The Complexity of Comparing Subalgebras Given by Generators

Ágnes Szendrei

Joint work with A. Bulatov and P. Mayr

AMS Western Sectional Meeting
Denver, CO, October 8-9, 2016

Two Decision Problems

\mathcal{V} : variety in a finite language

\mathcal{K} : finite set of finite algebras in \mathcal{V}

Two Decision Problems

\mathcal{V} : variety in a finite language
\mathcal{K} : finite set of finite algebras in \mathcal{V}

Comparing Subalgebras of Products in \mathcal{K} :

- INPUT: $b_{1}, \ldots, b_{k}, c_{1}, \ldots, c_{\ell} \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$.
- QUESTION: Is $\left\langle c_{1}, \ldots, c_{\ell}\right\rangle \leq\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

Two Decision Problems

\mathcal{V} : variety in a finite language
\mathcal{K} : finite set of finite algebras in \mathcal{V}

Comparing Subalgebras of Products in \mathcal{K} :

- INPUT: $b_{1}, \ldots, b_{k}, c_{1}, \ldots, c_{\ell} \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$.
- QUESTION: Is $\left\langle c_{1}, \ldots, c_{\ell}\right\rangle \leq\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

A polynomial time equivalent problem:

Subpower Membership Problem for \mathcal{K}, denoted $\operatorname{SMP}(\mathcal{K})$:

- INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$.
- QUESTION: Is $c \in\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

Bad News

$\operatorname{SMP}(\mathcal{K})$: INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$. QUESTION: Is $c \in\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

Bad News

$\operatorname{SMP}(\mathcal{K}):$ INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$. QUESTION: Is $c \in\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

Hard in general:

- $\operatorname{SMP}(\mathcal{K}) \in$ EXPTIME by naive algorithm

Bad News

$\operatorname{SMP}(\mathcal{K}):$ INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$. QUESTION: Is $c \in\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

Hard in general:

- $\operatorname{SMP}(\mathcal{K}) \in \operatorname{EXPTIME}$ by naive algorithm
- \exists finite \mathbf{A} such that $\operatorname{SMP}(\mathbf{A})$ is EXPTIME-complete [Kozik, 2008]

Bad News

$\operatorname{SMP}(\mathcal{K}):$ INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$. QUESTION: Is $c \in\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

Hard in general:

- $\operatorname{SMP}(\mathcal{K}) \in \operatorname{EXPTIME}$ by naive algorithm
- \exists finite \mathbf{A} such that $\operatorname{SMP}(\mathbf{A})$ is EXPTIME-complete [Kozik, 2008]

Complexity is not the property of the (generated) subvariety:

- $\operatorname{SMP}(\mathcal{K})=\operatorname{SMP}(\mathbb{S K})$

Bad News

$\operatorname{SMP}(\mathcal{K}):$ INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$. QUESTION: Is $c \in\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

Hard in general:

- $\operatorname{SMP}(\mathcal{K}) \in \operatorname{EXPTIME}$ by naive algorithm
- \exists finite \mathbf{A} such that $\operatorname{SMP}(\mathbf{A})$ is EXPTIME-complete [Kozik, 2008]

Complexity is not the property of the (generated) subvariety:

- $\operatorname{SMP}(\mathcal{K})=\operatorname{SMP}(\mathbb{S K})$
- $\operatorname{SMP}(\mathcal{K}) \stackrel{\text { poly time }}{\Longleftrightarrow} \operatorname{SMP}\left(\mathbb{P}_{\leq m} \mathcal{K}\right) \quad$ for all $m \geq 1$.

