The Complexity of Comparing Subalgebras Given by Generators

Ágnes Szendrei

Joint work with A. Bulatov and P. Mayr

AMS Western Sectional Meeting

Denver, CO, October 8-9, 2016

Two Decision Problems

 $\begin{array}{l} \mathcal{V}: \text{ variety in a finite language} \\ \mathcal{K}: \text{ finite set of finite algebras in } \mathcal{V} \end{array}$

Two Decision Problems

V: variety in a finite language*K*: finite set of finite algebras in *V*

Comparing Subalgebras of Products in \mathcal{K} :

- INPUT: $b_1, \ldots, b_k, c_1, \ldots, c_\ell \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$.
- QUESTION: Is $\langle c_1, \ldots, c_\ell \rangle \leq \langle b_1, \ldots, b_k \rangle$?

Two Decision Problems

V: variety in a finite language*K*: finite set of finite algebras in *V*

Comparing Subalgebras of Products in \mathcal{K} :

- INPUT: $b_1, \ldots, b_k, c_1, \ldots, c_\ell \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$.
- QUESTION: Is $\langle c_1, \ldots, c_\ell \rangle \leq \langle b_1, \ldots, b_k \rangle$?

A polynomial time equivalent problem:

Subpower Membership Problem for \mathcal{K} , denoted SMP(\mathcal{K}):

- INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$.
- QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

イロト イポト イヨト イヨト

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Hard in general:

• $SMP(\mathcal{K}) \in EXPTIME$ by naive algorithm

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Hard in general:

- $SMP(\mathcal{K}) \in EXPTIME$ by naive algorithm
- \exists finite A such that SMP(A) is EXPTIME-complete [Kozik, 2008]

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Hard in general:

- $SMP(\mathcal{K}) \in EXPTIME$ by naive algorithm
- \exists finite A such that SMP(A) is EXPTIME-complete [Kozik, 2008]

Complexity is not the property of the (generated) subvariety:

•
$$SMP(\mathcal{K}) = SMP(\mathbb{S}\mathcal{K})$$

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Hard in general:

- $SMP(\mathcal{K}) \in EXPTIME$ by naive algorithm
- \exists finite A such that SMP(A) is EXPTIME-complete [Kozik, 2008]

Complexity is not the property of the (generated) subvariety:

•
$$SMP(\mathcal{K}) = SMP(S\mathcal{K})$$

• SMP(\mathcal{K}) $\stackrel{\text{poly time}}{\iff}$ SMP($\mathbb{P}_{\leq m}\mathcal{K}$) for all $m \geq 1$.

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Hard in general:

- $SMP(\mathcal{K}) \in EXPTIME$ by naive algorithm
- \exists finite A such that SMP(A) is EXPTIME-complete [Kozik, 2008]

Complexity is not the property of the (generated) subvariety:

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Hard in general:

- $SMP(\mathcal{K}) \in EXPTIME$ by naive algorithm
- \exists finite A such that SMP(A) is EXPTIME-complete [Kozik, 2008]

Complexity is not the property of the (generated) subvariety:

•
$$SMP(\mathcal{K}) = SMP(\mathbb{S}\mathcal{K})$$

• SMP(\mathcal{K}) $\stackrel{\text{polytime}}{\iff}$ SMP($\mathbb{P}_{\leq m}\mathcal{K}$) for all $m \geq 1$.

• $SMP(\mathcal{K}) \stackrel{\text{poly/time}}{\nleftrightarrow} SMP(\mathbb{H}\mathcal{K})$

• \exists 10-element semigroup **S** and a 9-element homomorphic image $\overline{\mathbf{S}}$ of **S** such that $SMP(\mathbf{S}) \in \mathsf{P}$ while $SMP(\overline{\mathbf{S}})$ is NP-complete [Steindl, ~2016]

イロト イポト イヨト イヨト

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

イロト イポト イヨト イヨト

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Easy (lies in P) in many 'classical' varieties:

• vector spaces - use Gaussian elimination

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

- vector spaces use Gaussian elimination
- groups Sim's Algorithm [\approx 1970]

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

- vector spaces use Gaussian elimination
- groups Sim's Algorithm [\approx 1970]
- NU varieties based on the Baker-Pixley Theorem [1975]

