Undecidability for certain subvarieties of commutative residuated lattices.

Gavin St. John

Under the advisement of Nikolaos Galatos University of Denver Department of Mathematics

Fall AMS Special Session in Algebraic Logic University of Denver

October 8, 2016

Outline

1 Equations in the signature $\{\lor, \cdot, 1\}$

3 Undecidability for certain **d**-rules

 $\begin{array}{c} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} \\ \mbox{d-rules} \\ \mbox{Undecidability for certain d-rules} \\ \mbox{Approach} \end{array}$

Residuated Lattices

Definition

- A (commutative) **residuated lattice** is a structure $\mathbf{R} = \{R, \cdot, \lor, \land, \backslash, /, 1\}$, such that
 - (R,\vee,\wedge) is a lattice
 - $(R, \cdot, 1)$ is a (commutative) monoid
 - For all $x, y, z \in R$

$$x \cdot y \le z \iff y \le x \setminus z \iff x \le z/y,$$

where \leq is the lattice order.

We denote the variety of (commutative) residuated lattices by $(C\mathcal{RL}) \mathcal{RL}$. If (r) is a a rule (axiom), then $(C)\mathcal{RL}_r := (C)\mathcal{RL} + (r)$. $\begin{array}{l} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} \\ \mbox{d-rules} \\ \mbox{Undecidability for certain d-rules} \\ \mbox{Approach} \end{array}$

\mathcal{RL}		FL
(k_1^2)	$x \le x^2$	$\frac{X, Z, Z, Y \Rightarrow C}{X, Z, Y \Rightarrow C} $ [c]

 $\begin{array}{l} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} \\ \mbox{d-rules} \\ \mbox{Undecidability for certain d-rules} \\ \mbox{Approach} \end{array}$

\mathcal{RL}		\mathbf{FL}
(k_1^2)	$x \le x^2$	$\frac{X, Z, Z, Y \Rightarrow C}{X, Z, Y \Rightarrow C} \ [c]$
(k_{1}^{0})	$x \leq 1$	$\frac{X, Y \Rightarrow C}{X, Z, Y \Rightarrow C} \ [w]$

\mathcal{RL}		FL
(k_1^2)	$x \le x^2$	$\frac{X, Z, Z, Y \Rightarrow C}{X, Z, Y \Rightarrow C} \ [c]$
(k_{1}^{0})	$x \leq 1$	$\frac{X, Y \Rightarrow C}{X, Z, Y \Rightarrow C} \ [w]$
(k_{2}^{1})	$x^2 \le x$	$\frac{X, Z_1, Y \Rightarrow C X, Z_2, Y \Rightarrow C}{X, Z_1, Z_2, Y \Rightarrow C} \text{ [mingle]}$

\mathcal{RL}		FL
(k_1^2)	$x \le x^2$	$\frac{X, Z, Z, Y \Rightarrow C}{X, Z, Y \Rightarrow C} $ [c]
(k_{1}^{0})	$x \leq 1$	$\frac{X, Y \Rightarrow C}{X, Z, Y \Rightarrow C} \ [w]$
(k_{2}^{1})	$x^2 \le x$	$\frac{X, Z_1, Y \Rightarrow C X, Z_2, Y \Rightarrow C}{X, Z_1, Z_2, Y \Rightarrow C} \text{ [mingle]}$
(\mathbf{k}_n^m)	For $n \neq m$, $x^n \leq x^m$	$\frac{\Gamma}{X, Z_1, \dots, Z_n, Y \Rightarrow C} \ [\mathbf{k}_n^m]$

 $\begin{array}{c} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} & d-rules$ \\ Undecidability for certain d-rules$ \\ Approach$ \end{array}$

Some known results

• [van Alten 2005] $C\mathcal{RL} + (\mathbf{k}_n^m)$ has the finite embedability property (FEP). $\begin{array}{c} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} & d-rules$ \\ Undecidability for certain d-rules$ \\ Approach$ \end{array}$

Some known results

[van Alten 2005]
CRL + (k_n^m) has the finite embedability property (FEP).
FL_e + [k_n^m] is dedidable.
CRL + (k_n^m) + Γ, has the FEP for any set of {∨, ·, 1}-equations Γ. [Galatos & Jipsen 2013]

 $\begin{array}{l} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} \\ \mbox{d-rules} \\ \mbox{Undecidability for certain d-rules} \\ \mbox{Approach} \end{array}$

Some known results

[van Alten 2005]
CRL + (k_n^m) has the finite embedability property (FEP).
FL_e + [k_n^m] is dedidable.
CRL + (k_n^m) + Γ, has the FEP for any set of {∨, ·, 1}-equations Γ. [Galatos & Jipsen 2013]
[Chvalovský & Horčík 2016]
FL_c is undecidable.

 $\begin{array}{l} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} \\ \mbox{d-rules} \\ \mbox{Undecidability for certain d-rules} \\ \mbox{Approach} \end{array}$

Some known results

- [van Alten 2005]
 - $CRL + (\mathbf{k}_n^m)$ has the finite embedability property (FEP).
 - $\circ \mathbf{FL}_e + [\mathbf{k}_n^m]$ is dedidable.
 - $\circ CRL + (\mathbf{k}_n^m) + \Gamma$, has the FEP for any set of
 - $\{\vee,\cdot,1\}\text{-equations}\ \Gamma.$ [Galatos & Jipsen 2013]
- [Chvalovský & Horčík 2016]
 - \mathbf{FL}_c is undecidable.
 - $\circ \mathcal{RL} + (\mathbf{k}_n^m) \text{ is undecidable for } 1 \le n < m.$
 - For any variety \mathcal{V} , if $\mathbf{W}_{L}^{+} \in \mathcal{V}$ then \mathcal{V} is undecidable.