Bad News

$\operatorname{SMP}(\mathcal{K}):$ INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$. QUESTION: Is $c \in\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

Hard in general:

- $\operatorname{SMP}(\mathcal{K}) \in \operatorname{EXPTIME}$ by naive algorithm
- \exists finite \mathbf{A} such that $\operatorname{SMP}(\mathbf{A})$ is EXPTIME-complete [Kozik, 2008]

Complexity is not the property of the (generated) subvariety:

- $\operatorname{SMP}(\mathcal{K})=\operatorname{SMP}(\mathbb{S K})$
- $\operatorname{SMP}(\mathcal{K}) \stackrel{\text { poly time }}{\Longleftrightarrow} \operatorname{SMP}\left(\mathbb{P}_{\leq m} \mathcal{K}\right) \quad$ for all $m \geq 1$.
- $\operatorname{SMP}(\mathcal{K}) \stackrel{\text { poly/time }}{\rightleftharpoons} \operatorname{SMP}(\mathbb{H} \mathcal{K})$

Bad News

$\operatorname{SMP}(\mathcal{K}):$ INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$. QUESTION: Is $c \in\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

Hard in general:

- $\operatorname{SMP}(\mathcal{K}) \in \operatorname{EXPTIME}$ by naive algorithm
- \exists finite \mathbf{A} such that $\operatorname{SMP}(\mathbf{A})$ is EXPTIME-complete [Kozik, 2008]

Complexity is not the property of the (generated) subvariety:

- $\operatorname{SMP}(\mathcal{K})=\operatorname{SMP}(\mathbb{S K})$
- $\operatorname{SMP}(\mathcal{K}) \stackrel{\text { poly time }}{\Longleftrightarrow} \operatorname{SMP}\left(\mathbb{P}_{\leq m} \mathcal{K}\right) \quad$ for all $m \geq 1$.
- $\operatorname{SMP}(\mathcal{K}) \stackrel{\text { poly/time }}{\rightleftharpoons} \operatorname{SMP}(\mathbb{H} \mathcal{K})$
- $\exists 10$-element semigroup \mathbf{S} and a 9-element homomorphic image $\overline{\mathbf{S}}$ of \mathbf{S} such that $\operatorname{SMP}(\mathbf{S}) \in \mathrm{P}$ while $\operatorname{SMP}(\overline{\mathbf{S}})$ is NP-complete [Steindl, ~2016]

Good News

$\operatorname{SMP}(\mathcal{K}):$ INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$. QUESTION: Is $c \in\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

Good News

$\operatorname{SMP}(\mathcal{K}):$ INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$. QUESTION: Is $c \in\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

Easy (lies in P) in many 'classical' varieties:

- vector spaces - use Gaussian elimination

Good News

$\operatorname{SMP}(\mathcal{K}):$ INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$. QUESTION: Is $c \in\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

Easy (lies in P) in many 'classical' varieties:

- vector spaces - use Gaussian elimination
- groups - Sim's Algorithm [≈ 1970]

Good News

$\operatorname{SMP}(\mathcal{K}):$ INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$. QUESTION: Is $c \in\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

Easy (lies in P) in many 'classical' varieties:

- vector spaces - use Gaussian elimination
- groups - Sim's Algorithm [≈ 1970]
- NU varieties - based on the Baker-Pixley Theorem [1975]

Good News

$\operatorname{SMP}(\mathcal{K}):$ INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$. QUESTION: Is $c \in\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

Easy (lies in P) in many 'classical' varieties:

- vector spaces - use Gaussian elimination
- groups - Sim's Algorithm [≈ 1970]
- NU varieties - based on the Baker-Pixley Theorem [1975]
- groups expanded by multilinear operations (including rings, modules, ...) - adapt Sim's Algorithm [Willard, 2007]

Good News

$\operatorname{SMP}(\mathcal{K}):$ INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$. QUESTION: Is $c \in\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

Easy (lies in P) in many 'classical' varieties:

- vector spaces - use Gaussian elimination
- groups - Sim's Algorithm [≈ 1970]
- NU varieties - based on the Baker-Pixley Theorem [1975]
- groups expanded by multilinear operations (including rings, modules, ...)
- adapt Sim's Algorithm [Willard, 2007]
- expansions of nilpotent Mal'tsev algebras of order p^{k} [Mayr, 2012]

Good News

$\operatorname{SMP}(\mathcal{K}):$ INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$. QUESTION: Is $c \in\left\langle b_{1}, \ldots, b_{k}\right\rangle$?

