Interrelation among Top Sys. Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSy_n, FBS_n and ±⁵₂Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

> On Categorical Relationship among various Fuzzy Topological Systems, Fuzzy Topological Spaces and related Algebraic Structures BLAST 2013

Purbita Jana

Department of Pure Mathematics University of Calcutta purbita_presi@yahoo.co.in

August 5, 2013

Table of contents

- 1 Interrelation among Top Sys, Top and Frm
 - Categories
 - Functors
- Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm
 - Categories
 - Functors
- Interrelation among FBSy_n, FBS_n and L^c_n-Alg
 - Categories
 - Functors
- ${}_{igsimed 9}$ Interrelation among ${}_{ar {\mathscr F}} ext{-}\mathsf{Top}$ Sys, ${}_{ar {\mathscr F}} ext{-}\mathsf{Top}$ and Frm
 - Categories
 - Functors
- 5 Future Direction

Image: A math a math

Interrelation among Top Sys. Top and Frm Interrelation among Fuzzy Top Sys. Fuzzy Top and Frm Interrelation among FBSy₀., FBS₀ and t₂⁻Alg Interrelation among *F*-Top Sys. *F*-Top and Frm Future Direction References

Definition

A category is a quadruple $\mathbb{A} = (O, hom, id, \circ)$ consisting of

æ

Definition

A category is a quadruple $\mathbb{A} = (O, hom, id, \circ)$ consisting of

• A class O, whose members are called $\mathbb{A} - objects$.

<ロ> <同> <同> <三> < 回> < 回> < 三>

- ∢ ≣ ▶

Definition

A category is a quadruple $\mathbb{A} = (O, hom, id, \circ)$ consisting of

- A class O, whose members are called $\mathbb{A} objects$.
- For each pair (A, B) of A − objects, a set hom(A, B), whose members are called A − morphisms from A to B.

<ロ> <同> <同> <三> < 回> < 回> < 三>

Definition

A category is a quadruple $\mathbb{A} = (O, hom, id, \circ)$ consisting of

- A class O, whose members are called $\mathbb{A} objects$.
- For each pair (A, B) of A − objects, a set hom(A, B), whose members are called A − morphisms from A to B.
- For each A − object A, a morphism id_A : A → A called A − identity on A.

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSy_n, FBS_p and ±^c₀-Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

cont.

Definition

- \bullet A composition law associating with each $\mathbb{A}-\textit{morphism}$
 - $f: A \longrightarrow B$ and each $\mathbb{A} morphism \ g: B \longrightarrow C$ an
 - A morphism $g \circ f : A \longrightarrow C$, called the composite of f and
 - g, subject to the following conditions

Image: A math a math

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSy_n, FBS_p and ±^c₀-Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

cont.

Definition

- \bullet A composition law associating with each $\mathbb{A}-\textit{morphism}$
 - $f: A \longrightarrow B$ and each $\mathbb{A} morphism \ g: B \longrightarrow C$ an
 - A morphism $g \circ f : A \longrightarrow C$, called the composite of f and
 - g, subject to the following conditions
- composition is associative.

Image: A math a math

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSy_n, FBS_p and ±⁵₂Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

cont.

Definition

- A composition law associating with each $\mathbb{A}-\textit{morphism}$
 - $f: A \longrightarrow B$ and each \mathbb{A} morphism $g: B \longrightarrow C$ an
 - A morphism $g \circ f : A \longrightarrow C$, called the composite of f and
 - g, subject to the following conditions
- composition is associative.
- \mathbb{A} *identities* act as identities with respect to composition.

<ロ> <同> <同> <三> < 回> < 回> < 三>

Functors

Definition

If \mathbb{A} and \mathbb{B} are categories, then the functor F from \mathbb{A} to \mathbb{B} is a function that assigns to each \mathbb{A} – *object* A a \mathbb{B} – *object* F(A), and to each \mathbb{A} – *morphism* $f : A \longrightarrow A'$ a \mathbb{B} – *morphism* $F(f) : F(A) \longrightarrow F(A')$ in such a way that

Functors

Definition

If \mathbb{A} and \mathbb{B} are categories, then the functor F from \mathbb{A} to \mathbb{B} is a function that assigns to each \mathbb{A} – *object* A a \mathbb{B} – *object* F(A), and to each \mathbb{A} – *morphism* $f : A \longrightarrow A'$ a \mathbb{B} – *morphism* $F(f) : F(A) \longrightarrow F(A')$ in such a way that

F− preserves compositions i.e. *F*(*f* ∘ *g*) = *F*(*f*) ∘ *F*(*g*) whenever *f* ∘ *g* is defined and

<ロ> <同> <同> <同> < 同> < 同>

Functors

Definition

If \mathbb{A} and \mathbb{B} are categories, then the functor F from \mathbb{A} to \mathbb{B} is a function that assigns to each \mathbb{A} – *object* A a \mathbb{B} – *object* F(A), and to each \mathbb{A} – *morphism* $f : A \longrightarrow A'$ a \mathbb{B} – *morphism* $F(f) : F(A) \longrightarrow F(A')$ in such a way that

- *F*− preserves compositions i.e. *F*(*f* ∘ *g*) = *F*(*f*) ∘ *F*(*g*) whenever *f* ∘ *g* is defined and
- *F*− preserve identity morphisms i.e. *F*(*id_A*) = *id_{F(A)}* for each *A*− *object* A.

イロン イヨン イヨン イヨン

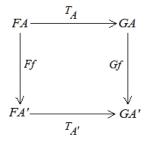
Natural Transformation

Definition

Let $F, G : \mathbb{A} \longrightarrow \mathbb{B}$ be functors. A natural transformation T from F to G (denoted by $T : F \longrightarrow G$) is a function that assigns to each \mathbb{A} – object A a \mathbb{B} – morphism $T_A : FA \longrightarrow GA$ in such a way that the following naturality condition holds: for each \mathbb{A} – morphism $f : A \longrightarrow A'$, the square

・ロト ・回ト ・ヨト

cont.



commutes.

æ

・ロン ・四と ・ヨン ・ヨン

G-universal arrow

Definition

A *G*-structured arrow (g, A) with domain *B* is called *G*-universal for *B* provided that for each *G*-structured arrow (g', A') with domain *B* there exists a unique \mathbb{A} – morphism $\hat{f} : A \longrightarrow A'$ with $g' = G(\hat{f}) \circ g$.