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

- vector spaces use Gaussian elimination
- groups Sim's Algorithm [\approx 1970]
- NU varieties based on the Baker–Pixley Theorem [1975]
- groups expanded by multilinear operations (including rings, modules, ...)
 adapt Sim's Algorithm [Willard, 2007]

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

- vector spaces use Gaussian elimination
- groups Sim's Algorithm [\approx 1970]
- NU varieties based on the Baker–Pixley Theorem [1975]
- groups expanded by multilinear operations (including rings, modules, ...)
 adapt Sim's Algorithm [Willard, 2007]
- expansions of nilpotent Mal'tsev algebras of order p^k [Mayr, 2012]

SMP(\mathcal{K}): INPUT: $b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$. QUESTION: Is $c \in \langle b_1, \ldots, b_k \rangle$?

Easy (lies in P) in many 'classical' varieties:

- vector spaces use Gaussian elimination
- groups Sim's Algorithm [\approx 1970]
- NU varieties based on the Baker–Pixley Theorem [1975]
- groups expanded by multilinear operations (including rings, modules, ...)
 adapt Sim's Algorithm [Willard, 2007]
- expansions of nilpotent Mal'tsev algebras of order p^k [Mayr, 2012]

Problem. Is $SMP(A) \in P$ whenever $\mathcal{V}(A)$ has a Mal'tsev/cube term? [Willard, 2007]/[IMMVW, 2010]

イロト イポト イヨト イヨト

Definition. A *d*-cube term $(d \ge 2)$ for a class \mathcal{K} of algebras is a term C s.t.

Definition. A *d*-cube term $(d \ge 2)$ for a class \mathcal{K} of algebras is a term C s.t.

Examples. Mal'tsev term, near unanimity term

Definition. A *d*-cube term $(d \ge 2)$ for a class \mathcal{K} of algebras is a term C s.t.

Examples. Mal'tsev term, near unanimity term

For a finite algebra A,

• A has a cube term \Leftrightarrow A has *few subpowers*, i.e. $\diamond \log_2 |\operatorname{Sub}(\mathbf{A}^n)| \leq \operatorname{const} \cdot n^k$ for some k [Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

Definition. A *d*-cube term $(d \ge 2)$ for a class \mathcal{K} of algebras is a term C s.t.

Examples. Mal'tsev term, near unanimity term

For a finite algebra A,

• $(\mathcal{V}(\mathbf{A}) \operatorname{CM} \Leftarrow) \mathbf{A}$ has a cube term $\Leftrightarrow \mathbf{A}$ has *few subpowers*, i.e. $\diamond \log_2 |\operatorname{Sub}(\mathbf{A}^n)| \le \operatorname{const} \cdot n^k$ for some k

[Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

Definition. A *d*-cube term $(d \ge 2)$ for a class \mathcal{K} of algebras is a term C s.t.

Examples. Mal'tsev term, near unanimity term

For a finite algebra A,

• $(\mathcal{V}(\mathbf{A}) \operatorname{CM} \Leftarrow) \mathbf{A}$ has a cube term $\Leftrightarrow \mathbf{A}$ has *few subpowers*, i.e. $\diamond \log_2 |\operatorname{Sub}(\mathbf{A}^n)| \le \operatorname{const} \cdot n^k$ for some k

[Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

 A has a cube term ⇒ A is *finitely related* [Aichinger, Mayr, McKenzie, 2014]

Definition. A *d*-cube term $(d \ge 2)$ for a class \mathcal{K} of algebras is a term C s.t.

Examples. Mal'tsev term, near unanimity term

For a finite algebra A,

• $(\mathcal{V}(\mathbf{A}) \operatorname{CM} \Leftarrow) \mathbf{A}$ has a cube term $\Leftrightarrow \mathbf{A}$ has *few subpowers*, i.e. $\diamond \log_2 |\operatorname{Sub}(\mathbf{A}^n)| \le \operatorname{const} \cdot n^k$ for some k

[Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

- A has a cube term ⇒ A is *finitely related* [Aichinger, Mayr, McKenzie, 2014]
- A finitely related & $\mathcal{V}(\mathbf{A}) \operatorname{CM} \Rightarrow \mathbf{A}$ has a cube term [Barto, ~2016]

