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Introduction

In the theory of regular languages of finite words, profinite monoids

are useful canonical objects.

Such monoids are Stone dual spaces of certain Boolean algebras.

These Boolean algebras, in turn, are Lindenbaum algebras of certain

logical theories.

How can we use techniques from logic to study profinite monoids?

Which of these techniques are useful more generally, in other

(profinite) contexts?
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First-order definable languages

When defining languages with logic, a finite A-word is seen as a

structure with a binary relation < and unary letter predicates (Pa)a∈A.

For example, the finite {a, b}-word

abbaa

is ({1, 2, 3, 4, 5}, <,Pa,Pb) with Pa = {1, 4, 5} and Pb = {2, 3}. The

first-order sentence

∃x∃y(x < y ∧ Pa(x) ∧ Pb(x))

is true in this word, but false in, e.g., bba.

Any first-order sentence φ in the signature LA = {<} ∪ {Pa | a ∈ A}
defines the language Lφ of finite A-words in which φ is true, i.e.,

Lφ := Modfin(φ).
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First-order definability and aperiodicity

Theorem (McNaughton & Papert 1971, Schützenberger 1965)

A language is first-order definable if, and only if, it is recognizable by

a finite aperiodic monoid.

Here,

a language L ⊆ A∗ is recognizable by a finite monoid M if there

is a homomorphism η : A∗ → M with L = η−1η(L),

a monoid is aperiodic if it has no non-trivial subgroups.

The class of finite aperiodic monoids is denoted by A.

Observation

The assignment φ 7→ Lφ defines an isomorphism between the

Lindenbaum algebra L(T A
fin) of the first-order theory of finite A-words

and the Boolean algebra RecA(A) of A-recognizable languages.
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Profinite monoids

A profinite monoid is a topological monoid whose underlying space is

Boolean (compact, T2, 0-dim).

Alternatively, a profinite monoid is a projective limit of finite discrete

monoids in the category of topological monoids.

The free profinite monoid over a finite set A, Â∗, has as its clopen

sets the closures of languages L over A that are recognizable by a

finite monoid.
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Pro-V monoids

A (pseudo)variety V is a collection of finite monoids closed under

submonoids, homomorphic images, and finite products.

A pro-V monoid is a projective limit of finite monoids in V.

For any finite alphabet A, the free pro-V monoid over A, F̂V(A), is

the pro-V monoid characterized by the usual universal property.

The clopen sets of F̂V(A) are the closures of V-recognizable

languages. Thus, F̂V(A) is the Stone dual space of the Boolean

algebra RecV(A):

F̂V(A) = RecV(A)?

In particular, by our earlier observation:

F̂A(A) = L(T A
fin)?
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The Stone space of a first-order theory

Let T be a first-order theory.

The points of the Stone space L(T )? are the complete theories

extending T .

Alternatively, the points of L(T )? are elementary equivalence classes

of T -models.

The topology is given by the basis of clopen sets {φ̂ | φ a sentence},
where φ̂ = {[M]≡ | M |= φ}.

In particular, F̂A(A) = L(T A
fin)? is the space of elementary equivalence

classes of pseudofinite A-words.

Thus, the above observations give a new perspective on the

topological monoid F̂A(A). How to use it?
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Pseudofinite A-words

An A-word is a LA-structure where < is a discrete linear order with

endpoints and the predicates Pa form a partition.

A pseudofinite A-word is, by definition, a model of the theory T A
fin.

Theorem

The theory T A
fin is not finitely axiomatizable.

An A-word is pseudofinite iff it satisfies a certain induction scheme.

E.g., aaa · · · · · · bbb is not pseudofinite.
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Concatenation and substitution

Any two A-words can be concatenated in the obvious way. This

operation respects elementary equivalence. In this way, L(T A
fin)? is a

monoid.

Concatenation of pseudofinite A-words corresponds to a residuation

operation on the Lindenbaum algebra: if φ and ψ are first-order

sentences, then φ/ψ is a first-order sentence defining the language

Lφ/ψ = {u | whenever v |= ψ, we have uv |= φ}.

It is not obvious (to me) how to construct this first-order sentence

directly from φ and ψ.

More generally, any assignment B → F̂A(A) induces a substitution of

pseudofinite A-words into pseudofinite B-words. These substitutions

give precisely the continuous homomorphisms F̂A(B)→ F̂A(A).
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Types and weakly saturated A-words
A type is a triple (u, a, v) with u, v ∈ F̂A(A) and a ∈ A. The type

space is F̂A(A)× A× F̂A(A).

If U is an A-word, and i is a position in U , then

tpU(i) := (U(<i),U(i),U(>i))

is the type realized in U by i .

A type t is consistent with an A-word U if t is realized in some

A-word V that is elementarily equivalent to U . An A-word U is

weakly saturated if U realizes all types consistent with it.

Proposition

The set of types consistent with U is the topological closure in the

type space of the set of types realized in U . Thus, U is weakly

saturated iff the set of realized types is closed.
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Proposition

The set of types consistent with U is the topological closure in the

type space of the set of types realized in U . Thus, U is weakly

saturated iff the set of realized types is closed.
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ω-saturated A-words

An A-word U is ω-saturated if every interval in U is weakly saturated.

Theorem (Model theory)

Any elementary equivalence class contains an ω-saturated model.

Theorem (v. Gool & Steinberg)

A substitution of ω-saturated models into ω-saturated models is again

ω-saturated. In particular, ω-saturated models are closed under

concatenation.

The proof combines the topological characterization of weak

saturation and the continuity of substitutions.
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First application: equidivisibility

A monoid M is called equidivisible if for any u, v , u′, v ′ in M ,

uv = u′v ′ implies that there exists x in M such that ux = u′ and

xv ′ = v , or u′x = u and xv = v ′.

Proposition

The monoid F̂A(A) is equidivisible.

Proof.

Let w := uv = u′v ′.

Pick an ω-saturated model W in w .

Draw a picture.
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More applications

A new proof of decidability of the word problem for aperiodic
ω-terms.

I Key: countably saturated models are unique up to isomorphism in an

elementary equivalence class.

A detailed analysis of factors of substitutions.

Well-quasi-orders of factors, regularity of finite factor languages,

are stable under substitutions.

See our technical report arXiv:1609.07736 (or tomorrow

morning. . . ).
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Where to go from here

Do these methods extend to Monadic Second Order logic?

Are these methods useful in other profinite contexts?

Are other logical techniques useful? (Omitting types?)

Are there more algorithmic applications in language theory?

Your questions?
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