<ロ> <同> <同> <三> < 回> < 回> < 三>

G-couniversal arrow

Definition

A *G*-costructured arrow (A, g) with codomain *B* is called *G*-couniversal for *B* provided that for each *G*-costructured arrow (A', g') with codomain *B* there exists a unique \mathbb{A} – morphism $\hat{f}: A' \longrightarrow A$ with $g' = g \circ G(\hat{f})$.

Interrelation among Top Sys. Top and Frm Interrelation among Fuzzy Top Sys. Fuzzy Top and Frm Interrelation among FBSy₀., FBS₀ and t₂⁻Alg Interrelation among *F*-Top Sys. *F*-Top and Frm Future Direction References

Definition

A functor $G : \mathbb{A} \longrightarrow \mathbb{B}$ is said to be right adjoint provided that for every $\mathbb{B} - object B$ there exists a *G*-universal arrow with domain *B*.

Left Adjoint

Definition

A functor $G : \mathbb{A} \longrightarrow \mathbb{B}$ is said to be left adjoint provided that for every \mathbb{B} – *object* B there exists a G-couniversal arrow with codomain B.

<ロ> <同> <同> < 同> < 同> < 同><<

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and L_p^C -Alg Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Topological System

A Topological system is a triple (X, \models, A) where X is a set, A is a frame and \models , is a relation $\models \subseteq X \times A$, matches the logic of finite observations. Formally,

Categories

Functors

<ロ> <同> <同> < 同> < 同> < 同><<

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and L_p^C -Alg Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Top Sys

Topological System

A Topological system is a triple (X, \models, A) where X is a set, A is a frame and \models , is a relation $\models \subseteq X \times A$, matches the logic of finite observations. Formally,

Categories

Functors

• If S is a finite subset of A, then $x \models \bigwedge S \Leftrightarrow x \models a$ for all $a \in S$.

<ロ> <同> <同> <同> < 同> < 同>

Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and L_n^C -Alg Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Top Sys

Topological System

A Topological system is a triple (X, \models, A) where X is a set, A is a frame and \models , is a relation $\models \subseteq X \times A$, matches the logic of finite observations. Formally,

Categories

Functors

- If S is a finite subset of A, then $x \models \bigwedge S \Leftrightarrow x \models a$ for all $a \in S$.
- If S is any subset of A, then $x \models \bigvee S \Leftrightarrow x \models a$ for some $a \in S$.

イロン イヨン イヨン イヨン

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and $L_p^{-}Alg$ Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Categories Functors

Continuous map

Let $D = (X, \models, A)$ and $E = (Y, \models', B)$ be topological systems. A continuous map $f : D \longrightarrow E$ is a pair (f_1, f_2) where,

・ロト ・回ト ・ヨト

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and L_p^C -Alg Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Continuous map

Let $D = (X, \models, A)$ and $E = (Y, \models', B)$ be topological systems. A continuous map $f : D \longrightarrow E$ is a pair (f_1, f_2) where,

Categories

Functors

• $f_1: X \longrightarrow Y$ is a function.

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and L_p^C -Alg Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Continuous map

Let $D = (X, \models, A)$ and $E = (Y, \models', B)$ be topological systems. A continuous map $f : D \longrightarrow E$ is a pair (f_1, f_2) where,

Categories

Functors

•
$$f_1: X \longrightarrow Y$$
 is a function.

•
$$f_2: B \longrightarrow A$$
 is a frame homomorphism and

<ロ> <同> <同> <同> < 同>

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and L_p^C -Alg Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Top Sys

Continuous map

Let $D = (X, \models, A)$ and $E = (Y, \models', B)$ be topological systems. A continuous map $f : D \longrightarrow E$ is a pair (f_1, f_2) where,

Categories

Functors

- $f_1: X \longrightarrow Y$ is a function.
- $f_2: B \longrightarrow A$ is a frame homomorphism and
- $x \models f_2(x)$ iff $f_1(x) \models' b$, for all $x \in X$ and $b \in B$.

イロン イ部ン イヨン イヨン 三日

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and $L_p^{-}Alg$ Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Categories Functors

Identity map

Let $D = (X, \models, A)$ be a topological system. The identity map $I_D : D \longrightarrow D$ is a pair (I_1, I_2) defined by

2

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and $L_p^{-}Alg$ Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Identity map

Let $D = (X, \models, A)$ be a topological system. The identity map $I_D : D \longrightarrow D$ is a pair (I_1, I_2) defined by

$$I_1: X \longrightarrow X$$
$$I_2: A \longrightarrow A$$

Categories

Functors

2

イロン イヨン イヨン イヨン

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and L_p^C -Alg Interrelation among \mathscr{P} -Top Sys, \mathscr{P} -Top and Frm Future Direction References

Categories Functors

Composition

Let
$$D = (X, \models', A)$$
, $E = (Y, \models'', B)$, $F = (Z, \models''', C)$.

æ

・ロン ・四と ・ヨン ・ヨン

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and L_p^C -Alg Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Top Sys

Composition

Let
$$D = (X, \models', A)$$
, $E = (Y, \models'', B)$, $F = (Z, \models''', C)$. Let $(f_1, f_2) : D \longrightarrow E$ and $(g_1, g_2) : E \longrightarrow F$ be continuous maps.

Categories

Functors

æ

・ロン ・回 と ・ ヨン ・ ヨン

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and L_p^C -Alg Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Top Sys

Composition

Let
$$D = (X, \models', A)$$
, $E = (Y, \models'', B)$, $F = (Z, \models''', C)$. Let $(f_1, f_2) : D \longrightarrow E$ and $(g_1, g_2) : E \longrightarrow F$ be continuous maps.
The composition $(g_1, g_2) \circ (f_1, f_2) : D \longrightarrow F$ is defined by

Categories

Functors

æ

・ロン ・四と ・ヨン ・ヨン

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and $L_p^{-}Alg$ Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Top Sys

Composition

Let
$$D = (X, \models', A)$$
, $E = (Y, \models'', B)$, $F = (Z, \models''', C)$. Let $(f_1, f_2) : D \longrightarrow E$ and $(g_1, g_2) : E \longrightarrow F$ be continuous maps.
The composition $(g_1, g_2) \circ (f_1, f_2) : D \longrightarrow F$ is defined by

$$g_1 \circ f_1 : X \longrightarrow Z$$
$$f_2 \circ g_2 : C \longrightarrow A$$

Categories

Functors

æ

・ロン ・回 と ・ ヨン ・ ヨン

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and $L_p^{-}Alg$ Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Categories Functors

Top Sys

Topological systems together with continuous maps form the category Top Sys.