 $\begin{array}{c} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} \\ \mbox{d-rules} \\ \mbox{Undecidability for certain d-rules} \\ \mbox{Approach} \end{array}$

Some known results

- [van Alten 2005]
 - $CRL + (\mathbf{k}_n^m)$ has the finite embedability property (FEP).
 - $\circ \mathbf{FL}_e + [\mathbf{k}_n^m]$ is dedidable.
 - $\circ CRL + (\mathbf{k}_n^m) + \Gamma$, has the FEP for any set of
 - $\{\vee,\cdot,1\}\text{-equations}\ \Gamma.$ [Galatos & Jipsen 2013]
- [Chvalovský & Horčík 2016]
 - \mathbf{FL}_c is undecidable.
 - $\circ \mathcal{RL} + (\mathbf{k}_n^m) \text{ is undecidable for } 1 \le n < m.$
 - For any variety \mathcal{V} , if $\mathbf{W}_{L}^{+} \in \mathcal{V}$ then \mathcal{V} is undecidable.
- [Urquhart 1999]

 $\mathbf{FL}_{ec},$ although decidable, does not admit a primitive recursive decision procedure.

 $\begin{array}{l} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} \\ d-rules \\ \mbox{Undecidability for certain d-rules} \\ \mbox{Approach} \end{array}$

Some known results

- [van Alten 2005]
 - $CRL + (k_n^m)$ has the finite embedability property (FEP).
 - $\mathbf{FL}_e + [\mathbf{k}_n^m]$ is dedidable.
 - $\circ CRL + (\mathbf{k}_n^m) + \Gamma$, has the FEP for any set of
 - $\{\vee,\cdot,1\}\text{-equations}\ \Gamma.$ [Galatos & Jipsen 2013]
- [Chvalovský & Horčík 2016]
 - \mathbf{FL}_c is undecidable.
 - $\circ \mathcal{RL} + (\mathbf{k}_n^m) \text{ is undecidable for } 1 \leq n < m.$
 - For any variety \mathcal{V} , if $\mathbf{W}_{L}^{+} \in \mathcal{V}$ then \mathcal{V} is undecidable.
- [Urquhart 1999]

 $\mathbf{FL}_{ec},$ although decidable, does not admit a primitive recursive decision procedure.

• The decidability of $\mathbf{FL}_e + [\mathbf{k}_n^m]$ is not primitive recursive for $1 \le n < m$.

 $\begin{array}{l} \mbox{Equations in the signature } \{ V, \cdot, 1 \} \\ & d\mbox{-rules} \\ \mbox{Undecidability for certain d-rules} \\ \mbox{Approach} \end{array}$

How do general equations in the signature $\{\vee,\cdot,1\}$ effect decidability?

 $\begin{array}{l} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} \\ \mbox{d-rules} \\ \mbox{Undecidability for certain d-rules} \\ \mbox{Approach} \end{array}$

How do general equations in the signature $\{\lor, \cdot, 1\}$ effect decidability?

• We will take an algebraic, rather than proof-theoretic, approach via the theory of residuated lattices.

 $\begin{array}{l} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} \\ \mbox{d-rules} \\ \mbox{Undecidability for certain d-rules} \\ \mbox{Approach} \end{array}$

How do general equations in the signature $\{\lor, \cdot, 1\}$ effect decidability?

- We will take an algebraic, rather than proof-theoretic, approach via the theory of residuated lattices.
- We will only inspect {∨, ·, 1}-equations in CRL.
 Oundecidability results for many {∨, ·, 1}-equations in RL are consequences of [Chvalovský & Horčík 2016].

 $\begin{array}{c} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} & \mbox{d-rules} \\ \mbox{Undecidability for certain d-rules} & \mbox{Approach} \end{array}$

Linearization

•
$$x \le y \iff x \lor y = y$$

•
$$x \lor y \le z \iff x \le z \text{ and } y \le z$$

Linearization

•
$$x \le y \iff x \lor y = y$$

•
$$x \lor y \le z \iff x \le z \text{ and } y \le z$$

• For any
$$n \ge 1$$
 and $m \ge 0$,

$$(\forall z) \ z^n \le z^m \iff x_1 \cdots x_n \le (x_1 \lor \ldots \lor x_n)^m, \ (\forall x_1, \ldots, x_n)$$

$$=\bigvee\left\{x_1^{a_1}\cdots x_n^{a_n}:\sum_{i=1}^n a_i=m\right\}$$

 $\begin{array}{c} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} & \mbox{d-rules} \\ \mbox{Undecidability for certain d-rules} & \mbox{Approach} \end{array}$

Linearization

•
$$x \leq y \iff x \lor y = y$$

• $x \lor y \leq z \iff x \leq z$ and $y \leq z$
• For any $n \geq 1$ and $m \geq 0$,
 $(\forall z) \ z^n \leq z^m \iff x_1 \cdots x_n \leq (x_1 \lor \ldots \lor x_n)^m$, $(\forall x_1, \ldots, x_n)$

$$=\bigvee\left\{x_1^{a_1}\cdots x_n^{a_n}:\sum_{i=1}^n a_i=m\right\}$$

Thus, any equation s = t in the signature $\{\lor, \cdot, 1\}$ is equivalent to some conjunction of **simple rules**, i.e. linear inequations of the form:

$$x_1 \cdots x_n \leq \bigvee \{x_1^{a_1} \cdots x_n^{a_n} : (a_i)_{i=1}^n \in A\},\$$

for some finite set $A \subset \mathbb{N}^n$.

 $\begin{array}{l} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} & \mbox{d-rules} \\ \mbox{Undecidability for certain d-rules} & \mbox{Approach} \end{array}$

Observations

When does a simple rule entail a knotted rule?

 $\begin{array}{l} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} & d\mbox{-rules} \\ \mbox{Undecidability for certain d-rules} & \mbox{Approach} \end{array}$

Observations

When does a simple rule entail a knotted rule?

$\mathcal{CRL}_{\mathbf{r}} \models (\mathbf{k}_n^m) \implies \mathcal{CRL}_{\mathbf{r}}$ has the FEP.

 $\begin{array}{l} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} & d\mbox{-rules} \\ \mbox{Undecidability for certain d-rules} & \mbox{Approach} \end{array}$

Observations

When does a simple rule entail a knotted rule?

$$\mathcal{CRL}_{\mathbf{r}} \models (\mathbf{k}_n^m) \implies \mathcal{CRL}_{\mathbf{r}}$$
 has the FEP.