Learnability

Э

イロト イポト イヨト イヨト

Learnability

• Let $\mathbf{A} = (A, C)$ be a finite algebra with a cube operation C

< 17 >

Learnability

- Let $\mathbf{A} = (A, C)$ be a finite algebra with a cube operation C
- Set of 'concepts' to be learned: Γ = U_k Sub(A^k), each S ∈ Γ encoded by its compact representation (a special generating set)

Learnability

- Let $\mathbf{A} = (A, C)$ be a finite algebra with a cube operation C
- Set of 'concepts' to be learned: Γ = U_k Sub(A^k), each S ∈ Γ encoded by its compact representation (a special generating set)
- Learning model: 'Exact learning with equivalence queries'
 - Algorithm provides oracle with a hypothetical encoding *e* of a concept *S*
 - The oracle either confirms that *e* encodes *S*, or it returns a counterexample from the symmetric difference of *S* and the concept encoded by *e*.

Learnability

- Let $\mathbf{A} = (A, C)$ be a finite algebra with a cube operation C
- Set of 'concepts' to be learned: Γ = U_k Sub(A^k), each S ∈ Γ encoded by its compact representation (a special generating set)
- Learning model: 'Exact learning with equivalence queries'
 - Algorithm provides oracle with a hypothetical encoding *e* of a concept *S*
 - The oracle either confirms that *e* encodes *S*, or it returns a counterexample from the symmetric difference of *S* and the concept encoded by *e*.
- Γ *is polynomially exactly learnable with equivalence queries.* [Idziak, Marković, McKenzie, Valeriote, Willard, 2010]
 - Generalizes [Dalmau, Jeavons, 2003] and [Bulatov, Chen, Dalmau, 2007]

Learnability

- Let $\mathbf{A} = (A, C)$ be a finite algebra with a cube operation C
- Set of 'concepts' to be learned: Γ = U_k Sub(A^k), each S ∈ Γ encoded by its compact representation (a special generating set)
- Learning model: 'Exact learning with equivalence queries'
 - Algorithm provides oracle with a hypothetical encoding *e* of a concept *S*
 - The oracle either confirms that *e* encodes *S*, or it returns a counterexample from the symmetric difference of *S* and the concept encoded by *e*.
- Γ *is polynomially exactly learnable with equivalence queries.* [Idziak, Marković, McKenzie, Valeriote, Willard, 2010]
 - Generalizes [Dalmau, Jeavons, 2003] and [Bulatov, Chen, Dalmau, 2007]
- $SMP(A) \in P$ would yield a more direct aproach (and cleaner proof).

イロト イポト イヨト イヨト

Theorem

If \mathcal{V} has a cube term, then for every finite $\mathcal{K} \subseteq \mathcal{V}_{fin}$ the following problems are all polynomial time equivalent, and are in NP:

- Given $b_1, \ldots, b_k \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$, find a compact representation for $\langle b_1, \ldots, b_k \rangle$.
- $SMP(\mathcal{K})$.
- $SMP(\mathbb{H}\mathcal{K})$.

Theorem

If \mathcal{V} has a cube term, then for every finite $\mathcal{K} \subseteq \mathcal{V}_{fin}$ the following problems are all polynomial time equivalent, and are in NP:

- Given $b_1, \ldots, b_k \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$, find a compact representation for $\langle b_1, \ldots, b_k \rangle$.
- $SMP(\mathcal{K})$.
- $SMP(\mathbb{H}\mathcal{K})$.

We don't know whether these problems are in P. However, we have:

Theorem

If \mathcal{V} has a cube term, then for every finite $\mathcal{K} \subseteq \mathcal{V}_{fin}$ the following problems are all polynomial time equivalent, and are in NP:

- Given $b_1, \ldots, b_k \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$, find a compact representation for $\langle b_1, \ldots, b_k \rangle$.
- $SMP(\mathcal{K})$.
- $SMP(\mathbb{H}\mathcal{K})$.

We don't know whether these problems are in P. However, we have:

Theorem

If \mathcal{V} is a residually small variety with a cube term, then

 $SMP(\mathcal{K}) \in \mathsf{P} \qquad \textit{for every finite } \mathcal{K} \subseteq \mathcal{V}_{fin}.$

イロト イポト イヨト イヨト

Theorem

If \mathcal{V} has a cube term, then for every finite $\mathcal{K} \subseteq \mathcal{V}_{fin}$ the following problems are all polynomial time equivalent, and are in NP:

- Given $b_1, \ldots, b_k \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$, find a compact representation for $\langle b_1, \ldots, b_k \rangle$.
- $SMP(\mathcal{K})$.
- $SMP(\mathbb{H}\mathcal{K})$.