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and t_0^{-} -Alg Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Тор

Topological spaces together with continuous maps form the category Top.

Categories

Functors

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and $t_p^{-}Alg$ Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Frm

Frm

Frames together with frame homomorphisms form the category Frm.

Categories

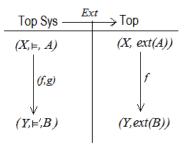
Functors

æ

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and L_p^C -Alg Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Categories Functors

Ext



where
$$ext(a) = \{x \mid x \models a\}$$
 and $ext(A) = \{ext(a)\}_{a \in A}$ $a \in A$

Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and t_n^{ς} -Alg Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Categories Functors



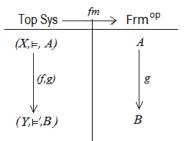
₹.

・ロト ・回ト ・ヨト ・ヨト

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and L_p^C -Alg Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Categories Functors

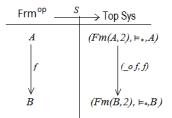
fm



ъ.

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and t_n^{ς} -Alg Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Categories Functors



where $Fm(A, 2) = \{ frame \ homomorphism : A \longrightarrow 2 \}$ and $x \models_* a$ iff $x(a) = \top$.

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and t_p^{-} -Alg Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Results

• *Ext* is the right adjoint to the functor *J*.

Functors

æ

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and t_p^{-} -Alg Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Results

- Ext is the right adjoint to the functor J.
- **2** fm is the left adjoint to the functor S.

Functors

æ

<ロ> <同> <同> < 同> < 同> < 同><<

Interrelation among Fuzzy Top Šys, Fuzzy Top and Frm Interrelation among $FBSy_n$, FBS_n and $L_{D}^{<}Alg$ Interrelation among \mathscr{F} -Top Sys, \mathscr{F} -Top and Frm Future Direction References

Results

- *Ext* is the right adjoint to the functor *J*.
- 2 fm is the left adjoint to the functor S.
- **③** $Ext \circ S$ is the right adjoint to the functor $fm \circ J$.

_∢ ≣ ≯

Functors

æ

Categories Functors

Fuzzy Top Sys

Fuzzy Topological System

A fuzzy topological system is a triple (X, \models, A) , where X is a non-empty set, A is a frame and \models is a [0, 1]-fuzzy relation from X to A such that

Interrelation among Top Sys. Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSy_n, FBS_n and ±⁵₂Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

Categories Functors

Fuzzy Top Sys

Fuzzy Topological System

A fuzzy topological system is a triple (X, \models, A) , where X is a non-empty set, A is a frame and \models is a [0, 1]-fuzzy relation from X to A such that

• if S is a finite subset of A, then

$$gr(x \models \bigwedge S) = inf\{gr(x \models s) : s \in S\}$$

Interrelation among Top Sys. Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSy_n, FBS_n and ±⁵₂Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

Categories Functors

Fuzzy Top Sys

Fuzzy Topological System

A fuzzy topological system is a triple (X, \models, A) , where X is a non-empty set, A is a frame and \models is a [0, 1]-fuzzy relation from X to A such that

• if S is a finite subset of A, then

$$gr(x \models \bigwedge S) = inf\{gr(x \models s) : s \in S\}$$

• if S is any subset of A, then

$$gr(x \models \bigvee S) = sup\{gr(x \models s) : s \in S\}$$

Categories Functors

Fuzzy Top Sys

Continuous map

Let $D = (X, \models, A)$ and $E = (Y, \models', B)$ be fuzzy topological systems. A continuous map $f : D \longrightarrow E$ is a pair (f_1, f_2) where,

<ロ> <同> <同> <三>

Categories Functors

Fuzzy Top Sys

Continuous map

Let $D = (X, \models, A)$ and $E = (Y, \models', B)$ be fuzzy topological systems. A continuous map $f : D \longrightarrow E$ is a pair (f_1, f_2) where,

•
$$f_1: X \longrightarrow Y$$
 is a function.

Categories Functors

Fuzzy Top Sys

Continuous map

Let $D = (X, \models, A)$ and $E = (Y, \models', B)$ be fuzzy topological systems. A continuous map $f : D \longrightarrow E$ is a pair (f_1, f_2) where,

•
$$f_1: X \longrightarrow Y$$
 is a function.

• $f_2: B \longrightarrow A$ is a frame homomorphism and

<ロ> (日) (日) (日) (日) (日)

Categories Functors

Fuzzy Top Sys

Continuous map

Let $D = (X, \models, A)$ and $E = (Y, \models', B)$ be fuzzy topological systems. A continuous map $f : D \longrightarrow E$ is a pair (f_1, f_2) where,

•
$$f_1: X \longrightarrow Y$$
 is a function.

•
$$f_2: B \longrightarrow A$$
 is a frame homomorphism and

• $gr(x \models f_2(b)) = gr(f_1(x) \models' b)$, for all $x \in X$ and $b \in B$.

イロン イヨン イヨン イヨン

Interrelation among Top Sys. Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSy_n, FBS_n and ±⁵₂Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

Categories Functors

Fuzzy Top Sys

Identity map

Let $D = (X, \models, A)$ be a fuzzy topological system. The identity map $I_D : D \longrightarrow D$ is a pair (I_1, I_2) defined by

2

イロン イヨン イヨン イヨン

Identity map

Let $D = (X, \models, A)$ be a fuzzy topological system. The identity map $I_D : D \longrightarrow D$ is a pair (I_1, I_2) defined by

$$I_1: X \longrightarrow X$$
$$I_2: A \longrightarrow A$$

Categories

Functors

2

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSyn, FBS_n and ±^C₂-Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

Categories Functors

Fuzzy Top Sys

Composition

Let
$$D = (X, \models', A)$$
, $E = (Y, \models'', B)$, $F = (Z, \models''', C)$.

æ

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSyn, FBS_n and ±^C₂-Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

Categories Functors

Fuzzy Top Sys

Composition

Let
$$D = (X, \models', A)$$
, $E = (Y, \models'', B)$, $F = (Z, \models''', C)$. Let $(f_1, f_2) : D \longrightarrow E$ and $(g_1, g_2) : E \longrightarrow F$ be fuzzy continuous maps.