Definition

We say a simple rule (d) is a **d**-rule iff for all knotted rules (k_n^m) ,

 $\mathcal{CRL}_{d} \not\models (k_{n}^{m}).$

 $\begin{array}{l} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} & d\mbox{-rules} \\ \mbox{Undecidability for certain d-rules} & \mbox{Approach} \end{array}$

Observations

When does a simple rule entail a knotted rule?

$$\mathcal{CRL}_{\mathbf{r}} \models (\mathbf{k}_n^m) \implies \mathcal{CRL}_{\mathbf{r}}$$
 has the FEP.

Definition

We say a simple rule (d) is a **d**-rule iff for all knotted rules (k_n^m) ,

 $\mathcal{CRL}_{d} \not\models (k_{n}^{m}).$

We denote the set of **d**-rules by \mathcal{D} .

 $\begin{array}{l} \mbox{Equations in the signature } \{ \lor, \cdot, 1 \} \\ \mbox{d-rules} \\ \mbox{Undecidability for certain d-rules} \\ \mbox{Approach} \end{array}$

Observations

When does a simple rule entail a knotted rule?

$$\mathcal{CRL}_{\mathbf{r}} \models (\mathbf{k}_n^m) \implies \mathcal{CRL}_{\mathbf{r}}$$
 has the FEP.

Definition

We say a simple rule (d) is a **d**-rule iff for all knotted rules (k_n^m) ,

 $\mathcal{CRL}_{d} \not\models (k_{n}^{m}).$

We denote the set of \mathbf{d} -rules by \mathcal{D} . Example:

$$x \le x^2 \lor 1$$

Characterization of \mathcal{D}

Consider the cancelative monoid $(\mathbb{N}, +)$. By adjoining bounds \bot, \top , we form the residuated lattice $\mathbf{M}_{\mathbb{N}}$:

Characterization of \mathcal{D}

Consider the cancelative monoid $(\mathbb{N}, +)$. By adjoining bounds \bot, \top , we form the residuated lattice $\mathbf{M}_{\mathbb{N}}$:

$$\mathbf{M}_{\mathbb{N}} \models (x^n \le x^m) \quad \Longleftrightarrow \quad \mathbf{M}_{\mathbb{N}} \models (\forall x) \ nx \le mx \\ \iff \quad n = m.$$

Characterization of \mathcal{D}

Consider the cancelative monoid $(\mathbb{N}, +)$. By adjoining bounds \bot, \top , we form the residuated lattice $\mathbf{M}_{\mathbb{N}}$:

$$\mathbf{M}_{\mathbb{N}} \models (x^n \le x^m) \quad \Longleftrightarrow \quad \mathbf{M}_{\mathbb{N}} \models (\forall x) \ nx \le mx$$
$$\iff \quad n = m.$$

Therefore, $\mathbf{M}_{\mathbb{N}}$ satisfies no knotted rules.

$$\mathbf{M}_{\mathbb{N}} \models (\mathbf{r}) \implies (\mathbf{r}) \in \mathcal{D}.$$

$\mathbf{d} ext{-rules}$

Let (d) be an *n*-variable **d**-rule given by $x_1 \cdots x_n \leq t$.

\mathbf{d} -rules

Let (d) be an *n*-variable **d**-rule given by $x_1 \cdots x_n \leq t$.

• No single-variable substitution instance of (d) can yield a knotted rule.

\mathbf{d} -rules

Let (d) be an *n*-variable **d**-rule given by $x_1 \cdots x_n \leq t$.

- No single-variable substitution instance of (d) can yield a knotted rule.
- I.e., for every valuation $\sigma : \{x_i\}_{i=1}^n \to \mathbf{M}_{\mathbb{N}},$ $\mathbf{M}_{\mathbb{N}} \models \sigma(\prod_{i=1}^n x_i) \le \sigma(t) \implies \mathbf{M}_{\mathbb{N}} \in \mathcal{CRL}_{\mathrm{d}}.$

\mathbf{d} -rules

Let (d) be an *n*-variable **d**-rule given by $x_1 \cdots x_n \leq t$.

- No single-variable substitution instance of (d) can yield a knotted rule.
- I.e., for every valuation $\sigma : \{x_i\}_{i=1}^n \to \mathbf{M}_{\mathbb{N}},$ $\mathbf{M}_{\mathbb{N}} \models \sigma(\prod_{i=1}^n x_i) \leq \sigma(t) \implies \mathbf{M}_{\mathbb{N}} \in CR\mathcal{L}_{\mathrm{d}}.$ Hence,
- (d) is a d-rule $\iff \mathbf{M}_{\mathbb{N}} \models (d) \iff$ no single-variable substitution instance of (d) yields a knotted rule.

Definition

Define the collection $D_q \subset \mathcal{D}$ by

(d)
$$\in D_q \iff (\forall n \neq m \ge 1) \ C\mathcal{RL}_d \not\models x^n \le x^m \lor 1,$$

Definition

Define the collection $D_q \subset \mathcal{D}$ by

$$(\mathbf{d}) \in D_q \iff (\forall n \neq m \ge 1) \ \mathcal{CRL}_{\mathbf{d}} \not\models x^n \le x^m \lor 1,$$

and define $D_e \subset D_q$ by (d) $\in D_e \iff C\mathcal{RL}_d \models x^n \leq \bigvee_{i=1}^k x^{n+c_i}$, for some k > 1 and $n, c_i > 0$, for each i = 1, ..., k.

Definition

Define the collection $D_q \subset \mathcal{D}$ by

(d)
$$\in D_q \iff (\forall n \neq m \ge 1) \ C\mathcal{RL}_d \not\models x^n \le x^m \lor 1,$$

and define $D_e \subset D_q$ by (d) $\in D_e \iff C\mathcal{RL}_d \models x^n \leq \bigvee_{i=1}^k x^{n+c_i}$, for some k > 1 and $n, c_i > 0$, for each i = 1, ..., k.

