Database of Finite Residuated Lattices

http://vychodil.inf.upol.cz/order/

Structure of the Input Files

Finite residuated lattices are encoded in ASCII text files (using Unix-style newlines). Each line defines either a lattice order \leq or a multiplication \otimes defined on the last lattice order. A line beginning with colon ":" and continuing with a sequence of 0s and 1s encodes a lattice order. A line beginning with 0 or a capital letter (e.g., A,B,...) encodes a multiplication. All *n*-element residuated lattices are encoded in the file RESn.txt.bz2. For instance, an excerpt of RES06.txt.bz2 encoding all 6-element residuated lattices is

:001011 000000000 :011010 00A0B0BCAB A0AAB0BCAD :011011 000000000 0000B0B00B :

Encoding of Lattice Orders and Multiplications

In the encoding, we assume that the support set of L contains 0 and 1 denoting the least and the greatest element of the lattices, respectively. Further elements of lattices are encoded by capital letters A,B,\ldots A lattice ordering \leq on $L = \{0, A, \ldots, 1\}$ is encoded by a vector of 0s and 1s representing values in the inner triangle of the upper-triangular adjacency matrix in which rows and columns corresponding to elements of L are listed in the following order: $0, A, \ldots, 1$. The first n - 3 values in the encoding determine whether $A \leq B$, $A \leq C$, $A \leq D, \ldots$; next n - 4 values in the encoding determine whether $B \leq C$, $C \leq D, \ldots$, and so on. A multiplication is encoded by a vector of the results $a \otimes b$ in which we skip results that are trivial, e.g. $a \otimes 0, a \otimes 1$, etc. Moreover, due to the commutativity of \otimes , the vector contains results only for $a \otimes b$ where a precedes (or, is equal to) b in the table.

Example

Let $L = \{0, A, B, C, D, 1\}$. Consider the third and fourth lines in RESO6.txt.bz2. The third line :011010 says that $A \nleq B$, $A \le C$, $A \le D$; $B \nleq C$, $B \le D$; and $C \nleq D$. The fourth line 00A0B0BCAB says that $A \otimes A = 0$, $A \otimes B = 0$, $A \otimes C = A$, $A \otimes D = 0$; $B \otimes B = B$, $B \otimes C = A$, $B \otimes D = B$; $C \otimes C = C$, $C \otimes D = A$; and $D \otimes D = B$. Both the vectors can be seen as encodings of the red regions in the following tables of \leq and \otimes :

\leq	0	A	В	C	D	1
0	1	1	1	1	1	1
A	0	1	0	1	1	1
В	0	0	1	0	1	1
С	0	0	0	1	0	1
D	0	0	0	0	1	1
1	0	0	0	0	0	1

\otimes	0	А	В	С	D	1
0	0	0	0	0	0	0
Α	0	0	0	A	0	A
В	0	0	В	0	В	В
C	0	Α	0	С	A	С
D	0	0	В	A	В	D
1	0	A	В	С	D	1

Bibliography

More information can be found in the following paper:

Belohlavek R., Vychodil V.: Residuated Lattices of Size ≤ 12 . Order, http://dx.doi.org/10.1007/s11083-010-9143-7.