æ

Categories Functors

Fuzzy Top Sys

Composition

Let
$$D = (X, \models', A)$$
, $E = (Y, \models'', B)$, $F = (Z, \models''', C)$. Let $(f_1, f_2) : D \longrightarrow E$ and $(g_1, g_2) : E \longrightarrow F$ be fuzzy continuous maps.

The composition $(g_1,g_2)\circ (f_1,f_2):D\longrightarrow F$ is defined by

2

Categories Functors

Fuzzy Top Sys

Composition

Let
$$D = (X, \models', A)$$
, $E = (Y, \models'', B)$, $F = (Z, \models''', C)$. Let $(f_1, f_2) : D \longrightarrow E$ and $(g_1, g_2) : E \longrightarrow F$ be fuzzy continuous maps.

The composition $(g_1, g_2) \circ (f_1, f_2) : D \longrightarrow F$ is defined by

$$g_1 \circ f_1 : X \longrightarrow Z$$
$$f_2 \circ g_2 : C \longrightarrow A$$

æ

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSyn, FBS_n and ±^C₀-Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

Categories Functors

Fuzzy Top Sys

Fuzzy Top Sys

Fuzzy topological systems together with continuous maps form the category Fuzzy Top Sys.

Тор

Fuzzy topological spaces together with fuzzy continuous maps form the category Fuzzy Top.

Categories

Functors

Frm

Frm

Frames together with frame homomorphisms form the category Frm.

Categories

Functors

æ

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSy_n, FBS_n and L_n^c -Alg Interrelation among F-Top Sys, F-Top and Frm Future Direction References

Functors

Ext

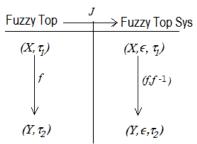
Fuzzy Top Sys	\xrightarrow{ct} Fuzzy Top
(X,⊨, A)	(X, ext(A))
(f,g)	f
(<i>Y</i> ,⊨', <i>B</i>)	↓ (Y,ext(B))

where $ext(a): X \longrightarrow [0, 1]$ s.t. $ext(a)(x) = gr(x \models a)$ and $ext(A) = {ext(a)}_{a \in A}$ イロン 不同と 不同と 不同と

æ

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSyn, FBSn and t_c⁻, Alg Interrelation among *P*-Top Sys, *P*-Top and Frm Future Direction References

Categories Functors

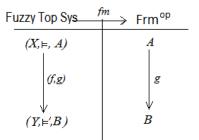


₹.

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSyn, FBS_n and t₂, Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

Categories Functors

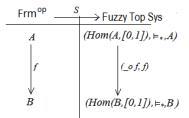
fm



æ.

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSy_n, FBS_n and t^c₂, Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

Categories Functors



where $Hom(A, [0, 1]) = \{ frame homomorphism v : A \longrightarrow [0, 1] \}$ and $gr(v \models_* a) = v(a).$ Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSyn, FBS_n and ±^C_n-Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

1 E_{xt} is the right adjoint to the functor J.

Functors

æ

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSyn, FBS_n and ±^C₆-Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

Categories Functors

Results

- *Ext* is the right adjoint to the functor *J*.
- 2 fm is the left adjoint to the functor S.

æ

<ロ> <同> <同> < 同> < 同> < 同><<

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSyn, FBS_n and t₆⁻,Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

Categories Functors

Results

- Ext is the right adjoint to the functor J.
- 2 fm is the left adjoint to the functor S.
- **③** $Ext \circ S$ is the right adjoint to the functor $fm \circ J$.

_∢ ≣ ≯

Interrelation among Top Sys. Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSyn, FBS, and ±⁵₂-Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

Categories Functors

Definition of Fuzzy Topological System given by Apostolos and Paiva

A fuzzy topological system is an object (U, X, α) of $Dial_I(Set)$ such that X is a frame and α satisfies the following conditions:

Interrelation among Top Sys. Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSy_n, FBS_p and ±⁵₂Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

Categories Functors

Definition of Fuzzy Topological System given by Apostolos and Paiva

A fuzzy topological system is an object (U, X, α) of $Dial_I(Set)$ such that X is a frame and α satisfies the following conditions:

• If S is a finite subset of X, then $\alpha(u, \bigwedge S) \leq \alpha(u, x)$ for all $x \in S$.

Image: A math a math

Categories Functors

Definition of Fuzzy Topological System given by Apostolos and Paiva

A fuzzy topological system is an object (U, X, α) of $Dial_I(Set)$ such that X is a frame and α satisfies the following conditions:

- If S is a finite subset of X, then $\alpha(u, \bigwedge S) \leq \alpha(u, x)$ for all $x \in S$.
- If S is any subset of X, then $\alpha(u, \bigvee S) \leq \alpha(u, x)$ for some $x \in S$.

Image: A math a math

Categories Functors

Definition of Fuzzy Topological System given by Apostolos and Paiva

A fuzzy topological system is an object (U, X, α) of $Dial_I(Set)$ such that X is a frame and α satisfies the following conditions:

- If S is a finite subset of X, then $\alpha(u, \bigwedge S) \leq \alpha(u, x)$ for all $x \in S$.
- If S is any subset of X, then $\alpha(u, \bigvee S) \leq \alpha(u, x)$ for some $x \in S$.
- $\alpha(u, \top) = 1$ and $\alpha(u, \bot) = 0$ for all $u \in U$.

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSyn, FBSn and t₀⁻, Alg Interrelation among *P*-Top Sys, *P*-Top and Frm Future Direction References

Categories Functors

An L_n^c -algebra is an MV_n algebra enriched by n constants. That is, it is an MV_n algebra $\mathcal{A} = (A, \land, \lor, *, \oplus, \rightarrow, ^{\perp}, 0, 1)$ in which the algebra \overline{n} is embedded.

2

<ロ> (日) (日) (日) (日) (日)

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSyn, FBSn and t₀⁻Alg Interrelation among *P*-Top Sys, *P*-Top and Frm Future Direction References

Categories Functors

An L_n^c -algebra is an MV_n algebra enriched by n constants. That is, it is an MV_n algebra $\mathcal{A} = (A, \wedge, \vee, *, \oplus, \rightarrow, ^{\perp}, 0, 1)$ in which the algebra \overline{n} is embedded.

