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Cardinal arithmetic

The cardinals are indexed 〈ℵα : α ∈ Ord〉.

I The smallest infinite cardinal is ω (or ℵ0).

I Next is ω1 (or ℵ1); the least uncountable cardinal.

I Each cardinal is also a set. E.g. ℵ1 = {α | α is countable}
I And so we have: 0, 1, ...,ℵ0,ℵ1, ...,ℵn, ...,ℵω,ℵω+1, ...

I Arithmetic operations on cardinals:
I κ+ λ is size of disjoint union of κ and λ;
I κ · λ is size of Cartesian product;
I κλ is size of the set of functions from λ to κ.

I Fact: if κ, λ are infinite, then κ+ λ = κ · λ = max(κ, λ).
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Cardinal arithmetic

ℵ0,ℵ1, ...,ℵω,ℵω+1, ...

The cofinality of a cardinal κ, cf(κ), is the least τ such that there
is an unbounded subset of κ of size τ .

I For example: cf(ℵn) = ℵn for all n < ω; cf(ℵω) = ω.

I A cardinal κ is regular if cf(κ) = κ.

I A cardinal κ is singular if cf(κ) < κ.

I For example, ℵn is regular for every n, and ℵω is singular.
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Cardinal arithmetic and the exponential operation

Motivating question: analyze behavior of the operation κ 7→ 2κ.

I (Cantor) 2κ > κ for every cardinal κ.

I (Kőnig) κcf(κ) > κ for every cardinal κ.

I The Continuum Hypothesis (CH): 2ℵ0 = ℵ1.

I The Generalized Continuum Hypothesis (GCH):
2κ = κ+ for all cardinals κ.
(κ+, the successor of κ, is the next bigger cardinal after κ.)

I The Singular Cardinal Hypothesis (SCH):
If κ is a singular cardinal such that τ < κ→ 2τ < κ i.e. κ is
strong limit, then 2κ = κ+.

I GCH implies SCH.

I Addressing these questions gave rise to consistency results.

Dima Sinapova University of Illinois at Chicago Combinatorial properties of singular cardinals



Cardinal arithmetic and the exponential operation

Motivating question: analyze behavior of the operation κ 7→ 2κ.

I (Cantor) 2κ > κ for every cardinal κ.
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I (Kőnig) κcf(κ) > κ for every cardinal κ.

I The Continuum Hypothesis (CH): 2ℵ0 = ℵ1.

I The Generalized Continuum Hypothesis (GCH):
2κ = κ+ for all cardinals κ.
(κ+, the successor of κ, is the next bigger cardinal after κ.)

I The Singular Cardinal Hypothesis (SCH):
If κ is a singular cardinal such that τ < κ→ 2τ < κ i.e. κ is
strong limit, then 2κ = κ+.

I GCH implies SCH.

I Addressing these questions gave rise to consistency results.

Dima Sinapova University of Illinois at Chicago Combinatorial properties of singular cardinals



Cardinal arithmetic and the exponential operation

Motivating question: analyze behavior of the operation κ 7→ 2κ.

I (Cantor) 2κ > κ for every cardinal κ.
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Cardinal arithmetic and the exponential operation

A consistency result is a theorem that asserts that a given
statement is consistent with the usual axioms of set theory i.e the
Zermelo-Fraenkel Set Theory with the Axiom of Choice (ZFC).

Consistency results about regular cardinals.

I Kurt Gödel: CH is consistent with ZFC. His model was the
Constructible Universe, L, and actually L |= GCH.

I Paul Cohen: The negation of CH is consistent with ZFC. He
used the groundbreaking method of forcing.

I Easton: Any reasonable behavior of κ 7→ 2κ for regular κ is
consistent with ZFC.
The only constraints:

I κ < λ implies 2κ ≤ 2λ,
I Kőnig’s lemma.
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Cardinal arithmetic and the exponential operation

The operation κ 7→ 2κ for singular κ is much more intricate:

I involves large cardinals, e.g. can violate SCH, but need large
cardinal axioms.

I deeper constraints from ZFC,
e.g. (Shelah) if 2ℵn < ℵω for every n < ω, then 2ℵω < ℵω4 ;
e.g. (Silver) if SCH fails anywhere, it must fail at a cardinal of
countable cofinality.

The Singular Cardinal Problem: Describe a complete set of
rules for the behavior of the exponential function κ 7→ 2κ for
singular cardinals κ.
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Using forcing to add new subsets of a cardinal κ

Obtaining consistency results about κ 7→ 2κ is done by forcing to
add new subsets of κ.