Easy (lies in P) in many 'classical' varieties:

- vector spaces - use Gaussian elimination
- groups - Sim's Algorithm [≈ 1970]
- NU varieties - based on the Baker-Pixley Theorem [1975]
- groups expanded by multilinear operations (including rings, modules, ...)
- adapt Sim's Algorithm [Willard, 2007]
- expansions of nilpotent Mal'tsev algebras of order p^{k} [Mayr, 2012]

Problem. Is $\operatorname{SMP}(\mathbf{A}) \in P$ whenever $\mathcal{V}(\mathbf{A})$ has a Mal'tsev/cube term? [Willard, 2007]/[IMMVW, 2010]

Cube Terms

Definition. A d-cube term $(d \geq 2)$ for a class \mathcal{K} of algebras is a term C s.t.

$$
\mathcal{K} \vDash C \underbrace{\left[\begin{array}{c}
x \\
y \\
\vdots \\
y \\
y
\end{array}\right]}_{d \text {-tuples in } x, y, \text { with at least one } x},\left[\begin{array}{c}
y \\
x \\
\vdots \\
y
\end{array}\right], \ldots,\left[\begin{array}{c}
y \\
y \\
\vdots \\
\vdots \\
{\left[\begin{array}{c}
x \\
x \\
\vdots
\end{array}\right]}
\end{array}\right), \ldots .
$$

Cube Terms

Definition. A d-cube term $(d \geq 2)$ for a class \mathcal{K} of algebras is a term C s.t.

$$
\mathcal{K} \vDash C(\underbrace{\left[\begin{array}{c}
x \\
y \\
\vdots \\
y \\
y \\
y
\end{array}\right]}_{d \text {-tuples in } x, y, \text { with at least one } x},\left[\begin{array}{c}
y \\
x \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
y \\
{\left[\begin{array}{c}
y \\
x \\
x
\end{array}\right]}
\end{array}, \ldots .\left[\begin{array}{c}
x \\
y
\end{array}\right] .\right.
$$

Examples. Mal'tsev term, near unanimity term

Cube Terms

Definition. A d-cube term $(d \geq 2)$ for a class \mathcal{K} of algebras is a term C s.t.

Examples. Mal'tsev term, near unanimity term
For a finite algebra \mathbf{A},
\mathbf{A} has a cube term $\Leftrightarrow \mathbf{A}$ has few subpowers, i.e. $\diamond \log _{2}\left|\operatorname{Sub}\left(\mathbf{A}^{n}\right)\right| \leq$ const $\cdot n^{k}$ for some k
[Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

Cube Terms

Definition. A d-cube term $(d \geq 2)$ for a class \mathcal{K} of algebras is a term C s.t.

Examples. Mal'tsev term, near unanimity term
For a finite algebra \mathbf{A},

- $(\mathcal{V}(\mathbf{A}) \mathrm{CM} \Leftarrow) \mathbf{A}$ has a cube term $\Leftrightarrow \mathbf{A}$ has few subpowers, i.e. $\diamond \log _{2}\left|\operatorname{Sub}\left(\mathbf{A}^{n}\right)\right| \leq$ const $\cdot n^{k}$ for some k
[Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

Cube Terms

Definition. A d-cube term $(d \geq 2)$ for a class \mathcal{K} of algebras is a term C s.t.