 L_n^c -homomorphism is a function between two L_n^c -algebras which preserves the operations.

<ロ> (日) (日) (日) (日) (日)

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSyn, FBS₀, and Ł^c₂-Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

Categories Functors

n-fuzzy Boolean System

An \bar{n} -fuzzy Boolean System is a triple (X, \models, A) where X is a set, A is an \mathbb{L}_n^c -algebra and \models is an \bar{n} valued fuzzy relation from X to A such that

2

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSyn, FBS₀, and Ł^c₂-Alg Interrelation among *F*-Top Sys, *F*-Top and Frm Future Direction References

Categories Functors

n-fuzzy Boolean System

An \bar{n} -fuzzy Boolean System is a triple (X, \models, A) where X is a set, A is an L_n^c -algebra and \models is an \bar{n} valued fuzzy relation from X to A such that

$$gr(x \models a * b) = max(0, gr(x \models a) + gr(x \models b) - 1)$$

2

Categories Functors

FBSy_n

n-fuzzy Boolean System

An \bar{n} -fuzzy Boolean System is a triple (X, \models, A) where X is a set, A is an \pounds_n^c -algebra and \models is an \bar{n} valued fuzzy relation from X to A such that $gr(x \models a * b) = max(0, gr(x \models a) + gr(x \models b) - 1)$

$$gr(x \models a^{\perp}) = 1 - gr(x \models a)$$

2

イロン イヨン イヨン イヨン

Categories Functors

FBSy_n

n-fuzzy Boolean System

An \bar{n} -fuzzy Boolean System is a triple (X, \models, A) where X is a set, A is an L_n^c -algebra and \models is an \bar{n} valued fuzzy relation from X to A such that $gr(x \models a * b) = max(0, gr(x \models a) + gr(x \models b) - 1)$ $gr(x \models a^{\perp}) = 1 - gr(x \models a)$ $gr(x \models r) = r$ for all $r \in \bar{n}$

イロン イ部ン イヨン イヨン 三日

Categories Functors

FBSy_n

n-fuzzy Boolean System

An \bar{n} -fuzzy Boolean System is a triple (X, \models, A) where X is a set, A is an \pounds_n^c -algebra and \models is an \bar{n} valued fuzzy relation from X to A such that $gr(x \models a * b) = max(0, gr(x \models a) + gr(x \models b) - 1)$ $gr(x \models a^{\perp}) = 1 - gr(x \models a)$ $gr(x \models r) = r$ for all $r \in \bar{n}$ $x_1 \neq x_2 \Rightarrow gr(x_1 \models a) \neq gr(x_2 \models a)$ for some $a \in A$

イロン イボン イヨン イヨン 三日

Categories Functors

n-fuzzy Boolean System

Continuous map

Let
$$D = (X, \models, A)$$
 and $E = (Y, \models', B)$ be \overline{n} -fuzzy Boolean Systems.

・ロン ・回 と ・ ヨン ・ ヨン

Categories Functors

n-fuzzy Boolean System

Continuous map

Let $D = (X, \models, A)$ and $E = (Y, \models', B)$ be \bar{n} -fuzzy Boolean Systems.A continuous map $f : D \longrightarrow E$ is a pair (f_1, f_2) where,

Categories Functors

n-fuzzy Boolean System

Continuous map

Let $D = (X, \models, A)$ and $E = (Y, \models', B)$ be \bar{n} -fuzzy Boolean Systems.A continuous map $f : D \longrightarrow E$ is a pair (f_1, f_2) where,

<ロ> <同> <同> <三> < 回> < 回> < 三>

Categories Functors

n-fuzzy Boolean System

Continuous map

Let $D = (X, \models, A)$ and $E = (Y, \models', B)$ be \bar{n} -fuzzy Boolean Systems.A continuous map $f : D \longrightarrow E$ is a pair (f_1, f_2) where,

$$I f_1: X \longrightarrow Y \text{ is a function.}$$

2
$$f_2: B \longrightarrow A$$
 is L_n^c -homomorphism and

Categories Functors

n-fuzzy Boolean System

Continuous map

Let $D = (X, \models, A)$ and $E = (Y, \models', B)$ be \bar{n} -fuzzy Boolean Systems.A continuous map $f : D \longrightarrow E$ is a pair (f_1, f_2) where,

$$I_1: X \longrightarrow Y \text{ is a function.}$$

2
$$f_2: B \longrightarrow A$$
 is L_n^c -homomorphism and

 $\ \, {\it or} \ \, gr(x\models f_2(b))=gr(f_1(x)\models'b), \ \, {\it for \ \, all} \ \, x\in X, \ \, b\in B.$

Image: A math a math

Categories Functors

n-fuzzy Boolean System

Identity map

Let $D = (X, \models, A)$ be \overline{n} -fuzzy Boolean System. The identity map $I_D : D \longrightarrow D$ is the pair (I_1, I_2) of identity maps-

Categories Functors

n-fuzzy Boolean System

Identity map

Let $D = (X, \models, A)$ be \overline{n} -fuzzy Boolean System. The identity map $I_D : D \longrightarrow D$ is the pair (I_1, I_2) of identity maps-

$$l_1: X \longrightarrow X$$
$$l_2: A \longrightarrow A$$

Categories Functors

n-fuzzy Boolean System

Composition

Let
$$D = (X, \models', A)$$
, $E = (Y, \models'', B)$, $F = (Z, \models''', C)$. Let $(f_1, f_2) : D \longrightarrow E$ and $(g_1, g_2) : E \longrightarrow F$ be continuous maps

æ

Categories Functors

n-fuzzy Boolean System

Composition

Let
$$D = (X, \models', A)$$
, $E = (Y, \models'', B)$, $F = (Z, \models''', C)$. Let $(f_1, f_2) : D \longrightarrow E$ and $(g_1, g_2) : E \longrightarrow F$ be continuous maps.
The composition $(g_1, g_2) \circ (f_1, f_2) : D \longrightarrow F$ is defined by