Forcing: Adjoin a new object to the set-theoretic universe, V .
Start with a ground model V of ZFC and a partially ordered set
(P,≤) ∈ V . Pick an object G ⊂ P where:

I G is a filter.

I G meets every maximal antichain of P.

This G is called a generic filter of P, and G /∈ V .
Then obtain the model V [G ] of ZFC as follows:

I A P-name τ in V is a set of the form
{〈σ, p〉 | σ is a P-name and p ∈ P}.

I For each P-name τ in V , set τG = {σG | (∃p ∈ G )〈σ, p〉 ∈ τ}
I Set V [G ] = {τG | τ is a P-name}.

Information about V [G ] can be obtained while working in V via a
relation definable in V , called the forcing relation, “p 
 φ”.
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Using forcing to add new subsets of a cardinal κ

Forcing to add one new subset of κ:

Definition
Let κ be a regular cardinal. Conditions in Add(κ, 1) are partial
functions f : κ→ {0, 1}, with |dom(f )| < κ, ordered by reverse
inclusion. I.e. f1 ≤ f2 if f1 ⊃ f2.

Proposition

Add(κ, 1) is κ - closed and has the κ+ chain condition. So, it
preserves cardinals.

Let G be Add(κ, 1)-generic over V , and set f ∗ =
⋃

f ∈G f . Then
f ∗ : κ→ {0, 1} is a total function and

a =def {α < κ | f ∗(α) = 1}

is a new subset of κ. I.e. a ∈ V [G ] \ V .
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Using forcing to add new subsets of a cardinal κ

When κ is regular: Add(κ, λ) is the Cohen poset to add λ many
subsets to κ. Conditions are partial functions f : λ× κ→ {0, 1}
with | dom(f )| < κ, ordered by reverse inclusion.

I Add(κ, λ) is κ-closed and has the κ+ chain condition, and so
cardinals are preserved.

I Add(κ, λ) adds λ many new subsets of κ.

When κ is singular:

I The above poset will collapse cardinals. So, we need a
different approach.

I One strategy: turn a regular cardinal into a singular.

I Prikry forcing: changes cofinality without collapsing cardinals;
requires large cardinals.
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Large cardinals

Large cardinal axioms assert the existence of certain “large”
cardinals that have strong reflection properties.

These axioms provide a strengthening of ZFC.
The following are some large cardinals in an increasing consistency
strength:

I κ is measurable if there is a normal nonprincipal κ-complete
ultrafilter U on κ. U is also called a normal measure.

I κ is λ-supercompact if there is a normal nonprincipal
κ-complete ultrafilter on Pκ(λ). U is also called a
supercompactness measure on Pκ(λ).

I κ is supercompact if it is λ-supercompact for all λ.

Remark
An alternative way to define these large cardinals is via elementary
embeddings of the set theoretic universe.
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Prikry type forcing

Classical Prikry forcing:

Let κ be a measurable cardinal and U
be a normal measure on κ. The forcing conditions are pairs 〈s,A〉,
where s is a finite sequence of ordinals in κ and A ∈ U.
〈s1,A1〉 ≤ 〈s0,A0〉 iff:

I s0 is an initial segment of s1.

I s1 \ s0 ⊂ A0,

I A1 ⊂ A0.

Let G be P-generic over V . Set s∗ =
⋃
{s | (∃A)〈s,A〉 ∈ G}; s∗ is

an ω-sequence cofinal in κ. And so, in V [G ]:

I cf(κ) = ω,

I V and V [G ] have the same cardinals.
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Prikry type forcing

Motivation: blowing up the power set of a singular cardinal in
order to construct models of not SCH.

I Classical Prikry: starts with a normal measure on κ and adds
a cofinal ω-sequence in κ, while preserving cardinals.

I Violating SCH: Let κ be a Laver indestructible supercompact
cardinal.

I Force to add κ++ many subsets of κ.
I Then force with Prikry forcing to make κ have cofinality ω.

In the final model cardinals are preserved, κ remains strong
limit, and 2κ > κ+. I.e. SCH fails at κ.

Dima Sinapova University of Illinois at Chicago Combinatorial properties of singular cardinals



Prikry type forcing

Motivation: blowing up the power set of a singular cardinal in
order to construct models of not SCH.

I Classical Prikry: starts with a normal measure on κ and adds
a cofinal ω-sequence in κ, while preserving cardinals.