Examples:

$$D_q: \qquad x \leq x^3 \vee x^2 \qquad x \leq x^3 \vee x^2 \vee 1 \qquad xy \leq xy^2 \vee x^2y^3 \vee x^2y$$

Definition

Define the collection $D_q \subset \mathcal{D}$ by

(d)
$$\in D_q \iff (\forall n \neq m \ge 1) \ C\mathcal{RL}_d \not\models x^n \le x^m \lor 1,$$

and define $D_e \subset D_q$ by (d) $\in D_e \iff C\mathcal{RL}_d \models x^n \leq \bigvee_{i=1}^k x^{n+c_i},$ for some k > 1 and $n, c_i > 0$, for each i = 1, ..., k.

Examples:

Main Result

Theorem

Let $(d) \in D_q$. Then there exists $\mathbf{R}_d \in C\mathcal{RL}_d$ such that for every variety \mathcal{V} ,

 $\mathbf{R}_d \in \mathcal{V} \implies \mathcal{V}$ has an undecidable quasi-equational theory.

Main Result

Theorem

Let $(d) \in D_q$. Then there exists $\mathbf{R}_d \in C\mathcal{RL}_d$ such that for every variety \mathcal{V} ,

 $\mathbf{R}_d \in \mathcal{V} \implies \mathcal{V}$ has an undecidable quasi-equational theory.

Corollary

Let $(d) \in D_e$. Then there exists $\mathbf{R}_d \in C\mathcal{RL}_d$ such that for every variety \mathcal{V} ,

 $\mathbf{R}_d \in \mathcal{V} \implies \mathcal{V}$ has an undecidable equational theory.

Approach

• As in Lincoln & Mitchell *et. al.* (1992) and Urquhart (1999), we will use *counter machines* (CM) for our undecidable problem.

Approach

- As in Lincoln & Mitchell *et. al.* (1992) and Urquhart (1999), we will use *counter machines* (CM) for our undecidable problem.
- ② Given a CM M, we construct another machine M' and a commutative idempotent semi-ring $\mathbf{A}_{M'} = (A'_{M'}, \lor, \lor, \bot, 1)$.

Approach

- As in Lincoln & Mitchell *et. al.* (1992) and Urquhart (1999), we will use *counter machines* (CM) for our undecidable problem.
- Given a CM M, we construct another machine M' and a commutative idempotent semi-ring A_{M'} = (A_{'M'}, ∨, ·, ⊥, 1).
 We interpret machine instruction as relations on A_{M'}.

Approach

• As in Lincoln & Mitchell *et. al.* (1992) and Urquhart (1999), we will use *counter machines* (CM) for our undecidable problem.

Q Given a CM M, we construct another machine M' and a commutative idempotent semi-ring A_{M'} = (A_{'M'}, ∀, ·, ⊥, 1).
○ We interpret machine instruction as relations on A_{M'}.
○ We define a relation <_{M'} on A_{M'} such that M halts on input C iff θ(C) <_{M'} q_f for terms θ(C), q_f ∈ A_{M'}.

Approach

- As in Lincoln & Mitchell *et. al.* (1992) and Urquhart (1999), we will use *counter machines* (CM) for our undecidable problem.
- Q Given a CM M, we construct another machine M' and a commutative idempotent semi-ring A_{M'} = (A_{'M'}, ∀, ·, ⊥, 1).
 We interpret machine instruction as relations on A_{M'}.
 We define a relation <_{M'} on A_{M'} such that M halts on input C iff θ(C) <_{M'} q_f for terms θ(C), q_f ∈ A_{M'}.
- Sollowing Chvalovský & Horčík (2016), we use the theory of *residuated frames* [Galatos & Jipsen 2013] to encode the halting problem for M as a decision problem in \mathcal{CRL}_d , for a given $(d) \in D_q$

Counter Machines

A k-CM $M = (R_k, Q, P)$ is a finite state automaton where:

Counter Machines

- A k-CM $M = (R_k, Q, P)$ is a finite state automaton where:
 - $k \ge 1$, $R_k = \{r_1, ..., r_k\}$ is a set of **registers** (or *bins*) capable of containing a nonzero number.

 $\circ |r|$ represents the *contents* of a register $r \in R_k$.

Counter Machines

- A k-CM $M = (R_k, Q, P)$ is a finite state automaton where:
 - $k \ge 1$, $R_k = \{r_1, ..., r_k\}$ is a set of **registers** (or *bins*) capable of containing a nonzero number.

 $\circ |r|$ represents the *contents* of a register $r \in R_k$.

• Q is a finite set of states with a designated final state q_F .

Counter Machines

- A k-CM $M = (R_k, Q, P)$ is a finite state automaton where:
 - $k \ge 1$, $R_k = \{r_1, ..., r_k\}$ is a set of **registers** (or *bins*) capable of containing a nonzero number.

 $\circ |r|$ represents the *contents* of a register $r \in R_k$.

- Q is a finite set of **states** with a designated **final** state q_F .
- *P* is a finite set of **instructions** of the form:

(increment) q + rq', (decrement) q - rq', (zero-test) q0rq'.

 \circ There are no instructions of the form $q_F \cdots$.

Counter Machines

- A k-CM $M = (R_k, Q, P)$ is a finite state automaton where:
 - $k \ge 1$, $R_k = \{r_1, ..., r_k\}$ is a set of **registers** (or *bins*) capable of containing a nonzero number.

 $\circ |r|$ represents the *contents* of a register $r \in R_k$.

- Q is a finite set of **states** with a designated **final** state q_F .
- *P* is a finite set of **instructions** of the form:

(increment) q + rq', (decrement) q - rq', (zero-test) q0rq'.

 \circ There are no instructions of the form $q_F \cdots$.

- A configuration $C \in \text{Conf}(M) := Q \times \mathbb{N}^k$ is a tuple $\langle q; n_1, ..., n_k \rangle$, where $n_i = |r_i|$ for each i = 1, ..., k.
- $\circ M$ has a designated **final** (or *halting*) configuration C_F .

Counter machines cont.

We interpret instructions by their effect on configurations:

Counter machines cont.

