Series-parallel posets having a near-unanimity polymorphism

Benoit Larose and Ross Willard*
Université du Québec à Montréal and University of Waterloo
AMS Fall Western Sectional Meeting Denver, October 8, 2016

All posets are finite.

If \mathbf{P}, \mathbf{Q} are posets, then $\mathbf{P}+\mathbf{Q}$ is their ordinal sum:

$\mathbf{P} \cup \mathbf{Q}$ is their disjoint union.

$$
\mathbf{1}=\bullet \quad 1 \cup \mathbf{1}=\bullet \bullet=2 \quad 1+\mathbf{1}=
$$

Definition. Let \mathbf{P} be a poset.
A function $f: P^{n} \rightarrow P$ is a near unanimity (NU) polymorphism of \mathbf{P} if

- $n \geq 3$.
- $\forall 1 \leq i \leq n, \quad \forall a, b \in P$,

$$
\begin{gathered}
f(a, a, \ldots, a, b, a, \ldots, a)=a \\
\uparrow \\
i
\end{gathered}
$$

- f is monotone in each variable.

Clone theorists (last century) and CSPers (this century) care about which posets have an NU polymorphism.

Key examples

Facts

Key examples

$$
=\mathbf{1}+\mathbf{2}+\mathbf{2}+\mathbf{1}
$$

Facts

Every lattice-ordered poset has an NU polymorphism of arity 3.

Key examples

$$
=1+2+2+1
$$

Facts

Every lattice-ordered poset has an NU polymorphism of arity 3.
\mathbf{T}_{2} : Has an NU polymorphism of arity 5 (Demetrovics et al, 1984).

Key examples

$$
=1+2+2+1
$$

Facts

Every lattice-ordered poset has an NU polymorphism of arity 3.
\mathbf{T}_{2} : Has an NU polymorphism of arity 5 (Demetrovics et al, 1984).
\mathbf{T}_{3} : Does not have an NU polymorphism. (Demetrovics et al, 1984) Does have "weaker" (Taylor) polymorphisms (McKenzie, 1990).

Key examples

$$
=1+2+2+1
$$

Facts

Every lattice-ordered poset has an NU polymorphism of arity 3.
\mathbf{T}_{2} : Has an NU polymorphism of arity 5 (Demetrovics et al, 1984).
\mathbf{T}_{3} : Does not have an NU polymorphism. (Demetrovics et al, 1984) Does have "weaker" (Taylor) polymorphisms (McKenzie, 1990).
\mathbf{T}_{4} : Does not even have "weaker" polymorphisms (Dem. \& Rónyai, 1989).
$\mathbf{T}_{2}, \mathbf{T}_{3}, \mathbf{T}_{4}, \ldots$ are examples of series-parallel posets.

Definition

A poset is series-parallel if it can be constructed from (copies of) $\mathbf{1}$ by finitely many applications of + and \cup.

Equivalently (Valdes, Tarjan, Lawler 1982), a poset is series-parallel iff © does not embed into it.

$\mathbf{T}_{2}, \mathbf{T}_{3}, \mathbf{T}_{4}, \ldots$ are examples of series-parallel posets.

Definition

A poset is series-parallel if it can be constructed from (copies of) $\mathbf{1}$ by finitely many applications of + and \cup.

Equivalently (Valdes, Tarjan, Lawler 1982), a poset is series-parallel iff © does not embed into it.

Dalmau, Krokhin, Larose (2008) characterized those series-parallel posets which have "weaker" (Taylor) polymorphisms:

- By "forbidden retracts" (list of 5 , including $\mathbf{T}_{4}, \mathbf{2 + 2}$, and $\mathbf{2 + 2 + 2}$).
- By an internal characterization, easily checkable in polynomial time.

$\mathbf{T}_{2}, \mathbf{T}_{3}, \mathbf{T}_{4}, \ldots$ are examples of series-parallel posets.

Definition

A poset is series-parallel if it can be constructed from (copies of) $\mathbf{1}$ by finitely many applications of + and \cup.

Equivalently (Valdes, Tarjan, Lawler 1982), a poset is series-parallel iff © does not embed into it.

Dalmau, Krokhin, Larose (2008) characterized those series-parallel posets which have "weaker" (Taylor) polymorphisms:

- By "forbidden retracts" (list of 5 , including $\mathbf{T}_{4}, \mathbf{2 + 2}$, and $\mathbf{2 + 2 + 2}$).
- By an internal characterization, easily checkable in polynomial time.

Our main result: We can do something similar for NU polymorphisms.

New operations: $\mathbf{P} \boxtimes \mathbf{Q}, \mathbf{P} \triangle \mathbf{Q}, \mathbf{P} \nabla \mathbf{Q}$, and $\mathbf{P} \diamond \mathbf{Q}$

$\mathbf{P} \varangle \mathbf{Q}$: defined when \mathbf{P} has 1 and \mathbf{Q} has 0 .
$\mathbf{P} \triangle \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have 1.
$\mathbf{P} \nabla \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have 0.
$\mathbf{P} \diamond \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have $1 \neq 0$.