$$
\mathcal{K} \vDash \boldsymbol{\mathcal { K }} \underbrace{\left(\left[\begin{array}{c}
x \\
y \\
\vdots \\
\vdots \\
y
\end{array}\right]\right.}_{d \text {-tuples in } x, y, \text { with at least one } x},\left[\begin{array}{c}
y \\
x \\
\vdots \\
y
\end{array}\right], \ldots,\left[\begin{array}{c}
y \\
y \\
\vdots \\
\vdots \\
\left.\left[\begin{array}{c}
x \\
x \\
\vdots
\end{array}\right], \ldots\right)
\end{array}=\left[\begin{array}{c}
y \\
y \\
\vdots \\
y
\end{array}\right] .\right.
$$

Examples. Mal'tsev term, near unanimity term
For a finite algebra \mathbf{A},

- $(\mathcal{V}(\mathbf{A}) \mathrm{CM} \Leftarrow) \mathbf{A}$ has a cube term $\Leftrightarrow \mathbf{A}$ has few subpowers, i.e. $\diamond \log _{2}\left|\operatorname{Sub}\left(\mathbf{A}^{n}\right)\right| \leq$ const $\cdot n^{k}$ for some k
[Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]
- A has a cube term $\Rightarrow \mathbf{A}$ is finitely related
[Aichinger, Mayr, McKenzie, 2014]

Cube Terms

Definition. A d-cube term $(d \geq 2)$ for a class \mathcal{K} of algebras is a term C s.t.

Examples. Mal'tsev term, near unanimity term
For a finite algebra \mathbf{A},

- $(\mathcal{V}(\mathbf{A}) \mathrm{CM} \Leftarrow) \mathbf{A}$ has a cube term $\Leftrightarrow \mathbf{A}$ has few subpowers, i.e. $\diamond \log _{2}\left|\operatorname{Sub}\left(\mathbf{A}^{n}\right)\right| \leq$ const $\cdot n^{k}$ for some k
[Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]
- A has a cube term $\Rightarrow \mathbf{A}$ is finitely related
[Aichinger, Mayr, McKenzie, 2014]
- A finitely related $\& \mathcal{V}(\mathbf{A}) \mathbf{C M} \Rightarrow \mathbf{A}$ has a cube term [Barto, $\sim 2016]$

SMP (\mathcal{K}) : An Application in AI

Learnability

$\operatorname{SMP}(\mathcal{K}):$ An Application in AI

Learnability

- Let $\mathbf{A}=(A, C)$ be a finite algebra with a cube operation C

$\operatorname{SMP}(\mathcal{K}):$ An Application in AI

Learnability

- Let $\mathbf{A}=(A, C)$ be a finite algebra with a cube operation C
- Set of 'concepts' to be learned: $\Gamma=\bigcup_{k} \operatorname{Sub}\left(\mathbf{A}^{k}\right)$, each $S \in \Gamma$ encoded by its compact representation (a special generating set)

$\operatorname{SMP}(\mathcal{K}):$ An Application in AI

Learnability

- Let $\mathbf{A}=(A, C)$ be a finite algebra with a cube operation C
- Set of 'concepts' to be learned: $\Gamma=\bigcup_{k} \operatorname{Sub}\left(\mathbf{A}^{k}\right)$, each $S \in \Gamma$ encoded by its compact representation (a special generating set)
- Learning model: 'Exact learning with equivalence queries'
- Algorithm provides oracle with a hypothetical encoding e of a concept S
- The oracle either confirms that e encodes S, or it returns a counterexample from the symmetric difference of S and the concept encoded by e.

$\operatorname{SMP}(\mathcal{K}):$ An Application in AI

Learnability

- Let $\mathbf{A}=(A, C)$ be a finite algebra with a cube operation C
- Set of 'concepts' to be learned: $\Gamma=\bigcup_{k} \operatorname{Sub}\left(\mathbf{A}^{k}\right)$, each $S \in \Gamma$ encoded by its compact representation (a special generating set)
- Learning model: 'Exact learning with equivalence queries'
- Algorithm provides oracle with a hypothetical encoding e of a concept S
- The oracle either confirms that e encodes S, or it returns a counterexample from the symmetric difference of S and the concept encoded by e.
- Γ is polynomially exactly learnable with equivalence queries. [Idziak, Marković, McKenzie, Valeriote, Willard, 2010]
- Generalizes [Dalmau, Jeavons, 2003] and [Bulatov, Chen, Dalmau, 2007]