Proof uses compact representations.

We don't know whether these problems are in P. However, we have:

Theorem

If \mathcal{V} is a residually small variety with a cube term, then

 $SMP(\mathcal{K}) \in \mathsf{P} \qquad \textit{for every finite } \mathcal{K} \subseteq \mathcal{V}_{fin}.$

イロト イポト イヨト イヨト

Theorem

If \mathcal{V} has a cube term, then for every finite $\mathcal{K} \subseteq \mathcal{V}_{fin}$ the following problems are all polynomial time equivalent, and are in NP:

- Given $b_1, \ldots, b_k \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n$ with $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K}$, find a compact representation for $\langle b_1, \ldots, b_k \rangle$.
- $SMP(\mathcal{K})$.
- $SMP(\mathbb{H}\mathcal{K})$.

Proof uses compact representations.

We don't know whether these problems are in P. However, we have:

Theorem

If \mathcal{V} is a residually small variety with a cube term, then

$$\mathrm{SMP}(\mathcal{K}) \in \mathsf{P}$$
 for every finite $\mathcal{K} \subseteq \mathcal{V}_{\mathrm{fin}}$.

Proof uses structure theorem for subalgebras of products [Kearnes-Sz, 2012].

INPUT:
$$b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \ (\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K} \subseteq \mathcal{V}_{fin})$$

Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n \ (\mathbf{B}_i \leq \mathbf{A}_i)$

イロト イポト イヨト イヨト

Э

INPUT:
$$b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \ (\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K} \subseteq \mathcal{V}_{fin})$$

Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n \ (\mathbf{B}_i \leq \mathbf{A}_i)$
QUESTION: Is $c \in \mathbf{B}$?

イロト イポト イヨト イヨト

Э

INPUT:
$$b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n (\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K} \subseteq \mathcal{V}_{fin})$$

Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n (\mathbf{B}_i \leq \mathbf{A}_i)$
QUESTION: Is $c \in \mathbf{B}$?

May assume:

• \mathcal{V} has a *d*-cube term;

INPUT:
$$b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n (\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K} \subseteq \mathcal{V}_{fin})$$

Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n (\mathbf{B}_i \leq \mathbf{A}_i)$
QUESTION: Is $c \in \mathbf{B}$?

- \mathcal{V} has a *d*-cube term;
- $\mathbb{HSK} \subseteq \mathcal{K};$

INPUT:
$$b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \ (\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K} \subseteq \mathcal{V}_{fin})$$

Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n \ (\mathbf{B}_i \leq \mathbf{A}_i)$
QUESTION: Is $c \in \mathbf{B}$?

- \mathcal{V} has a *d*-cube term;
- $\mathbb{HSK} \subseteq \mathcal{K};$
- $c|_I \in \mathbf{B}|_I = \langle b_1|_I, \dots, b_k|_I \rangle$ for all $I \in \binom{[n]}{d}$;

INPUT:
$$b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \ (\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K} \subseteq \mathcal{V}_{fin})$$

Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n \ (\mathbf{B}_i \leq \mathbf{A}_i)$
QUESTION: Is $c \in \mathbf{B}$?

- \mathcal{V} has a *d*-cube term;
- $\mathbb{HSK} \subseteq \mathcal{K};$
- $c|_I \in \mathbf{B}|_I = \langle b_1|_I, \dots, b_k|_I \rangle$ for all $I \in {[n] \choose d}$;
- in particular, $c \in \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$;

INPUT:
$$b_1, \ldots, b_k, c \in \mathbf{A}_1 \times \cdots \times \mathbf{A}_n \ (\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathcal{K} \subseteq \mathcal{V}_{fin})$$

Let $\mathbf{B} := \langle b_1, \ldots, b_k \rangle \leq_{sd} \mathbf{B}_1 \times \cdots \times \mathbf{B}_n \ (\mathbf{B}_i \leq \mathbf{A}_i)$
QUESTION: Is $c \in \mathbf{B}$?