We interpret instructions by their effect on configurations:

$$\begin{array}{ll} \langle q; n_1, ..., n_i, ..., n_k \rangle & \xrightarrow{q+r_iq'} & \langle q'; n_1, ..., n_i+1, ..., n_k \rangle \\ \langle q; n_1, ..., n_i+1, ..., n_k \rangle & \xrightarrow{q-r_iq'} & \langle q'; n_1, ..., n_i, ..., n_k \rangle \\ & \langle q; n_1, ..., 0, ..., n_k \rangle & \xrightarrow{q0r_iq'} & \langle q'; n_1, ..., 0, ..., n_k \rangle. \end{array}$$

Counter machines cont.

We interpret instructions by their effect on configurations:

$$\begin{array}{ll} \langle q; n_1, ..., n_i, ..., n_k \rangle & \xrightarrow{q+r_iq'} & \langle q'; n_1, ..., n_i+1, ..., n_k \rangle \\ \langle q; n_1, ..., n_i+1, ..., n_k \rangle & \xrightarrow{q-r_iq'} & \langle q'; n_1, ..., n_i, ..., n_k \rangle \\ & \langle q; n_1, ..., 0, ..., n_k \rangle & \xrightarrow{q0r_iq'} & \langle q'; n_1, ..., 0, ..., n_k \rangle. \end{array}$$

We define the *M*-computation relation \rightsquigarrow_M on $\operatorname{Conf}(M)$ to be the transitive closure of $\bigcup_{p \in P} \xrightarrow{p}$.

Counter machines cont.

We interpret instructions by their effect on configurations:

$$\begin{array}{ll} \langle q; n_1, ..., n_i, ..., n_k \rangle & \xrightarrow{q+r_iq'} & \langle q'; n_1, ..., n_i+1, ..., n_k \rangle \\ \langle q; n_1, ..., n_i+1, ..., n_k \rangle & \xrightarrow{q-r_iq'} & \langle q'; n_1, ..., n_i, ..., n_k \rangle \\ & \langle q; n_1, ..., 0, ..., n_k \rangle & \xrightarrow{q0r_iq'} & \langle q'; n_1, ..., 0, ..., n_k \rangle. \end{array}$$

We define the *M*-computation relation \rightsquigarrow_M on $\operatorname{Conf}(M)$ to be the transitive closure of $\bigcup_{p \in P} \stackrel{p}{\rightarrow}$. We say a configuration $C \in \operatorname{Conf}(M)$ terminates if $C \rightsquigarrow_M C_F$

Counter machines cont.

We interpret instructions by their effect on configurations:

$$\begin{array}{ll} \langle q; n_1, ..., n_i, ..., n_k \rangle & \xrightarrow{q+r_iq'} & \langle q'; n_1, ..., n_i+1, ..., n_k \rangle \\ \langle q; n_1, ..., n_i+1, ..., n_k \rangle & \xrightarrow{q-r_iq'} & \langle q'; n_1, ..., n_i, ..., n_k \rangle \\ & \langle q; n_1, ..., 0, ..., n_k \rangle & \xrightarrow{q0r_iq'} & \langle q'; n_1, ..., 0, ..., n_k \rangle. \end{array}$$

We define the *M*-computation relation \rightsquigarrow_M on $\operatorname{Conf}(M)$ to be the transitive closure of $\bigcup_{p \in P} \stackrel{p}{\rightarrow}$.

We say a configuration $C \in \operatorname{Conf}(M)$ terminates if $C \rightsquigarrow_M C_F$

Theorem

There exists a 2-CM M such that membership in set of terminating configurations of M is undecidable.

The algebra \mathbf{A}_M

Let $M = (R_k, Q, P)$ be a k-CM, and let $Z = \{z_1, ..., z_k, q_f\}$ be a set of (k + 1)-many fresh states.

The algebra \mathbf{A}_M

Let $M = (R_k, Q, P)$ be a k-CM, and let $Z = \{z_1, ..., z_k, q_f\}$ be a set of (k + 1)-many fresh states.

Let $\mathbf{A}_M = (A_M, \lor, \cdot, \bot, 1)$ to be the commutative idempotent semiring generated by $R_k \cup Q \cup Z \cup \{\bot, 1\}$, where

The algebra \mathbf{A}_M

Let $M = (R_k, Q, P)$ be a k-CM, and let $Z = \{z_1, ..., z_k, q_f\}$ be a set of (k + 1)-many fresh states.

Let $\mathbf{A}_M = (A_M, \lor, \cdot, \bot, 1)$ to be the commutative idempotent semiring generated by $R_k \cup Q \cup Z \cup \{\bot, 1\}$, where

• (A_M, \lor, \bot) is a \lor -semilattice with bottom element \bot (i.e. it is a commutative idempotent monoid with the additive identity \bot), and

The algebra \mathbf{A}_M

Let $M = (R_k, Q, P)$ be a k-CM, and let $Z = \{z_1, ..., z_k, q_f\}$ be a set of (k + 1)-many fresh states.

Let $\mathbf{A}_M = (A_M, \lor, \cdot, \bot, 1)$ to be the commutative idempotent semiring generated by $R_k \cup Q \cup Z \cup \{\bot, 1\}$, where

- (A_M, \lor, \bot) is a \lor -semilattice with bottom element \bot (i.e. it is a commutative idempotent monoid with the additive identity \bot), and
- $(A_M, \cdot, 1)$ is a commutative monoid with the multiplicative identity 1.

The algebra \mathbf{A}_M

Let $M = (R_k, Q, P)$ be a k-CM, and let $Z = \{z_1, ..., z_k, q_f\}$ be a set of (k + 1)-many fresh states.

Let $\mathbf{A}_M = (A_M, \lor, \cdot, \bot, 1)$ to be the commutative idempotent semiring generated by $R_k \cup Q \cup Z \cup \{\bot, 1\}$, where

- (A_M, \lor, \bot) is a \lor -semilattice with bottom element \bot (i.e. it is a commutative idempotent monoid with the additive identity \bot), and
- $(A_M, \cdot, 1)$ is a commutative monoid with the multiplicative identity 1.

Note that $x(y \lor z) = xy \lor xz$ for all $x, y, z \in A_M$.