æ

Categories Functors

n-fuzzy Boolean System

Composition

Let
$$D = (X, \models', A)$$
, $E = (Y, \models'', B)$, $F = (Z, \models''', C)$. Let $(f_1, f_2) : D \longrightarrow E$ and $(g_1, g_2) : E \longrightarrow F$ be continuous maps.
The composition $(g_1, g_2) \circ (f_1, f_2) : D \longrightarrow F$ is defined by

$$g_1 \circ f_1 : X \longrightarrow Z$$
$$f_2 \circ g_2 : C \longrightarrow A$$

æ

Categories Functors

n-fuzzy Boolean System

Composition

Let
$$D = (X, \models', A)$$
, $E = (Y, \models'', B)$, $F = (Z, \models''', C)$. Let $(f_1, f_2) : D \longrightarrow E$ and $(g_1, g_2) : E \longrightarrow F$ be continuous maps.
The composition $(g_1, g_2) \circ (f_1, f_2) : D \longrightarrow F$ is defined by

$$g_1 \circ f_1 : X \longrightarrow Z$$
$$f_2 \circ g_2 : C \longrightarrow A$$

i.e $(g_1, g_2) \circ (f_1, f_2) = (g_1 \circ f_1, f_2 \circ g_2).$

æ

Categories Functors

n-fuzzy Boolean System

FBSy_n

 \bar{n} -fuzzy Boolean Systems together with continuous functions forms the category \bar{n} -fuzzy Boolean System(*FBSy_n*).

<ロ> <同> <同> <三> < 回> < 回> < 三>

Categories Functors

n-fuzzy Boolean Space

For an \bar{n} -fuzzy topological space (X, τ) is called an \bar{n} -fuzzy Boolean space iff (X, τ) is zero dimensional, compact and Kolmogorov.

・ロト ・回ト ・ヨト

Categories Functors

n-fuzzy Boolean Space

For an \bar{n} -fuzzy topological space (X, τ) is called an \bar{n} -fuzzy Boolean space iff (X, τ) is zero dimensional, compact and Kolmogorov.

FBS_n

 \bar{n} -fuzzy topological space (X, τ) together with continuous map forms the category FBS_n .

・ロト ・回ト ・ヨト

L_n^c -Alg

 ${\tt L}_n^c\text{-}{\tt algebra}$ together with ${\tt L}_n^c\text{-}{\tt Alg}$ homomorphisms form the category ${\tt L}_n^c\text{-}{\tt Alg}.$

Categories

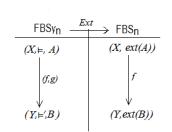
Functors

æ

・ロン ・回と ・ヨン・

Functors

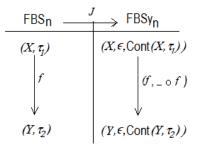
Ext



where $ext(a) : X \longrightarrow \overline{n}$ s.t. $ext(a)(x) = gr(x \models a)$ and $ext(A) = {ext(a)}_{a \in A}$ ・ロト ・回ト ・ヨト ・ヨト

æ

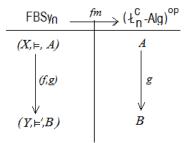
Categories Functors



æ

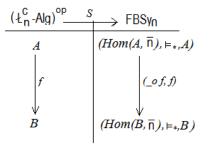
Categories Functors

fm



æ.

Categories Functors



where
$$Hom(A, \bar{n}) = \{ L_n^c \text{ hom } v : A \longrightarrow \bar{n} \}$$
 and $gr(v \models_{*} a) = v(a)$.

Categories Functors

Results

1 *Ext* is the right adjoint to the functor *J*.

æ

Categories Functors

Results

- *Ext* is the right adjoint to the functor *J*.
- **2** fm is the left adjoint to the functor S.

æ

Categories Functors

Results

- Ext is the right adjoint to the functor J.
- 2 fm is the left adjoint to the functor S.
- **③** $Ext \circ S$ is the right adjoint to the functor $fm \circ J$.

-∢ ≣ ≯

Categories Functors

Results

1 $L_n^c - Alg$ is dually equivalent to the category $FBSy_n$.

æ

Categories Functors

Results

- **1** $L_n^c Alg$ is dually equivalent to the category $FBSy_n$.
- **2** FBS_n is equivalent to the category $FBSy_n$.

æ

Categories Functors

Results

- **1** $L_n^c Alg$ is dually equivalent to the category $FBSy_n$.
- **2** FBS_n is equivalent to the category $FBSy_n$.
- **3** $L_n^c Alg$ is dually equivalent to the category FBS_n ...

2

Categories Functors

ℱ-Top Sys

$\mathscr{F} ext{-}\mathsf{Topological System}$

A \mathscr{F} -topological system is a quadruple $(X, \tilde{A}, \models, P)$, where (X, \tilde{A}) is a non-empty fuzzy set, P is a frame and \models is a [0, 1]- fuzzy relation from X to P such that

<ロ> <同> <同> <三> < 回> < 回> < 三>

Categories Functors

ℱ-Top Sys

$\mathscr{F} ext{-}\mathsf{Topological System}$

A \mathscr{F} -topological system is a quadruple $(X, \tilde{A}, \models, P)$, where (X, \tilde{A}) is a non-empty fuzzy set, P is a frame and \models is a [0, 1]- fuzzy relation from X to P such that

•
$$gr(x \models p) \in [0, 1]$$

<ロ> <同> <同> <三> < 回> < 回> < 三>

- ∢ ≣ ▶

Categories Functors

ℱ-Top Sys

$\mathscr{F} ext{-}\mathsf{Topological System}$

A \mathscr{F} -topological system is a quadruple $(X, \tilde{A}, \models, P)$, where (X, \tilde{A}) is a non-empty fuzzy set, P is a frame and \models is a [0, 1]- fuzzy relation from X to P such that

1
$$gr(x \models p) \in [0, 1]$$

$$gr(x \models p) \leq \tilde{A}(x)$$

Image: A math a math

- ∢ ≣ ▶

Categories Functors

ℱ-Top Sys

F-Topological System

A \mathscr{F} -topological system is a quadruple $(X, \tilde{A}, \models, P)$, where (X, \tilde{A}) is a non-empty fuzzy set, P is a frame and \models is a [0, 1]- fuzzy relation from X to P such that

1
$$gr(x \models p) \in [0, 1]$$

2
$$gr(x \models p) \leq \tilde{A}(x)$$

3 if S is a finite subset of P, then

$$gr(x \models \bigwedge S) = inf \{gr(x \models s) : s \in S\}$$

Categories Functors

ℱ-Top Sys

$\mathscr{F} ext{-}\mathsf{Topological System}$

A \mathscr{F} -topological system is a quadruple $(X, \tilde{A}, \models, P)$, where (X, \tilde{A}) is a non-empty fuzzy set, P is a frame and \models is a [0, 1]- fuzzy relation from X to P such that

○
$$gr(x \models p) \in [0, 1]$$

$$gr(x \models p) \leq \tilde{A}(x)$$

3 if S is a finite subset of P, then

$$gr(x \models \bigwedge S) = inf \{gr(x \models s) : s \in S\}$$

• if S is any subset of P, then

$$gr(x \models \bigvee S) = sup\{gr(x \models s) : s \in S\}$$

Categories Functors

ℱ-Top Sys

Continuous map

Let
$$D = (X, \tilde{A}, \models, P)$$
 and $E = (Y, \tilde{B}, \models', Q)$ be \mathscr{F} -topological systems.

