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Two Decision Problems

V: variety in a finite language
K: finite set of finite algebras in V

Comparing Subalgebras of Products in K:

INPUT: b1, . . . , bk, c1, . . . , c` ∈ A1 × · · · × An with A1, . . . ,An ∈ K.

QUESTION: Is 〈c1, . . . , c`〉 ≤ 〈b1, . . . , bk〉 ?

A polynomial time equivalent problem:

Subpower Membership Problem for K, denoted SMP(K):

INPUT: b1, . . . , bk, c ∈ A1 × · · · × An with A1, . . . ,An ∈ K.

QUESTION: Is c ∈ 〈b1, . . . , bk〉 ?
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Bad News

SMP(K): INPUT: b1, . . . , bk, c ∈ A1 × · · · × An with A1, . . . ,An ∈ K.
QUESTION: Is c ∈ 〈b1, . . . , bk〉 ?

Hard in general:

SMP(K) ∈ EXPTIME by naive algorithm

∃ finite A such that SMP(A) is EXPTIME-complete [Kozik, 2008]

Complexity is not the property of the (generated) subvariety:

SMP(K) = SMP(SK)

SMP(K)
poly time⇐⇒ SMP(P≤mK) for all m ≥ 1.

SMP(K)
poly time⇐⇒ SMP(HK)
/

∃ 10-element semigroup S and a 9-element homomorphic image S of S
such that SMP(S) ∈ P while SMP(S̄) is NP-complete [Steindl, ∼2016]
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Good News

SMP(K): INPUT: b1, . . . , bk, c ∈ A1 × · · · × An with A1, . . . ,An ∈ K.
QUESTION: Is c ∈ 〈b1, . . . , bk〉 ?

Easy (lies in P) in many ‘classical’ varieties:

vector spaces – use Gaussian elimination

groups – Sim’s Algorithm [≈ 1970]

NU varieties – based on the Baker–Pixley Theorem [1975]

groups expanded by multilinear operations (including rings, modules, ...)
– adapt Sim’s Algorithm [Willard, 2007]

expansions of nilpotent Mal’tsev algebras of order pk [Mayr, 2012]

Problem. Is SMP(A) ∈ P whenever V(A) has a Mal’tsev/cube term?
[Willard, 2007]/[IMMVW, 2010]

A. Szendrei Complexity of Comparing Subalgebras AMS Meeting Denver 2016 4 / 10



Good News

SMP(K): INPUT: b1, . . . , bk, c ∈ A1 × · · · × An with A1, . . . ,An ∈ K.
QUESTION: Is c ∈ 〈b1, . . . , bk〉 ?

Easy (lies in P) in many ‘classical’ varieties:

vector spaces – use Gaussian elimination

groups – Sim’s Algorithm [≈ 1970]

NU varieties – based on the Baker–Pixley Theorem [1975]

groups expanded by multilinear operations (including rings, modules, ...)
– adapt Sim’s Algorithm [Willard, 2007]

expansions of nilpotent Mal’tsev algebras of order pk [Mayr, 2012]

Problem. Is SMP(A) ∈ P whenever V(A) has a Mal’tsev/cube term?
[Willard, 2007]/[IMMVW, 2010]

A. Szendrei Complexity of Comparing Subalgebras AMS Meeting Denver 2016 4 / 10



Good News

SMP(K): INPUT: b1, . . . , bk, c ∈ A1 × · · · × An with A1, . . . ,An ∈ K.
QUESTION: Is c ∈ 〈b1, . . . , bk〉 ?

