\prime}$ and $/ /: W^{\prime} \times W \rightarrow W^{\prime}$ such that
- N is a nuclear, i.e. for all $u, v \in W$ and $w \in W^{\prime}$,

$$
(u \circ v) N w \text { iff } u N(w / / v) \text { iff } v N(u \backslash w)
$$

Residuated frames

Definition [Galatos \& Jipsen 2013]

A residuated frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N, \circ, \|, / /, 1\right)$, s.t.

- $(W \circ, 1)$ is a monoid and W^{\prime} is a set.
- $N \subseteq W \times W^{\prime}$, called the Galois relation, and
- $\|: W \times W^{\prime} \rightarrow W^{\prime}$ and $/ /: W^{\prime} \times W \rightarrow W^{\prime}$ such that
- N is a nuclear, i.e. for all $u, v \in W$ and $w \in W^{\prime}$,

$$
(u \circ v) N w \operatorname{iff} u N(w / / v) \operatorname{iff} v N(u \backslash w) .
$$

Define ${ }^{\triangleright}: \mathcal{P}(W) \rightarrow \mathcal{P}\left(W^{\prime}\right)$ and ${ }^{\triangleleft}: \mathcal{P}\left(W^{\prime}\right) \rightarrow \mathcal{P}(W)$ via $X^{\triangleright}=\left\{y \in W^{\prime}: \forall x \in X, x N y\right\}$ and
$Y^{\triangleleft}=\{x \in W: \forall y \in Y, x N y\}$, for each $X \subseteq W$ and $Y \subseteq W^{\prime}$.

Residuated frames

Definition [Galatos \& Jipsen 2013]

A residuated frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N, \circ, \|, / /, 1\right)$, s.t.

- $(W \circ, 1)$ is a monoid and W^{\prime} is a set.
- $N \subseteq W \times W^{\prime}$, called the Galois relation, and
- $\|: W \times W^{\prime} \rightarrow W^{\prime}$ and $/ /: W^{\prime} \times W \rightarrow W^{\prime}$ such that
- N is a nuclear, i.e. for all $u, v \in W$ and $w \in W^{\prime}$,

$$
(u \circ v) N w \operatorname{iff} u N(w / / v) \operatorname{iff} v N(u \backslash w) .
$$

Define ${ }^{\triangleright}: \mathcal{P}(W) \rightarrow \mathcal{P}\left(W^{\prime}\right)$ and ${ }^{\triangleleft}: \mathcal{P}\left(W^{\prime}\right) \rightarrow \mathcal{P}(W)$ via $X^{\triangleright}=\left\{y \in W^{\prime}: \forall x \in X, x N y\right\}$ and
$Y^{\triangleleft}=\{x \in W: \forall y \in Y, x N y\}$, for each $X \subseteq W$ and $Y \subseteq W^{\prime}$.
Then $\left({ }^{\triangleright},{ }^{\triangleleft}\right)$ is a Galois connection.

Residuated frames

Definition [Galatos \& Jipsen 2013]

A residuated frame is a structure $\mathbf{W}=\left(W, W^{\prime}, N, \circ, \|, / /, 1\right)$, s.t.

- $(W \circ, 1)$ is a monoid and W^{\prime} is a set.
- $N \subseteq W \times W^{\prime}$, called the Galois relation, and
- $\|: W \times W^{\prime} \rightarrow W^{\prime}$ and $/ /: W^{\prime} \times W \rightarrow W^{\prime}$ such that
- N is a nuclear, i.e. for all $u, v \in W$ and $w \in W^{\prime}$,

$$
(u \circ v) N w \operatorname{iff} u N(w / / v) \operatorname{iff} v N(u \backslash w) .
$$

Define ${ }^{\triangleright}: \mathcal{P}(W) \rightarrow \mathcal{P}\left(W^{\prime}\right)$ and ${ }^{\triangleleft}: \mathcal{P}\left(W^{\prime}\right) \rightarrow \mathcal{P}(W)$ via $X^{\triangleright}=\left\{y \in W^{\prime}: \forall x \in X, x N y\right\}$ and $Y^{\triangleleft}=\{x \in W: \forall y \in Y, x N y\}$, for each $X \subseteq W$ and $Y \subseteq W^{\prime}$.
Then $(\triangleright, \triangleleft)$ is a Galois connection.
So $X \xrightarrow{\gamma_{N}} X^{\triangleright \triangleleft}$ is a closure operator on $\mathcal{P}(W)$.

Residuated frames cont.

Fact [Galatos \& Jipsen 2013]

$$
\begin{aligned}
\mathbf{W}^{+}:= & \left(\gamma_{N}[\mathcal{P}(W)], \cup_{\gamma_{N}}, \cap, \circ_{\gamma_{N}}, \|, / /, \gamma_{N}(\{1\})\right), \\
& X \cup_{\gamma_{N}} Y=\gamma_{N}(X \cup Y) \text { and } X \circ_{\gamma_{N}} Y=\gamma_{N}(X \circ Y),
\end{aligned}
$$

is a residuated lattice.

Residuated frames cont.