æ

・ロト ・日本 ・モト ・モト

Categories Functors

ℱ-Top Sys

Continuous map

Let
$$D = (X, \tilde{A}, \models, P)$$
 and $E = (Y, \tilde{B}, \models', Q)$ be \mathscr{F} -topological systems. A continuous map $f : D \longrightarrow E$ is a pair (f_1, f_2) where,

æ

・ロン ・四と ・ヨン ・ヨン

Categories Functors

ℱ-Top Sys

Continuous map

Let $D = (X, \tilde{A}, \models, P)$ and $E = (Y, \tilde{B}, \models', Q)$ be \mathscr{F} -topological systems. A continuous map $f : D \longrightarrow E$ is a pair (f_1, f_2) where, • $f_1 : (X, \tilde{A}) \longrightarrow (Y, \tilde{B})$ is a proper function from (X, \tilde{A}) to (Y, \tilde{B}) .

(ロ) (同) (E) (E) (E)

Categories Functors

ℱ-Top Sys

Continuous map

Let $D = (X, \tilde{A}, \models, P)$ and $E = (Y, \tilde{B}, \models', Q)$ be \mathscr{F} -topological systems. A continuous map $f : D \longrightarrow E$ is a pair (f_1, f_2) where,

- $f_1: (X, \tilde{A}) \longrightarrow (Y, \tilde{B})$ is a proper function from (X, \tilde{A}) to (Y, \tilde{B}) .
- 2 $f_2: Q \longrightarrow P$ is a frame homomorphism and

Categories Functors

ℱ-Top Sys

Continuous map

Let $D = (X, \tilde{A}, \models, P)$ and $E = (Y, \tilde{B}, \models', Q)$ be \mathscr{F} -topological systems. A continuous map $f : D \longrightarrow E$ is a pair (f_1, f_2) where,

- $f_1: (X, \tilde{A}) \longrightarrow (Y, \tilde{B})$ is a proper function from (X, \tilde{A}) to (Y, \tilde{B}) .
- 2 $f_2: Q \longrightarrow P$ is a frame homomorphism and
- $\textbf{ o } gr(x \models f_2(q)) = gr(f_1(x) \models' q), \text{ for all } x \in X \text{ and } q \in Q.$

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Categories Functors

*ℱ-*Top Sys

Identity map

Let $D = (X, \tilde{A}, \models, P)$ be a \mathscr{F} -topological system. The identity map $I_D : D \longrightarrow D$ is a pair (I_1, I_2) defined by

2

イロト イヨト イヨト イヨト

Categories Functors

ℱ-Top Sys

Identity map

Let $D = (X, \tilde{A}, \models, P)$ be a \mathscr{F} -topological system. The identity map $I_D : D \longrightarrow D$ is a pair (I_1, I_2) defined by

$$I_1: (X, \tilde{A}) \longrightarrow (X, \tilde{A}) \text{ s.t. } I_1(x_1, x_2) = \tilde{A}(x) \text{ iff } x_1 = x_2$$

= 0 otherwise

and $I_2: P \longrightarrow P$ is identity morphism of P.

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Categories Functors

ℱ-Top Sys

Composition

Let $D = (X, \tilde{A}, \models', P)$, $E = (Y, \tilde{B}, \models'', Q)$, $F = (Z, \tilde{C}, \models''', R)$. Let $(f_1, f_2) : D \longrightarrow E$ and $(g_1, g_2) : E \longrightarrow F$ be continuous maps. The composition $(g_1, g_2) \circ (f_1, f_2) : D \longrightarrow F$ is defined by

2

イロン イヨン イヨン イヨン

Categories Functors

ℱ-Top Sys

Composition

Let $D = (X, \tilde{A}, \models', P)$, $E = (Y, \tilde{B}, \models'', Q)$, $F = (Z, \tilde{C}, \models''', R)$. Let $(f_1, f_2) : D \longrightarrow E$ and $(g_1, g_2) : E \longrightarrow F$ be continuous maps. The composition $(g_1, g_2) \circ (f_1, f_2) : D \longrightarrow F$ is defined by

$$g_1 \circ f_1 : (X, \tilde{A}) \longrightarrow (Z, \tilde{C})$$

 $f_2 \circ g_2 : R \longrightarrow P$

2

・ロン ・回 と ・ 回 と ・ 回 と

Categories Functors

ℱ-Top Sys

Composition

Let
$$D = (X, \tilde{A}, \models', P)$$
, $E = (Y, \tilde{B}, \models'', Q)$, $F = (Z, \tilde{C}, \models''', R)$.
Let $(f_1, f_2) : D \longrightarrow E$ and $(g_1, g_2) : E \longrightarrow F$ be continuous maps.
The composition $(g_1, g_2) \circ (f_1, f_2) : D \longrightarrow F$ is defined by

$$g_1 \circ f_1 : (X, \tilde{A}) \longrightarrow (Z, \tilde{C})$$

 $f_2 \circ g_2 : R \longrightarrow P$

i.e. $(g_1, g_2) \circ (f_1, f_2) = (g_1 \circ f_1, f_2 \circ g_2).$

æ

・ロト ・回ト ・ヨト ・ヨト

ℱ-Top Sys

ℱ-Top Sys

 $\mathscr{F}\text{-}\mathsf{topological}$ systems together with continuous maps form the category $\mathscr{F}\text{-}\mathsf{Top}$ Sys.

æ

イロン イヨン イヨン イヨン

Categories Functors

*ℱ-*Top

 $\mathscr{F}\text{-}\mathsf{topological}$ spaces together with continuous maps form the category $\mathscr{F}\text{-}\mathsf{Top}.$

æ

イロン イヨン イヨン イヨン

Frm

Frm

Frames together with frame homomorphisms form the category Frm.