$\operatorname{SMP}(\mathcal{K}):$ An Application in AI

Learnability

- Let $\mathbf{A}=(A, C)$ be a finite algebra with a cube operation C
- Set of 'concepts' to be learned: $\Gamma=\bigcup_{k} \operatorname{Sub}\left(\mathbf{A}^{k}\right)$, each $S \in \Gamma$ encoded by its compact representation (a special generating set)
- Learning model: 'Exact learning with equivalence queries'
- Algorithm provides oracle with a hypothetical encoding e of a concept S
- The oracle either confirms that e encodes S, or it returns a counterexample from the symmetric difference of S and the concept encoded by e.
- Γ is polynomially exactly learnable with equivalence queries. [Idziak, Marković, McKenzie, Valeriote, Willard, 2010]
- Generalizes [Dalmau, Jeavons, 2003] and [Bulatov, Chen, Dalmau, 2007]
- $\operatorname{SMP}(\mathbf{A}) \in \mathrm{P}$ would yield a more direct aproach (and cleaner proof).

Main Results

Theorem

If \mathcal{V} has a cube term, then for every finite $\mathcal{K} \subseteq \mathcal{V}_{\text {fin }}$ the following problems are all polynomial time equivalent, and are in NP:

- Given $b_{1}, \ldots, b_{k} \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$, find a compact representation for $\left\langle b_{1}, \ldots, b_{k}\right\rangle$.
- $\operatorname{SMP}(\mathcal{K})$.
- $\operatorname{SMP}(\mathbb{H} \mathcal{K})$.

Main Results

Theorem

If \mathcal{V} has a cube term, then for every finite $\mathcal{K} \subseteq \mathcal{V}_{\text {fin }}$ the following problems are all polynomial time equivalent, and are in NP:

- Given $b_{1}, \ldots, b_{k} \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$, find a compact representation for $\left\langle b_{1}, \ldots, b_{k}\right\rangle$.
- $\operatorname{SMP}(\mathcal{K})$.
- $\operatorname{SMP}(\mathbb{H} \mathcal{K})$.

We don't know whether these problems are in P. However, we have:

Main Results

Theorem

If \mathcal{V} has a cube term, then for every finite $\mathcal{K} \subseteq \mathcal{V}_{\text {fin }}$ the following problems are all polynomial time equivalent, and are in NP:

- Given $b_{1}, \ldots, b_{k} \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$, find a compact representation for $\left\langle b_{1}, \ldots, b_{k}\right\rangle$.
- $\operatorname{SMP}(\mathcal{K})$.
- $\operatorname{SMP}(\mathbb{H} \mathcal{K})$.

We don't know whether these problems are in P. However, we have:

Theorem

If \mathcal{V} is a residually small variety with a cube term, then

$$
\operatorname{SMP}(\mathcal{K}) \in \mathrm{P} \quad \text { for every finite } \mathcal{K} \subseteq \mathcal{V}_{\text {fin }}
$$

Main Results

Theorem

If \mathcal{V} has a cube term, then for every finite $\mathcal{K} \subseteq \mathcal{V}_{\text {fin }}$ the following problems are all polynomial time equivalent, and are in NP:

- Given $b_{1}, \ldots, b_{k} \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$, find a compact representation for $\left\langle b_{1}, \ldots, b_{k}\right\rangle$.
- $\operatorname{SMP}(\mathcal{K})$.
- $\operatorname{SMP}(\mathbb{H} \mathcal{K})$.