Fact [Galatos \& Jipsen 2013]

$$
\begin{aligned}
\mathbf{W}^{+}:= & \left(\gamma_{N}[\mathcal{P}(W)], \cup_{\gamma_{N}}, \cap, \circ_{\gamma_{N}}, \|, / /, \gamma_{N}(\{1\})\right), \\
& X \cup_{\gamma_{N}} Y=\gamma_{N}(X \cup Y) \text { and } X \circ_{\gamma_{N}} Y=\gamma_{N}(X \circ Y),
\end{aligned}
$$

is a residuated lattice.
Define the relation $N \subset A_{M} \times A_{M}$ by $u N v \Longleftrightarrow u v<_{M} q_{f}$.

Residuated frames cont.

Fact [Galatos \& Jipsen 2013]

$$
\begin{aligned}
\mathbf{W}^{+}:= & \left(\gamma_{N}[\mathcal{P}(W)], \cup_{\gamma_{N}}, \cap, \circ_{\gamma_{N}}, \|, / /, \gamma_{N}(\{1\})\right), \\
& X \cup_{\gamma_{N}} Y=\gamma_{N}(X \cup Y) \text { and } X \circ_{\gamma_{N}} Y=\gamma_{N}(X \circ Y),
\end{aligned}
$$

is a residuated lattice.
Define the relation $N \subset A_{M} \times A_{M}$ by $u N v \Longleftrightarrow u v<_{M} q_{f}$. Then N is nuclear with $\mathbb{}=/ /$ since \mathbf{A}_{M} is commutative.

Fact

$\mathbf{W}_{M}=\left(A_{M}, A_{M}, N, \cdot, \backslash,\{1\}\right)$ is a residuated frame and $\mathbf{W}_{M}^{+} \in \mathcal{C} \mathcal{R} \mathcal{L}$

As a consequence of this construction,

$$
u<_{M} q_{f} \Longleftrightarrow \mathcal{C R} \mathcal{L} \models\left(\bigotimes_{x \in P \cup Z} \theta(x) \Rightarrow u \leq q_{f}\right)
$$

As a consequence of this construction,

$$
u<_{M} q_{f} \Longleftrightarrow \mathcal{C R} \mathcal{L} \models\left(\bigotimes_{x \in P \cup Z} \theta(x) \Rightarrow u \leq q_{f}\right)
$$

where we view $R_{k} \cup Q \cup Z$ as variables in the $\mathcal{C R} \mathcal{L}$, and

$$
\begin{array}{rlrl}
p: q+r_{i} q^{\prime} & \Longrightarrow \theta(p): & q & \leq q^{\prime} r_{i} \\
p: q-r_{i} q^{\prime} & \Longrightarrow \theta(p): \quad q r_{i} & \leq q^{\prime} \\
p: q 0 r_{i} q^{\prime} & \Longrightarrow \theta(p): \quad q & \Longrightarrow q^{\prime} \vee z_{i} \\
q=z_{i} & \Longrightarrow \theta(q): \quad z_{i} r_{j} & \leq z_{i} \\
& \Longrightarrow \quad \& z_{i} & \leq q_{f} \\
q=q_{f} & \Longrightarrow \theta(q): \quad z_{i} \leq q_{f},
\end{array}
$$

for each $i \in\{1, \ldots, k\}$ and $j \neq i$.

The effect of d-rules on the encoding

For $(d) \in \mathcal{D}$.

The effect of d-rules on the encoding

For $(d) \in \mathcal{D}$.
Then, in general,

Reductions

Let $(\mathrm{d}) \in D_{q}$.

- Let $M=\left(R_{2}, Q, P\right)$ be a 2 -CM with an undecidable halting problem.

Reductions

Let $(\mathrm{d}) \in D_{q}$.

- Let $M=\left(R_{2}, Q, P\right)$ be a 2 -CM with an undecidable halting problem.
- Construct a special 3-CM $M_{K}=\left(R_{3}, Q_{K}, P_{K}\right)$ such that:

Reductions

Let $(\mathrm{d}) \in D_{q}$.

- Let $M=\left(R_{2}, Q, P\right)$ be a 2 - CM with an undecidable halting problem.
- Construct a special 3-CM $M_{K}=\left(R_{3}, Q_{K}, P_{K}\right)$ such that: - There is a map $(\cdot)_{K}: \operatorname{Conf}(M) \rightarrow \operatorname{Conf}\left(M_{K}\right)$, where

$$
C \rightsquigarrow M_{F} \Longleftrightarrow C_{K} \rightsquigarrow M_{K}\left(C_{F}\right)_{K}
$$

Reductions

Let $(\mathrm{d}) \in D_{q}$.