Categories

Functors

æ

イロト イヨト イヨト イヨト

Categories Functors

Ext

Let $(X, \tilde{A}, \models, P)$ be a \mathscr{F} -topological system and $p \in P$. For each p, its extent in $(X, \tilde{A}, \models, P)$ is given by $ext(p) = (X, ext^*(p))$ where $ext^*(p)$ is a mapping from X to [0, 1] given by $ext^*(p)(x) = gr(x \models p)$ for all $x \in X$.

イロン イ部ン イヨン イヨン 三日

Categories Functors

Ext

Let $(X, \tilde{A}, \models, P)$ be a \mathscr{F} -topological system and $p \in P$. For each p, its extent in $(X, \tilde{A}, \models, P)$ is given by $ext(p) = (X, ext^*(p))$ where $ext^*(p)$ is a mapping from X to [0, 1] given by $ext^*(p)(x) = gr(x \models p)$ for all $x \in X$. i.e. $ext^*(p) : X \longrightarrow [0, 1]$ such that $ext^*(p)(x) = gr(x \models p)$ for all $x \in X$. Also $ext(P) = \{(X, ext^*(p))\}_{p \in P} = (X, ext^*P)$ where $ext^*P = \{ext^*p\}_{p \in P}$.

(日) (同) (E) (E) (E)

Categories Functors

Ext is a (forgetful) functor from \mathscr{F} -Top Sys to \mathscr{F} -Top defined thus.

Ext acts on the object $(X, \tilde{A}, \models', P)$ as $Ext(X, \tilde{A}, \models', P) = (X, \tilde{A}, ext(P))$ and on the morphism (f_1, f_2) as $Ext(f_1, f_2) = f_1$.

2

イロン イヨン イヨン イヨン

Categories Functors

J is a functor from \mathscr{F} -Top to \mathscr{F} -Top Sys defined thus. *J* acts on the object (X, \tilde{A}, τ) as $J(X, \tilde{A}, \tau) = (X, \tilde{A}, \in, \tau)$ where $gr(x \in \tilde{T}) = \tilde{T}(x)$ for $\tilde{T} \in \tau$ and on the morphism *f* as $J(f) = (f, f^{-1})$.

3

イロン イヨン イヨン イヨン

Categories Functors

Loc

Loc is a functor from \mathscr{F} -Top Sys to Frm^{op} defined thus. Loc acts on the object $(X, \tilde{A}, \models, P)$ as $Loc(X, \tilde{A}, \models, P) = P$ and on the morphism (f_1, f_2) as $Loc(f_1, f_2) = f_2$.

イロト イヨト イヨト イヨト

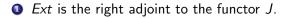
Categories Functors

S is a functor from Frm^{op} to \mathscr{F} -Top Sys defined thus. S acts on the object P as $S(P) = (Hom(P, [0, 1]), \tilde{P}, \models_*, P)$, where $Hom(P, [0, 1]) = \{ frame \ hom \ v : P \longrightarrow [0, 1] \},\$ $gr(v \models_* p) = v(p) \ and \ \tilde{P}(v) = \bigvee_{p \in P} v(p), \ and \ on \ the \ morphism \ f \ as \ S(f) = (_{-} \circ f, f).$

イロト イヨト イヨト イヨト

Categories Functors

Results



æ

・ロト ・回ト ・ヨト ・ヨト

Categories Functors

Results

- *Ext* is the right adjoint to the functor *J*.
- **2** Loc is the left adjoint to the functor S.

<ロ> <同> <同> <同> < 同>

_∢≣≯

æ

Categories Functors

Results

- **1** *Ext* is the right adjoint to the functor *J*.
- **2** Loc is the left adjoint to the functor S.
- **③** $Ext \circ S$ is the right adjoint to the functor $Loc \circ J$.

→ 三→

References

Future Direction

• Finding duality in more general settings.

<ロ> <同> <同> <三>

- ∢ ≣ >

References

Future Direction

- Finding duality in more general settings.
- Introducing a notion of many valued geometric logic.

Image: A matrix and a matrix

References

Future Direction

- Finding duality in more general settings.
- Introducing a notion of many valued geometric logic.
- Exploring the properties of many valued geometric logic.

Image: A mathematical states and a mathem

References

Future Direction

- Finding duality in more general settings.
- Introducing a notion of many valued geometric logic.
- Exploring the properties of many valued geometric logic.
- Introducing some notion of fuzzy topological systems to connect existing notion of fuzzy topological spaces(in more general settings) and finding the related algebraic structures.

Image: A math a math

Interrelation among Top Sys. Top and Frm Interrelation among Fuzzy Top Sys. Fuzzy Top and Frm Interrelation among FBSyn. FBS, and t.²-Alg Interrelation among *S*-Top Sys. *S*-Top and Frm Future Direction References

References

- George E. Strecker Adamek Jiri, Horst Herrlich; Abstract and Concrete Categories, John Wiley & Sons. ISBN 0-471-60922-6, 1990.
- Apostolos Syropoulos and Valeria de Pavia; Fuzzy topological systems, 8th Panhellenic Logic Symposium, Ioannina, Greece, July, 2011.
- M.K. Chakraborty and P. Jana; Some Topological Systems: their Categorical Relationship with Fuzzy Topological Spaces and related Algebras, Fuzzy Sets and Systems (submitted (2012)).

イロト イヨト イヨト イヨト

Refs. cont.

- Steven J. Vickers; Topology Via Logic, volume 5, Cambridge Tracts in Theoretical Computer Science University Press, 1989.
- L.A. Zadeh; Fuzzy sets, Information and Control, 8, 1965, pp. 338–353.
- Yoshihiro Maruyama, Fuzzy Topology and Łukasiewicz Logics from the Viewpoint of Duality Theory, Studia Logica, 94, 2010, pp. 245–269.

→ ∃ >

Interrelation among Top Sys, Top and Frm Interrelation among Fuzzy Top Sys, Fuzzy Top and Frm Interrelation among FBSyn, FBS _n and ± ^C _G -Alg Interrelation among <i>F</i> -Top Sys, <i>F</i> -Top and Frm Future Direction References	
--	--

Thank You

æ

・ロン ・団 と ・ 国 と ・ 国 と