I Violating SCH: Let κ be a Laver indestructible supercompact
cardinal.

I Force to add κ++ many subsets of κ.
I Then force with Prikry forcing to make κ have cofinality ω.

In the final model cardinals are preserved, κ remains strong
limit, and 2κ > κ+. I.e. SCH fails at κ.

Dima Sinapova University of Illinois at Chicago Combinatorial properties of singular cardinals



Prikry type forcing

Motivation: blowing up the power set of a singular cardinal in
order to construct models of not SCH.

I Classical Prikry: starts with a normal measure on κ and adds
a cofinal ω-sequence in κ, while preserving cardinals.

I Violating SCH: Let κ be a Laver indestructible supercompact
cardinal.

I Force to add κ++ many subsets of κ.
I Then force with Prikry forcing to make κ have cofinality ω.

In the final model cardinals are preserved, κ remains strong
limit, and 2κ > κ+. I.e. SCH fails at κ.

Dima Sinapova University of Illinois at Chicago Combinatorial properties of singular cardinals



Prikry type forcing

Motivation: blowing up the power set of a singular cardinal in
order to construct models of not SCH.

I Classical Prikry: starts with a normal measure on κ and adds
a cofinal ω-sequence in κ, while preserving cardinals.

I Violating SCH: Let κ be a Laver indestructible supercompact
cardinal.

I Force to add κ++ many subsets of κ.
I Then force with Prikry forcing to make κ have cofinality ω.

In the final model cardinals are preserved, κ remains strong
limit, and 2κ > κ+. I.e. SCH fails at κ.

Dima Sinapova University of Illinois at Chicago Combinatorial properties of singular cardinals



Prikry type forcing

Motivation: blowing up the power set of a singular cardinal in
order to construct models of not SCH.

I Classical Prikry: starts with a normal measure on κ and adds
a cofinal ω-sequence in κ, while preserving cardinals.

I Violating SCH: Let κ be a Laver indestructible supercompact
cardinal.

I Force to add κ++ many subsets of κ.

I Then force with Prikry forcing to make κ have cofinality ω.

In the final model cardinals are preserved, κ remains strong
limit, and 2κ > κ+. I.e. SCH fails at κ.

Dima Sinapova University of Illinois at Chicago Combinatorial properties of singular cardinals



Prikry type forcing

Motivation: blowing up the power set of a singular cardinal in
order to construct models of not SCH.

I Classical Prikry: starts with a normal measure on κ and adds
a cofinal ω-sequence in κ, while preserving cardinals.

I Violating SCH: Let κ be a Laver indestructible supercompact
cardinal.

I Force to add κ++ many subsets of κ.
I Then force with Prikry forcing to make κ have cofinality ω.

In the final model cardinals are preserved, κ remains strong
limit, and 2κ > κ+. I.e. SCH fails at κ.

Dima Sinapova University of Illinois at Chicago Combinatorial properties of singular cardinals



Prikry type forcing

Motivation: blowing up the power set of a singular cardinal in
order to construct models of not SCH.

I Classical Prikry: starts with a normal measure on κ and adds
a cofinal ω-sequence in κ, while preserving cardinals.

I Violating SCH: Let κ be a Laver indestructible supercompact
cardinal.

I Force to add κ++ many subsets of κ.
I Then force with Prikry forcing to make κ have cofinality ω.

In the final model cardinals are preserved, κ remains strong
limit, and 2κ > κ+. I.e. SCH fails at κ.

Dima Sinapova University of Illinois at Chicago Combinatorial properties of singular cardinals



Prikry type forcing

The following are some variations:

1. Supercompact Prikry:
I start with a supercompactness measure U on Pκ(η);
I force to add an increasing ω-sequence of sets xn ∈ (Pκ(η))V ,

with η =
⋃

n xn.

2. Gitik-Sharon’s diagonal supercompact Prikry:
I start with a sequence 〈Un | n < ω〉 of supercompactness

measures on Pκ(κ+n);
I force to add an increasing ω-sequence of sets xn ∈ Pκ((κ+n)V )

with (κ+ω)V =
⋃

n xn.

The strategy: add subsets to a large cardinal, then singularize it.
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Extender based forcing

Alternative way: start with a singular κ; say κ = supn κn; and blow
up its powerset to some regular λ in a Prikry fashion via extender
based forcing.

I Developed by Gitik-Magidor.

I Adds λ sequences through
∏

n κn, and so 2κ becomes λ.