Instructions in \mathbf{A}_M

Let θ : Conf $(M) \to A_M$ be the map defined by $\langle q; n_1, ..., n_k \rangle \xrightarrow{\theta} qr_1^{n_1} \cdots r_k^{n_k}$

Instructions in \mathbf{A}_M

Let θ : Conf $(M) \to A_M$ be the map defined by $\langle q; n_1, ..., n_k \rangle \xrightarrow{\theta} qr_1^{n_1} \cdots r_k^{n_k}$

Define
$$R_k^* := \{r_1^{n_1} \cdots r_k^{n_k} \in A_M : n_1, ..., n_k \in \mathbb{N}\}.$$

Instructions in \mathbf{A}_M

Let θ : Conf $(M) \to A_M$ be the map defined by $\langle q; n_1, ..., n_k \rangle \xrightarrow{\theta} qr_1^{n_1} \cdots r_k^{n_k}$

Define
$$R_k^* := \{ r_1^{n_1} \cdots r_k^{n_k} \in A_M : n_1, ..., n_k \in \mathbb{N} \}.$$

Our goal is to construct a relation $<_M$ such that $\theta(C) <_M \theta(C_F) \iff C \rightsquigarrow_M C_F.$

Instructions in \mathbf{A}_M

Let θ : Conf $(M) \to A_M$ be the map defined by $\langle q; n_1, ..., n_k \rangle \xrightarrow{\theta} qr_1^{n_1} \cdots r_k^{n_k}$

Define
$$R_k^* := \{ r_1^{n_1} \cdots r_k^{n_k} \in A_M : n_1, ..., n_k \in \mathbb{N} \}.$$

Our goal is to construct a relation $<_M$ such that $\theta(C) <_M \theta(C_F) \iff C \rightsquigarrow_M C_F.$

Increment and decrement instructions can naturally be simulated, for all $x \in R_k^*$, by

Zero-test instructions in \mathbf{A}_M

The zero-test cannot be simulated in a similar "linear" fashion.

Zero-test instructions in \mathbf{A}_M

The zero-test cannot be simulated in a similar "linear" fashion. Following [Lincoln & Mitchell, 1992], we utilize right- \lor and zero-test states $q \in \mathbb{Z}$ as follows,

$$p: q \ 0 \ r_i q' \implies q <^p_M q' x \lor z_i x$$

Zero-test instructions in \mathbf{A}_M

The zero-test cannot be simulated in a similar "linear" fashion. Following [Lincoln & Mitchell, 1992], we utilize right- \lor and zero-test states $q \in \mathbb{Z}$ as follows,

p:	$q \ 0 \ r_i q'$	\implies	$qx <^p_M q'x \lor z_i x$
	$q = z_i$	\implies	$z_i x y <^{z_i}_M q_f x$
	$q = q_f$	\Rightarrow	$\theta(C_F) <^{q_f}_M q_f,$
for all $i \in \{1,, k\}$, $x \in R_k^*$, and $y \in (R_3 \setminus \{r_i\})^*$.			

Note

We need $qx \lor z_i x <_M q_f \implies qx <_M q_f$ and $z_i x <_M q_f$.

The relation $<_M$ on A_M^{θ}

We define the set
$$A_M^{\theta} \subset A_M$$
 by,
 $u \in A_M^{\theta} \iff u = \bigvee_{i=1}^m q_i x_i, \quad m \ge 1, q_i \in Q \cup Z, x_i \in R_k^*$

The relation $<_M$ on A_M^{θ}

We define the set
$$A_M^{\theta} \subset A_M$$
 by,
 $u \in A_M^{\theta} \iff u = \bigvee_{i=1}^m q_i x_i, \quad m \ge 1, q_i \in Q \cup Z, x_i \in R_k^*$
We construct the **computation** relation $<_M$ on A_M^{θ} by
 \circ Let Γ be the \lor -closure over A_M^{θ} of
 $\bigcup_{p \in P} <_p \cup \bigcup_{q \in Z} <_q$

The relation $<_M$ on A_M^{θ}

We define the set
$$A_M^{\theta} \subset A_M$$
 by,
 $u \in A_M^{\theta} \iff u = \bigvee_{i=1}^m q_i x_i, m \ge 1, q_i \in Q \cup Z, x_i \in R_k^*$
We construct the **computation** relation $<_M$ on A_M^{θ} by
 \circ Let Γ be the \lor -closure over A_M^{θ} of
 $\bigcup_{p \in P} <_p \cup \bigcup_{q \in Z} <_q$
 \circ Define $<_M$ be the transitive closure of $\Gamma \cup \{(q_f, q_f)\}$.

The relation $<_M$ on A_M^{θ}

We define the set
$$A_M^{\theta} \subset A_M$$
 by,
 $u \in A_M^{\theta} \iff u = \bigvee_{i=1}^m q_i x_i, \quad m \ge 1, q_i \in Q \cup Z, x_i \in R_k^*$
We construct the **computation** relation $<_M$ on A_M^{θ} by
 \circ Let Γ be the \lor -closure over A_M^{θ} of
 $\bigcup_{p \in P} <_p \cup \bigcup_{q \in Z} <_q$
 \circ Define $<_M$ be the transitive closure of $\Gamma \cup \{(q_f, q_f)\}$.

Proposition (Lincoln & Mitchell 1992)

For all configurations $C \in Conf(M)$,

$$C \rightsquigarrow_M C_F \iff \theta(C) <_M q_f.$$

Residuated frames

Definition [Galatos & Jipsen 2013]

A residuated frame is a structure $\mathbf{W} = (W, W', N, \circ, \mathbb{N}, //, 1)$, s.t.

- $(W \circ, 1)$ is a monoid and W' is a set.
- $N \subseteq W \times W'$, called the *Galois relation*, and
- $\bullet~ \backslash\!\!\backslash : W \times W' \to W'$ and $/\!\!/ : W' \times W \to W'$ such that
- N is a nuclear, i.e. for all u, v ∈ W and w ∈ W',
 (u ∘ v) N w iff u N (w ∥ v) iff v N (u \\ w).

Residuated frames

Definition [Galatos & Jipsen 2013]

A residuated frame is a structure $\mathbf{W} = (W, W', N, \circ, \mathbb{N}, //, 1)$, s.t.