Proof uses compact representations.
We don't know whether these problems are in P. However, we have:

Theorem

If \mathcal{V} is a residually small variety with a cube term, then

$$
\operatorname{SMP}(\mathcal{K}) \in \mathrm{P} \quad \text { for every finite } \mathcal{K} \subseteq \mathcal{V}_{\text {fin }}
$$

Main Results

Theorem

If \mathcal{V} has a cube term, then for every finite $\mathcal{K} \subseteq \mathcal{V}_{\text {fin }}$ the following problems are all polynomial time equivalent, and are in NP:

- Given $b_{1}, \ldots, b_{k} \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}$ with $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K}$, find a compact representation for $\left\langle b_{1}, \ldots, b_{k}\right\rangle$.
- $\operatorname{SMP}(\mathcal{K})$.
- $\operatorname{SMP}(\mathbb{H} \mathcal{K})$.

Proof uses compact representations.
We don't know whether these problems are in P. However, we have:

Theorem

If \mathcal{V} is a residually small variety with a cube term, then

$$
\operatorname{SMP}(\mathcal{K}) \in \mathrm{P} \quad \text { for every finite } \mathcal{K} \subseteq \mathcal{V}_{\text {fin }}
$$

Proof uses structure theorem for subalgebras of products [Kearnes-Sz, 2012].

Idea of Proof of 2nd Theorem

INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K} \subseteq \mathcal{V}_{\text {fin }}\right)$
Let $\mathbf{B}:=\left\langle b_{1}, \ldots, b_{k}\right\rangle \leq_{\text {sd }} \mathbf{B}_{1} \times \cdots \times \mathbf{B}_{n}\left(\mathbf{B}_{i} \leq \mathbf{A}_{i}\right)$

Idea of Proof of 2nd Theorem

INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K} \subseteq \mathcal{V}_{\text {fin }}\right)$
Let $\mathbf{B}:=\left\langle b_{1}, \ldots, b_{k}\right\rangle \leq_{\text {sd }} \mathbf{B}_{1} \times \cdots \times \mathbf{B}_{n}\left(\mathbf{B}_{i} \leq \mathbf{A}_{i}\right)$
QUESTION: Is $c \in \mathbf{B}$?

Idea of Proof of 2nd Theorem

$$
\begin{aligned}
& \text { INPUT: } b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K} \subseteq \mathcal{V}_{\mathrm{fin}}\right) \\
& \quad \text { Let } \mathbf{B}:=\left\langle b_{1}, \ldots, b_{k}\right\rangle \leq_{\mathrm{sd}} \mathbf{B}_{1} \times \cdots \times \mathbf{B}_{n}\left(\mathbf{B}_{i} \leq \mathbf{A}_{i}\right) \\
& \text { QUESTION: Is } c \in \mathbf{B} \text { ? }
\end{aligned}
$$

May assume:

- \mathcal{V} has a d-cube term;

Idea of Proof of 2nd Theorem

$$
\begin{aligned}
& \text { INPUT: } b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K} \subseteq \mathcal{V}_{\mathrm{fin}}\right) \\
& \quad \text { Let } \mathbf{B}:=\left\langle b_{1}, \ldots, b_{k}\right\rangle \leq_{\mathrm{sd}} \mathbf{B}_{1} \times \cdots \times \mathbf{B}_{n}\left(\mathbf{B}_{i} \leq \mathbf{A}_{i}\right) \\
& \text { QUESTION: Is } c \in \mathbf{B} \text { ? }
\end{aligned}
$$

May assume:

- \mathcal{V} has a d-cube term;
- $\mathbb{H S K} \subseteq \mathcal{K}$;

Idea of Proof of 2nd Theorem

INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K} \subseteq \mathcal{V}_{\text {fin }}\right)$

$$
\text { Let } \mathbf{B}:=\left\langle b_{1}, \ldots, b_{k}\right\rangle \leq_{\mathrm{sd}} \mathbf{B}_{1} \times \cdots \times \mathbf{B}_{n}\left(\mathbf{B}_{i} \leq \mathbf{A}_{i}\right)
$$

QUESTION: Is $c \in \mathbf{B}$?