New operations: $\mathbf{P} \boxtimes \mathbf{Q}, \mathbf{P} \triangle \mathbf{Q}, \mathbf{P} \nabla \mathbf{Q}$, and $\mathbf{P} \diamond \mathbf{Q}$

$\mathbf{P} \boxtimes \mathbf{Q}$: defined when \mathbf{P} has 1 and \mathbf{Q} has 0 .
$\mathbf{P} \triangle \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have 1.
$\mathbf{P} \nabla \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have 0.
$\mathbf{P} \diamond \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have $1 \neq 0$.

$$
\begin{array}{ll}
\Delta \nabla \nabla= & \Delta \Delta \Delta= \\
\nabla \nabla \nabla= & \emptyset \vee \emptyset=
\end{array}
$$

New operations: $\mathbf{P} \boxtimes \mathbf{Q}, \mathbf{P} \triangle \mathbf{Q}, \mathbf{P} \nabla \mathbf{Q}$, and $\mathbf{P} \diamond \mathbf{Q}$

$\mathbf{P} \varangle \mathbf{Q}$: defined when \mathbf{P} has 1 and \mathbf{Q} has 0 .
$\mathbf{P} \triangle \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have 1.
$\mathbf{P} \nabla \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have 0.
$\mathbf{P} \diamond \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have $1 \neq 0$.

$$
\begin{array}{ll}
\Delta \triangleright \nabla=\nabla & \Delta \Delta \Delta= \\
\nabla \nabla \nabla= & \emptyset \diamond \emptyset=
\end{array}
$$

New operations: $\mathbf{P} \boxtimes \mathbf{Q}, \mathbf{P} \triangle \mathbf{Q}, \mathbf{P} \nabla \mathbf{Q}$, and $\mathbf{P} \diamond \mathbf{Q}$

$\mathbf{P} \varangle \mathbf{Q}$: defined when \mathbf{P} has 1 and \mathbf{Q} has 0 .
$\mathbf{P} \triangle \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have 1.
$\mathbf{P} \nabla \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have 0.
$\mathbf{P} \diamond \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have $1 \neq 0$.

$$
\begin{array}{ll}
\Delta \nabla \nabla=\nabla & \Delta \Delta \Delta=\Delta \\
\nabla \nabla \nabla= & \nabla \vee O=
\end{array}
$$

New operations: $\mathbf{P} \boxtimes \mathbf{Q}, \mathbf{P} \triangle \mathbf{Q}, \mathbf{P} \nabla \mathbf{Q}$, and $\mathbf{P} \diamond \mathbf{Q}$

$\mathbf{P} \varangle \mathbf{Q}$: defined when \mathbf{P} has 1 and \mathbf{Q} has 0 .
$\mathbf{P} \triangle \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have 1.
$\mathbf{P} \nabla \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have 0.
$\mathbf{P} \diamond \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have $1 \neq 0$.

$$
\begin{array}{ll}
\Delta \otimes \nabla=\nabla & \Delta \Delta \Delta=\Delta \\
\nabla \nabla \nabla=\nabla & \nabla \vee \emptyset=
\end{array}
$$

New operations: $\mathbf{P} \boxtimes \mathbf{Q}, \mathbf{P} \triangle \mathbf{Q}, \mathbf{P} \nabla \mathbf{Q}$, and $\mathbf{P} \diamond \mathbf{Q}$
$\mathbf{P} \triangle \mathbf{Q}$: defined when \mathbf{P} has 1 and \mathbf{Q} has 0 .
$\mathbf{P} \triangle \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have 1.
$\mathbf{P} \nabla \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have 0 .
$\mathbf{P} \diamond \mathbf{Q}$: defined when both \mathbf{P} and \mathbf{Q} have $1 \neq 0$.

$$
\begin{array}{ll}
\Delta \nabla \nabla=Q & \Delta \Delta \Delta=\Delta \\
\nabla \nabla \nabla & \nabla \\
\nabla & \square
\end{array}
$$

Here is our result.

Theorem
Let \mathbf{P} be a series-parallel poset. TFAE:
(1) \mathbf{P} has an NU polymorphism.

(3) Each connected component of \mathbf{P} having more than one element is in the closure of $\{\mathbf{1}+\mathbf{1}\}$ under $+, \nabla, \triangle, \nabla, \diamond$.

About the proof:
(1) Hardest part is showing that \mathbf{P} being in the closure of $\{\mathbf{1}+\mathbf{1}\}$ under $+, \nabla, \triangle, \nabla, \diamond$ implies \mathbf{P} has an NU polymorphism.

About the proof:
(1) Hardest part is showing that \mathbf{P} being in the closure of $\{\mathbf{1}+\mathbf{1}\}$ under $+, \nabla, \triangle, \nabla, \diamond$ implies \mathbf{P} has an NU polymorphism.
(2) Use a complicated induction on the construction of \mathbf{P}.

About the proof:
(1) Hardest part is showing that \mathbf{P} being in the closure of $\{\mathbf{1}+\mathbf{1}\}$ under $+, \nabla, \triangle, \nabla, \diamond$ implies \mathbf{P} has an NU polymorphism.
(2) Use a complicated induction on the construction of \mathbf{P}.
(3) Do not actually construct an NU; instead, use criterion for existence due to Kun and Szabó (2001).

About the proof:
(1) Hardest part is showing that \mathbf{P} being in the closure of $\{\mathbf{1}+\mathbf{1}\}$ under $+, \nabla, \triangle, \nabla, \diamond$ implies \mathbf{P} has an NU polymorphism.
(2) Use a complicated induction on the construction of \mathbf{P}.
(3) Do not actually construct an NU; instead, use criterion for existence due to Kun and Szabó (2001).

Thus we have no control over (and know nothing about) the NU's arity.

About the proof:
(1) Hardest part is showing that \mathbf{P} being in the closure of $\{\mathbf{1}+\mathbf{1}\}$ under $+, \nabla, \triangle, \nabla, \diamond$ implies \mathbf{P} has an NU polymorphism.
(2) Use a complicated induction on the construction of \mathbf{P}.
(3) Do not actually construct an NU; instead, use criterion for existence due to Kun and Szabó (2001).

Thus we have no control over (and know nothing about) the NU's arity.

Problem

For fixed $k \geq 3$, characterize the series-parallel posets which have a k-ary NU polymorphism.