Easy (lies in P) in many ‘classical’ varieties:

vector spaces – use Gaussian elimination

groups – Sim’s Algorithm [≈ 1970]

NU varieties – based on the Baker–Pixley Theorem [1975]

groups expanded by multilinear operations (including rings, modules, ...)
– adapt Sim’s Algorithm [Willard, 2007]

expansions of nilpotent Mal’tsev algebras of order pk [Mayr, 2012]

Problem. Is SMP(A) ∈ P whenever V(A) has a Mal’tsev/cube term?
[Willard, 2007]/[IMMVW, 2010]

A. Szendrei Complexity of Comparing Subalgebras AMS Meeting Denver 2016 4 / 10



Good News

SMP(K): INPUT: b1, . . . , bk, c ∈ A1 × · · · × An with A1, . . . ,An ∈ K.
QUESTION: Is c ∈ 〈b1, . . . , bk〉 ?

Easy (lies in P) in many ‘classical’ varieties:

vector spaces – use Gaussian elimination

groups – Sim’s Algorithm [≈ 1970]

NU varieties – based on the Baker–Pixley Theorem [1975]

groups expanded by multilinear operations (including rings, modules, ...)
– adapt Sim’s Algorithm [Willard, 2007]

expansions of nilpotent Mal’tsev algebras of order pk [Mayr, 2012]

Problem. Is SMP(A) ∈ P whenever V(A) has a Mal’tsev/cube term?
[Willard, 2007]/[IMMVW, 2010]

A. Szendrei Complexity of Comparing Subalgebras AMS Meeting Denver 2016 4 / 10



Good News

SMP(K): INPUT: b1, . . . , bk, c ∈ A1 × · · · × An with A1, . . . ,An ∈ K.
QUESTION: Is c ∈ 〈b1, . . . , bk〉 ?

Easy (lies in P) in many ‘classical’ varieties:

vector spaces – use Gaussian elimination

groups – Sim’s Algorithm [≈ 1970]

NU varieties – based on the Baker–Pixley Theorem [1975]

groups expanded by multilinear operations (including rings, modules, ...)
– adapt Sim’s Algorithm [Willard, 2007]

expansions of nilpotent Mal’tsev algebras of order pk [Mayr, 2012]

Problem. Is SMP(A) ∈ P whenever V(A) has a Mal’tsev/cube term?
[Willard, 2007]/[IMMVW, 2010]

A. Szendrei Complexity of Comparing Subalgebras AMS Meeting Denver 2016 4 / 10



Good News

SMP(K): INPUT: b1, . . . , bk, c ∈ A1 × · · · × An with A1, . . . ,An ∈ K.
QUESTION: Is c ∈ 〈b1, . . . , bk〉 ?

Easy (lies in P) in many ‘classical’ varieties:

vector spaces – use Gaussian elimination

groups – Sim’s Algorithm [≈ 1970]

NU varieties – based on the Baker–Pixley Theorem [1975]

groups expanded by multilinear operations (including rings, modules, ...)
– adapt Sim’s Algorithm [Willard, 2007]

expansions of nilpotent Mal’tsev algebras of order pk [Mayr, 2012]

Problem. Is SMP(A) ∈ P whenever V(A) has a Mal’tsev/cube term?
[Willard, 2007]/[IMMVW, 2010]

A. Szendrei Complexity of Comparing Subalgebras AMS Meeting Denver 2016 4 / 10



Good News

SMP(K): INPUT: b1, . . . , bk, c ∈ A1 × · · · × An with A1, . . . ,An ∈ K.
QUESTION: Is c ∈ 〈b1, . . . , bk〉 ?

Easy (lies in P) in many ‘classical’ varieties:

vector spaces – use Gaussian elimination

groups – Sim’s Algorithm [≈ 1970]

NU varieties – based on the Baker–Pixley Theorem [1975]

groups expanded by multilinear operations (including rings, modules, ...)
– adapt Sim’s Algorithm [Willard, 2007]

expansions of nilpotent Mal’tsev algebras of order pk [Mayr, 2012]

Problem. Is SMP(A) ∈ P whenever V(A) has a Mal’tsev/cube term?
[Willard, 2007]/[IMMVW, 2010]

A. Szendrei Complexity of Comparing Subalgebras AMS Meeting Denver 2016 4 / 10



Cube Terms

Definition. A d-cube term (d ≥ 2) for a class K of algebras is a term C s.t.

