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Abstract

We present the numbers of all non-isomorphic residuated lattices with up to 12 elements and a link to a
database of these lattices. In addition, we explore various characteristics of these lattices such as the width,
length, and various properties considered in the literature and provide the corresponding statistics. We also
present algorithms for computing finite lattices and finite residuated lattices including a fast heuristic test
of non-isomorphism of finite lattices.

1 Introduction

Computing non-isomorphic finite structures of a particular type with up to a given, possibly large, number
of elements is important for two reasons. First, one gets the numbers of non-isomorphic structures up to a
given size. This if beneficial if direct formulas for these numbers, or their estimates, are not available. Second,
one gets a database of non-isomorphic structures up to a given size. Such database is useful when looking for
examples or counterexamples of the particular structures. A further exploration of the examples may lead to
various conjectures regarding the structures and, in general, may provide us with further insight regarding these
structures.

In this paper, we explore finite residuated lattices with up to 12 elements. In particular, we present the
numbers of all non-isomorphic lattices and residuated lattices with up to 12 elements and provide a link to a
database where one can find all these lattices. We also present algorithms for computing finite lattices and finite
residuated lattices which we used for computing the database. In addition, we explore various properties and
characteristics of these lattices and provide the corresponding summaries.

Ordered sets and lattices play a crucial role in several areas of mathematics and their applications, e.g. in data
visualization and analysis, uncertainty modeling, many-valued and fuzzy logics, graph theory, etc. Residuated
lattices, in particular, were introduced in the 1930s by Dilworth and Ward [10, 35]. In the late 1960s, residuated
lattices were introduced into many-valued logics and, in particular, into fuzzy logics as structures of truth values
(truth degrees) [16, 17]. Residuated lattices and various special residuated lattices are now used as the main
structures of truth values in fuzzy logic and fuzzy set theory, see e.g. [4, 12, 18, 20, 23, 29, 33], and are subject
to algebraic investigation, see e.g. [5, 15, 25].

In addition to the above-mentioned general motivations for exploring finite residuated lattices, there is
one more. Namely, the role of residuated lattices in fuzzy set theory is that they serve as scales of truth
degrees. In many application areas, see e.g. [29], the scenario is the following. An expert defines a fuzzy set
by assigning truth degrees (elements of a residuated lattice) to the elements of a particular universe. Now,
according to Miller’s 7±2 phenomenon, well-known from psychology [32], humans are able to assign degrees in
a consistent manner provided the scale of degrees contains up to 7±2 elements. With more than 7±2 elements,
the assignments become inconsistent. From this perspective, by computing all residuated lattices with up to 12
elements, we cover all the residuated lattices which are practically useful in such scenario, i.e. those with up to
7±2 elements.

∗This version of the paper contains full proofs and detailed descriptions of algorithms including pseudo-codes. The original short
version of the paper will appear in Order, see http://dx.doi.org/10.1007/s11083-010-9143-7.
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A previous work on related problems includes [24] where the author provides the numbers and descriptions
of non-isomorphic residuated lattices with up to 6 elements. The results were computed using the GAP system
for computational discrete algebra. [2, 8] are also studies related to our paper. Namely, the authors compute
the numbers of all t-norms [28] on finite chains and do not pay attention to general nonlinear residuated lattices.
[2] contains a summary of numbers of t-norms and their basic properties for chains with n ≤ 11 elements. A
similar approach is used in [8, 9] which shows the numbers of t-norms for chains with n ≤ 14 elements. In [22],
the numbers of all finite lattices with up to 18 elements are presented along with the algorithm. With respect
to the previous work, we improve the size up to which we compute all the residuated lattices, from 6 (see [24])
to 12. Moreover, we systematically explore various properties of the residuated lattices which has not been
provided in the previously published papers. Since the algorithmic aspects of generating residuated structures
are scarcely discussed in the literature, we present a detailed description of algorithms we have used to generate
the structures of our interest.

The paper is organized as follows. Section 2 presents preliminaries and notation we use. Section 3 describes
algorithms for generating finite lattices including heuristic tests of non-isomorphism. In Section 4 we present
algorithms for generating finite residuated lattices. In Section 5 we present a summary regarding selected
properties of the computed structures. Tables summarizing observed properties can be found in the appendix.