May assume:

- \mathcal{V} has a d-cube term;
- $\mathbb{H S K} \subseteq \mathcal{K}$;
- $\left.\left.c\right|_{I} \in \mathbf{B}\right|_{I}=\left\langle\left. b_{1}\right|_{I}, \ldots,\left.b_{k}\right|_{I}\right\rangle$ for all $I \in\binom{[n]}{d}$;

Idea of Proof of 2nd Theorem

INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K} \subseteq \mathcal{V}_{\text {fin }}\right)$

$$
\text { Let } \mathbf{B}:=\left\langle b_{1}, \ldots, b_{k}\right\rangle \leq_{\mathrm{sd}} \mathbf{B}_{1} \times \cdots \times \mathbf{B}_{n}\left(\mathbf{B}_{i} \leq \mathbf{A}_{i}\right)
$$

QUESTION: Is $c \in \mathbf{B}$?

May assume:

- \mathcal{V} has a d-cube term;
- $\mathbb{H S K} \subseteq \mathcal{K}$;
- $\left.\left.c\right|_{I} \in \mathbf{B}\right|_{I}=\left\langle\left. b_{1}\right|_{I}, \ldots,\left.b_{k}\right|_{I}\right\rangle$ for all $I \in\binom{[n]}{d}$;
- in particular, $c \in \mathbf{B}_{1} \times \cdots \times \mathbf{B}_{n}$;

Idea of Proof of 2nd Theorem

INPUT: $b_{1}, \ldots, b_{k}, c \in \mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \in \mathcal{K} \subseteq \mathcal{V}_{\text {fin }}\right)$

$$
\text { Let } \mathbf{B}:=\left\langle b_{1}, \ldots, b_{k}\right\rangle \leq_{\mathrm{sd}} \mathbf{B}_{1} \times \cdots \times \mathbf{B}_{n}\left(\mathbf{B}_{i} \leq \mathbf{A}_{i}\right)
$$

QUESTION: Is $c \in \mathbf{B}$?
May assume:

- \mathcal{V} has a d-cube term;
- $\mathbb{H S K} \subseteq \mathcal{K}$;
- $\left.\left.c\right|_{I} \in \mathbf{B}\right|_{I}=\left\langle\left. b_{1}\right|_{I}, \ldots,\left.b_{k}\right|_{I}\right\rangle$ for all $I \in\binom{[n]}{d}$;
- in particular, $c \in \mathbf{B}_{1} \times \cdots \times \mathbf{B}_{n}$;
- $\mathbf{B}_{1}, \ldots, \mathbf{B}_{n}$ are subdirectly irreducible.

Idea of Proof (Cont'd)

Structure Theorem \Rightarrow

Idea of Proof (Cont'd)

Structure Theorem \Rightarrow

- we have an equivalence relation \sim on $[n]=\{1, \ldots, n\}$ (indexing the coordinates) such that
- $i \sim j$ iff $i=j$ or $\mathbf{B}_{i}, \mathbf{B}_{j}$ are similar SIs with abelian monoliths μ_{i}, μ_{j}, and

Idea of Proof (Cont'd)

Structure Theorem \Rightarrow

- we have an equivalence relation \sim on $[n]=\{1, \ldots, n\}$ (indexing the coordinates) such that
- $i \sim j$ iff $i=j$ or $\mathbf{B}_{i}, \mathbf{B}_{j}$ are similar SIs with abelian monoliths μ_{i}, μ_{j}, and
- for the centralizers $\rho_{i}=\left(0: \mu_{i}\right), \rho_{j}=\left(0: \mu_{j}\right)$,
$\left.\mathbf{B}\right|_{i, j} /\left(\rho_{i} \times \rho_{j}\right)$ is the graph of an isomorphism $\mathbf{B}_{i} / \rho_{i} \rightarrow \mathbf{B}_{j} / \rho_{j}$.