K |= C




x
y
...
y

 ,


y
x
...
y

 , . . . ,


y
y
...
x

 ,


x
x
...
y

 , . . .
 =


y
y
...
y

 .
d-tuples in x, y, with at least one x

Examples. Mal’tsev term, near unanimity term

For a finite algebra A,
(V(A) CM ⇐) A has a cube term ⇔ A has few subpowers, i.e.

� log2 |Sub(An)| ≤ const · nk for some k
[Berman, Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

A has a cube term ⇒ A is finitely related
[Aichinger, Mayr, McKenzie, 2014]

A finitely related & V(A) CM ⇒ A has a cube term [Barto, ∼2016]
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SMP(K): An Application in AI

Learnability

Let A = (A,C) be a finite algebra with a cube operation C

Set of ‘concepts’ to be learned: Γ =
⋃

k Sub(Ak), each S ∈ Γ encoded by
its compact representation (a special generating set)
Learning model: ‘Exact learning with equivalence queries’

Algorithm provides oracle with a hypothetical encoding e of a concept S
The oracle either confirms that e encodes S, or it returns a counterexample
from the symmetric difference of S and the concept encoded by e.

Γ is polynomially exactly learnable with equivalence queries.
[Idziak, Marković, McKenzie, Valeriote, Willard, 2010]

Generalizes [Dalmau, Jeavons, 2003] and [Bulatov, Chen, Dalmau, 2007]

SMP(A) ∈ P would yield a more direct aproach (and cleaner proof).
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Main Results

Theorem
If V has a cube term, then for every finite K ⊆ Vfin the following problems are
all polynomial time equivalent, and are in NP:

Given b1, . . . , bk ∈ A1 × · · · × An with A1, . . . ,An ∈ K, find a compact
representation for 〈b1, . . . , bk〉.
SMP(K).

SMP(HK).

Proof uses compact representations.

We don’t know whether these problems are in P. However, we have:

Theorem
If V is a residually small variety with a cube term, then

SMP(K) ∈ P for every finite K ⊆ Vfin.

Proof uses structure theorem for subalgebras of products [Kearnes–Sz, 2012].
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Idea of Proof of 2nd Theorem

INPUT: b1, . . . , bk, c ∈ A1 × · · · × An (A1, . . . ,An ∈ K ⊆ Vfin)

Let B := 〈b1, . . . , bk〉 ≤sd B1 × · · · × Bn (Bi ≤ Ai)

QUESTION: Is c ∈ B ?

May assume:

V has a d-cube term;

HSK ⊆ K;

c|I ∈ B|I = 〈b1|I, . . . , bk|I〉 for all I ∈
([n]

d

)
;

in particular, c ∈ B1 × · · · × Bn;

B1, . . . ,Bn are subdirectly irreducible.
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Idea of Proof (Cont’d)

Structure Theorem⇒

we have an equivalence relation ∼ on [n] = {1, . . . , n} (indexing the
coordinates) such that

i ∼ j iff i = j or Bi, Bj are similar SIs with abelian monoliths µi, µj, and
for the centralizers ρi = (0 : µi), ρj = (0 : µj),
B|i,j/(ρi × ρj) is the graph of an isomorphism Bi/ρi → Bj/ρj.

Bi

c ∈ B iff c|U ∈ B|U for all blocks U (⊆ [n]) of ∼ of size
|U| ≥ max{d, 3}.
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Idea of Proof (Cont’d)

V residually small⇒

for every U,

ρ|U =
∏

i∈U ρi is an abelian congruence on B|U , and
ρ|U has a bounded number of classes on B|U

Bi

ρ|U-classes
...

a term induces a ternary abelian group op. x− y + z on each ρ-class, and

the sum of the ρ-classes is (essentially) a module RM for a finite ring R
that depends only on K

SMP(RM) ∈ P ⇒ SMP(K) ∈ P.
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