- $(W \circ, 1)$ is a monoid and W' is a set.
- $N \subseteq W \times W'$, called the *Galois relation*, and
- $\bullet~ \backslash\!\!\backslash : W \times W' \to W'$ and $/\!\!/ : W' \times W \to W'$ such that
- N is a **nuclear**, i.e. for all $u, v \in W$ and $w \in W'$, $(u \circ v) N w$ iff u N (w // v) iff $v N (u \backslash\!\! w)$.

Define $\triangleright : \mathcal{P}(W) \to \mathcal{P}(W')$ and $\triangleleft : \mathcal{P}(W') \to \mathcal{P}(W)$ via $X^{\triangleright} = \{y \in W' : \forall x \in X, xNy\}$ and $Y^{\triangleleft} = \{x \in W : \forall y \in Y, xNy\}$, for each $X \subseteq W$ and $Y \subseteq W'$.

Residuated frames

Definition [Galatos & Jipsen 2013]

A residuated frame is a structure $\mathbf{W} = (W, W', N, \circ, \mathbb{N}, //, 1)$, s.t.

- $(W \circ, 1)$ is a monoid and W' is a set.
- $N \subseteq W \times W'$, called the *Galois relation*, and
- $\bullet~ \backslash\!\!\backslash : W \times W' \to W'$ and $/\!\!/ : W' \times W \to W'$ such that
- N is a **nuclear**, i.e. for all $u, v \in W$ and $w \in W'$, $(u \circ v) N w$ iff u N (w // v) iff $v N (u \backslash\!\! w)$.

Define $\triangleright : \mathcal{P}(W) \to \mathcal{P}(W')$ and $\triangleleft : \mathcal{P}(W') \to \mathcal{P}(W)$ via $X^{\triangleright} = \{y \in W' : \forall x \in X, xNy\}$ and $Y^{\triangleleft} = \{x \in W : \forall y \in Y, xNy\}$, for each $X \subseteq W$ and $Y \subseteq W'$. Then $(^{\triangleright}, ^{\triangleleft})$ is a Galois connection.

Residuated frames

Definition [Galatos & Jipsen 2013]

A residuated frame is a structure $\mathbf{W} = (W, W', N, \circ, \mathbb{N}, //, 1)$, s.t.

- $(W \circ, 1)$ is a monoid and W' is a set.
- $N \subseteq W \times W'$, called the *Galois relation*, and
- $\bullet~ \backslash\!\!\backslash : W \times W' \to W'$ and $/\!\!/ : W' \times W \to W'$ such that
- N is a **nuclear**, i.e. for all $u, v \in W$ and $w \in W'$, $(u \circ v) N w$ iff u N (w // v) iff $v N (u \backslash\!\! w)$.

Define $\triangleright : \mathcal{P}(W) \to \mathcal{P}(W')$ and $\triangleleft : \mathcal{P}(W') \to \mathcal{P}(W)$ via $X^{\triangleright} = \{y \in W' : \forall x \in X, xNy\}$ and $Y^{\triangleleft} = \{x \in W : \forall y \in Y, xNy\}$, for each $X \subseteq W$ and $Y \subseteq W'$. Then $({}^{\triangleright}, {}^{\triangleleft})$ is a Galois connection. So $X \xrightarrow{\gamma_N} X^{\triangleright \triangleleft}$ is a closure operator on $\mathcal{P}(W)$.

Residuated frames cont.

Fact [Galatos & Jipsen 2013]

 $\mathbf{W}^+ := (\gamma_N[\mathcal{P}(W)], \cup_{\gamma_N}, \cap, \circ_{\gamma_N}, \mathbb{N}, /\!\!/, \gamma_N(\{1\})),$

$$X \cup_{\gamma_N} Y = \gamma_N(X \cup Y)$$
 and $X \circ_{\gamma_N} Y = \gamma_N(X \circ Y)$,

is a residuated lattice.

Residuated frames cont.

Fact [Galatos & Jipsen 2013]

 $\mathbf{W}^+ := (\gamma_N[\mathcal{P}(W)], \cup_{\gamma_N}, \cap, \circ_{\gamma_N}, \mathbb{N}, /\!\!/, \gamma_N(\{1\})),$

$$X \cup_{\gamma_N} Y = \gamma_N(X \cup Y)$$
 and $X \circ_{\gamma_N} Y = \gamma_N(X \circ Y)$,

is a residuated lattice.

Define the relation $N \subset A_M \times A_M$ by $u N v \iff uv <_M q_f$.

Residuated frames cont.

Fact [Galatos & Jipsen 2013]

 $\mathbf{W}^+ := (\gamma_N[\mathcal{P}(W)], \cup_{\gamma_N}, \cap, \circ_{\gamma_N}, \mathbb{N}, //, \gamma_N(\{1\})),$

$$X \cup_{\gamma_N} Y = \gamma_N(X \cup Y)$$
 and $X \circ_{\gamma_N} Y = \gamma_N(X \circ Y)$,

is a residuated lattice.

Define the relation $N \subset A_M \times A_M$ by $u N v \iff uv <_M q_f$. Then N is nuclear with $\mathbb{N} = //$ since \mathbf{A}_M is commutative.

Fact

$$\mathbf{W}_M=(A_M,A_M,N,\cdot,\backslash\!\!\backslash,\{1\})$$
 is a residuated frame and $\mathbf{W}_M^+\in\mathcal{CRL}$

As a consequence of this construction,

$$u <_M q_f \iff \mathcal{CRL} \models \left(\bigotimes_{x \in P \cup Z} \theta(x) \Rightarrow u \le q_f \right),$$

As a consequence of this construction,

$$u <_M q_f \iff \mathcal{CRL} \models \left(\bigotimes_{x \in P \cup Z} \theta(x) \Rightarrow u \le q_f \right),$$

where we view $R_k \cup Q \cup Z$ as variables in the CRL, and

for each $i \in \{1, ..., k\}$ and $j \neq i$.

The effect of **d**-rules on the encoding

For $(d) \in \mathcal{D}$.