- Let $M=\left(R_{2}, Q, P\right)$ be a 2 -CM with an undecidable halting problem.
- Construct a special 3-CM $M_{K}=\left(R_{3}, Q_{K}, P_{K}\right)$ such that: - There is a map $(\cdot)_{K}: \operatorname{Conf}(M) \rightarrow \operatorname{Conf}\left(M_{K}\right)$, where

$$
C \rightsquigarrow C_{F} \Longleftrightarrow C_{K} \rightsquigarrow_{M_{K}}\left(C_{F}\right)_{K}
$$

(Note, in $A_{M_{K}}^{\theta}$ we obtain $D \rightsquigarrow_{M_{K}}\left(C_{F}\right)_{K}$ iff $\theta(D)<_{M_{K}} q_{f}$, for every $D \in \operatorname{Conf}(M)$).

Reductions

Let $(\mathrm{d}) \in D_{q}$.

- Let $M=\left(R_{2}, Q, P\right)$ be a 2 -CM with an undecidable halting problem.
- Construct a special 3-CM $M_{K}=\left(R_{3}, Q_{K}, P_{K}\right)$ such that: - There is a map $(\cdot)_{K}: \operatorname{Conf}(M) \rightarrow \operatorname{Conf}\left(M_{K}\right)$, where

$$
C \rightsquigarrow C_{F} \Longleftrightarrow C_{K} \rightsquigarrow_{M_{K}}\left(C_{F}\right)_{K}
$$

(Note, in $A_{M_{K}}^{\theta}$ we obtain $D \rightsquigarrow_{M_{K}}\left(C_{F}\right)_{K}$ iff $\theta(D)<_{M_{K}} q_{f}$, for every $D \in \operatorname{Conf}(M)$).

- M_{K} can "detect" instances of (d) over $<_{M_{K}}$.

Reductions

Let $(\mathrm{d}) \in D_{q}$.

- Let $M=\left(R_{2}, Q, P\right)$ be a 2 - CM with an undecidable halting problem.
- Construct a special 3-CM $M_{K}=\left(R_{3}, Q_{K}, P_{K}\right)$ such that:
- There is a map $(\cdot)_{K}: \operatorname{Conf}(M) \rightarrow \operatorname{Conf}\left(M_{K}\right)$, where

$$
C \rightsquigarrow C_{F} \Longleftrightarrow C_{K} \rightsquigarrow M_{K}\left(C_{F}\right)_{K}
$$

(Note, in $A_{M_{K}}^{\theta}$ we obtain $D \rightsquigarrow_{M_{K}}\left(C_{F}\right)_{K}$ iff $\theta(D)<_{M_{K}} q_{f}$, for every $D \in \operatorname{Conf}(M)$).

- M_{K} can "detect" instances of (d) over $<_{M_{K}}$.
- Construct a new relation $<_{\mathrm{d}\left(M_{K}\right)}$ with enough instances of (d) so that:
- For all $u \in A_{M_{K}}^{\theta}, u<_{M_{K}} q_{f}$ iff $u<_{\mathrm{d}\left(M_{K}\right)} q_{f}$, and - $W_{\mathrm{d}\left(M_{K}\right)}^{+} \models(\mathrm{d})$.

In this way, we can show for each $(\mathrm{d}) \in D_{q}$, there exists a machine M_{K} such that

In this way, we can show for each $(\mathrm{d}) \in D_{q}$, there exists a machine M_{K} such that
and if $(\mathrm{d}) \in Q_{e}$,

$$
u<_{\mathrm{d}\left(M_{K}\right)} q_{f} \Longleftrightarrow \mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}} \models u \cdot \theta \leq q_{f}
$$

for a term $\theta \leq 1$ that encodes the machine instructions.

Questions

- For $(\mathrm{d}) \in D_{q} \backslash D_{e}$, is the equational theory of $\mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}}$ (un)decidable?
- For $(\mathrm{d}) \in \backslash D_{d}$:
- Is the quasi-equational theory of $\mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}}$ (un)decidable?
- Is the equational theory of $\mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}}$ (un)decidable?

Questions

- For $(\mathrm{d}) \in D_{q} \backslash D_{e}$, is the equational theory of $\mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}}$ (un)decidable?
- For $(\mathrm{d}) \in \backslash D_{d}$:
- Is the quasi-equational theory of $\mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}}$ (un)decidable?
- Is the equational theory of $\mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{d}}$ (un)decidable?

e.g.

How does a rule (r) such as

$$
x \leq x^{2} \vee 1
$$

effect decidability in $\mathcal{C} \mathcal{R} \mathcal{L}_{\mathrm{r}}$?

Thank You!

References

(R.J. van Alten, The finite model property for knotted extensions of propositional linear logic. J. Symbolic Logic 70 (2005), no. 1, 84-98.

固 N. Galatos, P. Jipsen, Residuated frames with applications to decidability. Trans. Amer. Math. Soc. 365 (2013), no. 3, 1219-1249.
國 K. Chvalovský, R. Horčík, Full Lambek calculus with contraction is undecidable. J. Symbolic Logic 81 (2016), no. 2, 524-540.

References cont.

A. Urquhart, The complexity of decision procedures in relevance logic. II, J. Symbolic Logic 64 (1999), no. 4, 1774-1802.
嗇 P. Lincoln, J. Mitchell, A. Scedrov, N. Shankar, Decision problems for proposition linear logic. Annals of Pure and Applied Logic 56 (1992), 239-311