Idea of Proof (Cont'd)

Structure Theorem \Rightarrow

- we have an equivalence relation \sim on $[n]=\{1, \ldots, n\}$ (indexing the coordinates) such that
- $i \sim j$ iff $i=j$ or $\mathbf{B}_{i}, \mathbf{B}_{j}$ are similar SIs with abelian monoliths μ_{i}, μ_{j}, and
- for the centralizers $\rho_{i}=\left(0: \mu_{i}\right), \rho_{j}=\left(0: \mu_{j}\right)$,
$\left.\mathbf{B}\right|_{i, j} /\left(\rho_{i} \times \rho_{j}\right)$ is the graph of an isomorphism $\mathbf{B}_{i} / \rho_{i} \rightarrow \mathbf{B}_{j} / \rho_{j}$.

- $c \in \mathbf{B}$ iff $\left.\left.c\right|_{U} \in \mathbf{B}\right|_{U}$ for all blocks $U(\subseteq[n])$ of \sim of size $|U| \geq \max \{d, 3\}$.

Idea of Proof (Cont'd)

\mathcal{V} residually small \Rightarrow

Idea of Proof (Cont’d)

\mathcal{V} residually small \Rightarrow for every U,

Idea of Proof (Cont’d)

\mathcal{V} residually small \Rightarrow for every U,

- $\left.\rho\right|_{U}=\prod_{i \in U} \rho_{i}$ is an abelian congruence on $\left.\mathbf{B}\right|_{U}$, and

Idea of Proof (Cont'd)

\mathcal{V} residually small \Rightarrow for every U,

- $\left.\rho\right|_{U}=\prod_{i \in U} \rho_{i}$ is an abelian congruence on $\left.\mathbf{B}\right|_{U}$, and $\left.\rho\right|_{U}$ has a bounded number of classes on $\left.\mathbf{B}\right|_{U}$

Idea of Proof (Cont'd)

\mathcal{V} residually small \Rightarrow for every U,

- $\left.\rho\right|_{U}=\prod_{i \in U} \rho_{i}$ is an abelian congruence on $\left.\mathbf{B}\right|_{U}$, and $\left.\rho\right|_{U}$ has a bounded number of classes on $\left.\mathbf{B}\right|_{U}$

$\left.\rho\right|_{U \text {-classes }}$
- a term induces a ternary abelian group op. $x-y+z$ on each ρ-class, and

Idea of Proof (Cont'd)

\mathcal{V} residually small \Rightarrow for every U,

- $\left.\rho\right|_{U}=\prod_{i \in U} \rho_{i}$ is an abelian congruence on $\left.\mathbf{B}\right|_{U}$, and $\left.\rho\right|_{U}$ has a bounded number of classes on $\left.\mathbf{B}\right|_{U}$

$\left.\rho\right|_{U \text {-classes }}$
- a term induces a ternary abelian group op. $x-y+z$ on each ρ-class, and
- the sum of the ρ-classes is (essentially) a module ${ }_{R} \mathbf{M}$ for a finite ring R that depends only on \mathcal{K}

Idea of Proof (Cont'd)

\mathcal{V} residually small \Rightarrow for every U,

- $\left.\rho\right|_{U}=\prod_{i \in U} \rho_{i}$ is an abelian congruence on $\left.\mathbf{B}\right|_{U}$, and $\left.\rho\right|_{U}$ has a bounded number of classes on $\left.\mathbf{B}\right|_{U}$

$\left.\rho\right|_{U \text {-classes }}$
- a term induces a ternary abelian group op. $x-y+z$ on each ρ-class, and
- the sum of the ρ-classes is (essentially) a module ${ }_{R} \mathbf{M}$ for a finite ring R that depends only on \mathcal{K}
- $\operatorname{SMP}\left({ }_{R} \mathbf{M}\right) \in \mathrm{P} \Rightarrow \operatorname{SMP}(\mathcal{K}) \in \mathrm{P}$.