The effect of **d**-rules on the encoding

For $(d) \in \mathcal{D}$. Then, in general,

$$u <_M q_f \iff \mathcal{CRL}_{\mathrm{d}} \models \left(\bigotimes_{x \in P \cup Z} \theta(x) \Rightarrow u \le q_f \right).$$

Reductions

Let $(\mathbf{d}) \in D_q$.

• Let $M = (R_2, Q, P)$ be a 2-CM with an undecidable halting problem.

Reductions

Let (d) $\in D_q$.

- Let $M = (R_2, Q, P)$ be a 2-CM with an undecidable halting problem.
- Construct a special 3-CM $M_K = (R_3, Q_K, P_K)$ such that:

Reductions

Let (d) $\in D_q$.

- Let $M = (R_2, Q, P)$ be a 2-CM with an undecidable halting problem.
- Construct a special 3-CM $M_K = (R_3, Q_K, P_K)$ such that: • There is a map $(\cdot)_K : \operatorname{Conf}(M) \to \operatorname{Conf}(M_K)$, where $C \rightsquigarrow_M C_F \iff C_K \rightsquigarrow_{M_K} (C_F)_K$

Reductions

Let $(\mathbf{d}) \in D_q$.

- Let $M = (R_2, Q, P)$ be a 2-CM with an undecidable halting problem.
- Construct a special 3-CM $M_K = (R_3, Q_K, P_K)$ such that: • There is a map $(\cdot)_K : \operatorname{Conf}(M) \to \operatorname{Conf}(M_K)$, where $C \rightsquigarrow_M C_F \iff C_K \rightsquigarrow_{M_K} (C_F)_K$ (Note, in $A^{\theta}_{M_K}$ we obtain $D \rightsquigarrow_{M_K} (C_F)_K$ iff $\theta(D) <_{M_K} q_f$, for every $D \in \operatorname{Conf}(M)$).

Reductions

Let $(\mathbf{d}) \in D_q$.

- Let $M = (R_2, Q, P)$ be a 2-CM with an undecidable halting problem.
- Construct a special 3-CM $M_K = (R_3, Q_K, P_K)$ such that: • There is a map $(\cdot)_K : \operatorname{Conf}(M) \to \operatorname{Conf}(M_K)$, where $C \rightsquigarrow_M C_F \iff C_K \rightsquigarrow_{M_K} (C_F)_K$ (Note, in $A^{\theta}_{M_K}$ we obtain $D \rightsquigarrow_{M_K} (C_F)_K$ iff $\theta(D) <_{M_K} q_f$, for every $D \in \operatorname{Conf}(M)$).

 $\circ M_K$ can "detect" instances of (d) over $<_{M_K}$.

Reductions

Let $(\mathbf{d}) \in D_q$.

- Let $M = (R_2, Q, P)$ be a 2-CM with an undecidable halting problem.
- Construct a special 3-CM $M_K = (R_3, Q_K, P_K)$ such that: • There is a map $(\cdot)_K : \operatorname{Conf}(M) \to \operatorname{Conf}(M_K)$, where $C \rightsquigarrow_M C_F \iff C_K \rightsquigarrow_{M_K} (C_F)_K$ (Note, in $A^{\theta}_{M_K}$ we obtain $D \rightsquigarrow_{M_K} (C_F)_K$ iff $\theta(D) <_{M_K} q_f$, for every $D \in \operatorname{Conf}(M)$).

 $\circ M_K$ can "detect" instances of (d) over $<_{M_K}$.

- Construct a new relation $<_{d(M_K)}$ with enough instances of (d) so that:
 - For all $u \in A_{M_K}^{\theta}$, $u <_{M_K} q_f$ iff $u <_{\mathrm{d}(M_K)} q_f$, and ◦ $W_{\mathrm{d}(M_K)}^+ \models (\mathrm{d})$.

In this way, we can show for each $(d) \in D_q$, there exists a machine M_K such that

$$u <_{\mathrm{d}(M_K)} q_f \iff \mathcal{CRL}_{\mathrm{d}} \models \left(\underbrace{\&}_{x \in P \cup Z} \theta(x) \Rightarrow u \le q_f \right),$$

In this way, we can show for each $(d) \in D_q$, there exists a machine M_K such that

$$u <_{\mathrm{d}(M_K)} q_f \iff \mathcal{CRL}_{\mathrm{d}} \models \left(\underbrace{\&}_{x \in P \cup Z} \theta(x) \Rightarrow u \le q_f \right),$$

and if $(d) \in Q_e$,

$$u <_{\mathrm{d}(M_K)} q_f \iff \mathcal{CRL}_{\mathrm{d}} \models u \cdot \theta \le q_f,$$

for a term $\theta \leq 1$ that encodes the machine instructions.

Questions

- For (d)∈ D_q \ D_e, is the equational theory of CRLd (un)decidable?
- For (d) $\in \backslash D_d$:
 - \circ Is the quasi-equational theory of \mathcal{CRL}_d (un)decidable?
 - \circ Is the equational theory of CRL_d (un)decidable?

Questions

- For (d)∈ D_q \ D_e, is the equational theory of CRLd (un)decidable?
- For (d) $\in \backslash D_d$:
 - \circ Is the quasi-equational theory of \mathcal{CRL}_d (un)decidable?
 - \circ Is the equational theory of \mathcal{CRL}_d (un)decidable?

e.g.

How does a rule (r) such as

$$x \le x^2 \lor 1$$

effect decidability in CRL_r ?

Thank You!

References

- C.J. van Alten, The finite model property for knotted extensions of propositional linear logic. J. Symbolic Logic 70 (2005), no. 1, 84-98.
- N. Galatos, P. Jipsen, Residuated frames with applications to decidability. Trans. Amer. Math. Soc. 365 (2013), no. 3, 1219-1249.
- K. Chvalovský, R. Horčík, Full Lambek calculus with contraction is undecidable. J. Symbolic Logic 81 (2016), no. 2, 524-540.

References cont.

- A. Urquhart, The complexity of decision procedures in relevance logic. II, J. Symbolic Logic 64 (1999), no. 4, 1774-1802.
- P. Lincoln, J. Mitchell, A. Scedrov, N. Shankar, Decision problems for proposition linear logic. Annals of Pure and Applied Logic 56 (1992), 239-311