- \mathcal{V} has a *d*-cube term;
- $\mathbb{HSK} \subseteq \mathcal{K};$
- $c|_I \in \mathbf{B}|_I = \langle b_1|_I, \dots, b_k|_I \rangle$ for all $I \in {[n] \choose d}$;
- in particular, $c \in \mathbf{B}_1 \times \cdots \times \mathbf{B}_n$;
- $\mathbf{B}_1, \ldots, \mathbf{B}_n$ are subdirectly irreducible.

Structure Theorem \Rightarrow

イロト イポト イヨト イヨト

Э

Structure Theorem \Rightarrow

- we have an equivalence relation ~ on $[n] = \{1, ..., n\}$ (indexing the coordinates) such that
 - $i \sim j$ iff i = j or \mathbf{B}_i , \mathbf{B}_j are similar SIs with abelian monoliths μ_i, μ_j , and

Structure Theorem \Rightarrow

- we have an equivalence relation ~ on $[n] = \{1, ..., n\}$ (indexing the coordinates) such that
 - $i \sim j$ iff i = j or \mathbf{B}_i , \mathbf{B}_j are similar SIs with abelian monoliths μ_i, μ_j , and
 - for the centralizers $\rho_i = (0 : \mu_i), \rho_j = (0 : \mu_j),$ $\mathbf{B}|_{i,j}/(\rho_i \times \rho_j)$ is the graph of an isomorphism $\mathbf{B}_i/\rho_i \to \mathbf{B}_j/\rho_j$.

Structure Theorem \Rightarrow

- we have an equivalence relation ~ on $[n] = \{1, ..., n\}$ (indexing the coordinates) such that
 - $i \sim j$ iff i = j or \mathbf{B}_i , \mathbf{B}_j are similar SIs with abelian monoliths μ_i, μ_j , and
 - for the centralizers $\rho_i = (0 : \mu_i), \rho_j = (0 : \mu_j),$ $\mathbf{B}|_{i,j}/(\rho_i \times \rho_j)$ is the graph of an isomorphism $\mathbf{B}_i/\rho_i \to \mathbf{B}_j/\rho_j$.

• $c \in \mathbf{B}$ iff $c|_U \in \mathbf{B}|_U$ for all blocks $U \subseteq [n]$ of \sim of size $|U| \ge \max\{d, 3\}.$

 $\mathcal{V} \text{ residually small} \Rightarrow$

イロト イポト イヨト イヨト

Э

 \mathcal{V} residually small \Rightarrow for every U,

 \mathcal{V} residually small \Rightarrow for every U,

• $\rho|_U = \prod_{i \in U} \rho_i$ is an abelian congruence on $\mathbf{B}|_U$, and

 \mathcal{V} residually small \Rightarrow for every U,

• $\rho|_U = \prod_{i \in U} \rho_i$ is an abelian congruence on $\mathbf{B}|_U$, and $\rho|_U$ has a bounded number of classes on $\mathbf{B}|_U$

 \mathcal{V} residually small \Rightarrow for every U,

• $\rho|_U = \prod_{i \in U} \rho_i$ is an abelian congruence on $\mathbf{B}|_U$, and $\rho|_U$ has a bounded number of classes on $\mathbf{B}|_U$

• a term induces a ternary abelian group op. x - y + z on each ρ -class, and

 \mathcal{V} residually small \Rightarrow for every U,

• $\rho|_U = \prod_{i \in U} \rho_i$ is an abelian congruence on $\mathbf{B}|_U$, and $\rho|_U$ has a bounded number of classes on $\mathbf{B}|_U$

- a term induces a ternary abelian group op. x y + z on each ρ -class, and
- the sum of the ρ -classes is (essentially) a module $_R$ **M** for a finite ring R that depends only on \mathcal{K}

 \mathcal{V} residually small \Rightarrow for every U,

• $\rho|_U = \prod_{i \in U} \rho_i$ is an abelian congruence on $\mathbf{B}|_U$, and $\rho|_U$ has a bounded number of classes on $\mathbf{B}|_U$

- a term induces a ternary abelian group op. x y + z on each ρ -class, and
- the sum of the ρ -classes is (essentially) a module $_R$ **M** for a finite ring R that depends only on \mathcal{K}
- $\bullet \ \operatorname{SMP}(_{\operatorname{R}} M) \in \mathsf{P} \ \Rightarrow \ \operatorname{SMP}(\operatorname{\mathcal{K}}) \in \mathsf{P}.$