I Recall: adding one Prikry sequence requires an ultrafilter.
Here, we need many ultrafilters.

I In particular, this forcing uses extenders; an extender is a
system of ultrafilters.

I No need to add subsets of κ in advance, so can keep GCH
below κ, as opposed to the above forcings.
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Two general strategies to blow up the powerset of a
singular cardinal

1. Add Cohen subsets to a large cardinal κ. Then singularize it.
I By the reflection properties of κ, also have to add subsets to

many α’s below κ.
I So, in the final model κ is strong limit, but GCH below κ fails.

2. Start with a singular κ; κ =
∏

n κn, where each κn is large.
Then add many Prikry sequences through

∏
n κn.

I Here, in the final model GCH below κ holds.

Advantage of the first strategy:
Can singularize/collapse an interval of cardinals above κ, that gives
more freedom in obtaining consistency results about combinatorial
properties such as scales.
But lose GCH below κ.
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The hybrid Prikry

Question: can we combine the advantages of the first strategy
with the method of the second strategy, in order to maintain GCH
below κ?
Motivation: obtaining consistency results about combinatorial
principles like square and failure of SCH, but keeping GCH below κ.

Theorem
(S.) Starting from a supercompact cardinal κ, there is a forcing
which simultaneously singularizes κ and increases its powerset,
while maintaining GCH below κ.
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The hybrid Prikry

Definition: Hybrid Prikry: (S.) Suppose that κ is supercompact
and GCH holds. There is a Prikry type forcing notion, P, that
simultaneously singularizes a supercompact κ and adds many
subsets to it.

I P combines extender based forcing with diagonal
supercompact Prikry.

I The κn’s will be chosen generically.

I No bounded subsets of κ are added.

I In the final model, GCH holds below κ, and 2κ > κ+. So SCH
fails at κ.

I Collapses κ+ and actually an interval of cardinals (unlike the
classical extender based forcing).
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Square principles

I Isolated by Jensen in his fine structure analysis of L.

I �κ states that there is a coherent sequence of closed and
unbounded sets singularizing ordinals α < κ+.
There is 〈Cα | α < κ+〉, s.t.

I each Cα is club in α of order type ≤ κ, and
I if β is a limit point of Cα, then Cα ∩ β = Cβ .

I �∗κ is a weakening which allows up to κ guesses for each club.

I κ<κ = κ→ �∗κ; so we focus on the case κ singular.

Lemma
In the Hybrid Prikry model, we have �∗κ.
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Scales

Let κ = supn<ω κn, where every κn is a regular cardinal.

For f and g in
∏

n<ω κn, we say that f <∗ g if f (n) < g(n) for all
large n.

A scale of length µ is a sequence of functions 〈fα | α < µ〉 from∏
n<ω κn which is increasing and cofinal with respect to <∗.

A point γ < µ of cofinality between ω and κ is a good point iff
there exists an unbounded A ⊆ γ, such that 〈fα(n) | α ∈ A〉 is
strictly increasing for all large n. If A is club in γ, then γ is a very
good point.

A scale is (very) good iff modulo the club filter on µ, almost every
point of cofinality between cf(κ) and κ is (very) good.

Lemma
When forcing with Hybrid Prikry, scales in

∏
n κ

+n+1 from V
generate scales

∏
n κ in the generic extension.
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Combinatorial principles, continued

1. �→ �∗ → all scales are good.

2. There are no good scales above a supercompact.
And square principles fail above a supercompact.
More precisely, if κ is supercompact, cf(ν) < κ < ν, there are
no good scales at ν ( and so �∗ also fails).

3. �∗κ 6→ VGSκ.

4. VGSκ 6→ �∗κ.
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Not SCH and Very good scales

Question: Does ¬SCHκ imply a very good scale at κ?

Some motivation:

I Let P be the classical Prikry.
Forcing with Add(κ, κ++) ∗ P gives:

I κ is strong limit, 2κ = κ++, and so ¬SCHκ
I there is a very good scale at κ of length κ++.

I Let P[κ,<µ) be Prikry forcing singularizing everything in the
interval [κ,< µ).
Forcing with Add(κ, µ+) ∗ Pκ,<µ gives same as above.

Theorem
(S.) It is consistent to have κ strong limit, 2κ = κ++, and so
¬SCHκ and no very good scale at κ

The proof uses a variation of the Hybrid Prikry.
Question: can we also get the above with no very good scale of
length κ+?
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