2 Preliminaries and Notation

In this section we introduce basic notions and notation. Details can be found e.g. in [3, 19] (ordered sets and
lattices) and [4, 15, 18, 20, 23, 25] (residuated lattices).

Recall that a partial order in L is a binary relation on L which is reflexive, antisymmetric, and transitive.
If ≤ is a partial order on L, the couple L = 〈L,≤〉 is called a partially ordered set. If there exists a least or a
greatest element of 〈L,≤〉, it is denoted by 0 or by 1, respectively. A lattice which has both 0 and 1 is called a
bounded lattice. For each A ⊆ L we denote by L(A) and U(A) the lower and upper cones of A, respectively.
L(A) and U(A) are defined by

L(A) = {b ∈ L | b ≤ a for each a ∈ A}, (1)
U(A) = {b ∈ L | a ≤ b for each a ∈ A}. (2)

If L(A) has a greatest element a, then a is called the infimum of A in 〈L,≤〉, denoted by
∧

A. Dually, if U(A)
has a least element a, then a is called the supremum of A in 〈L,≤〉, denoted by

∨
A. A partially ordered set

〈L,≤〉 is a lattice if infimum and supremum exist for any two-element subset of L. As usual, we write a∧ b and
a∨ b instead of then

∧{a, b} and
∨{a, b}. A partially ordered set 〈L,≤〉 is called linearly ordered (or, a chain) if

any two elements a, b ∈ L are comparable, i.e. a ≤ b or b ≤ a. Let L1 = 〈L1,≤1〉 and L2 = 〈L2,≤2〉 be lattices.
A map h : L1 → L2 is called a lattice isomorphism (between lattices L1 and L2) if (i) h is a bijection, and (ii)
for each a, b ∈ L1, we have

a ≤1 b iff h(a) ≤2 h(b). (3)

Lattices L1 and L2 are isomorphic, written L1
∼= L2, if there exists a lattice isomorphism between L1 and L2.

Throughout the paper, we consider lattices “up to isomorphism”, i.e. we tacitly identify all isomorphic lattices.
As usual, we freely interchange lattices considered as special partially ordered sets and lattices considered as
algebras with two binary operations of meet and join. Hence, L = 〈L,≤〉 and L = 〈L,∧,∨〉 denote the same
structure.

A residuated lattice is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 where 〈L,∧,∨, 0, 1〉 is a bounded lattice, 〈L,⊗, 1〉
is a commutative monoid, and ⊗ and → satisfy a ⊗ b ≤ c iff a ≤ b → c for each a, b, c ∈ L (adjointness
property). Binary operations ⊗ (multiplication) and → (residuum) serve as truth functions of connectives
“fuzzy conjunction” and “fuzzy implication” [4, 12, 18, 17, 20, 23]. Various subclasses of residuated lattices
have been investigated in many-valued and fuzzy logics, e.g. MTL-algebras [12], BL-algebras [20] and its three
important subclasses, namely MV-algebras, Gödel algebras, and Π-algebras.

3 Generation of non-isomorphic finite lattices

In this section we present a method for computing all non-isomorphic finite lattices of a given size. The process
of generation of finite lattices includes several issues. We need an algorithm that generates lattices one by one
so that for all isomorphic lattices, the algorithm generates just one representative of them. In our approach, we
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Figure 1: Upper triangular adjacency matrix (left) of a finite lattice (right).

propose a brute-force and an incremental algorithm for generating finite lattices of given size. In addition to
that, we employ a new heuristic non-isomorphism test together with an exact isomorphism test to determine
whether a given lattice has already been computed. We start the section by introducing a representation of
finite lattices.

3.1 Representation of finite lattices

This section describes the representation of lattices used in our algorithms. Consider a finite lattice L = 〈L,≤〉
where |L| = n. We represent L by an adjacency matrix of ≤, i.e. by an n × n matrix with rows and columns
labeled by elements of L and entries containing 1 or 0. For a row and a column labeled by a and b, the
corresponding entry is 1 if a ≤ b and 0 if a 6≤ b. An adjacency matrix for L = 〈L,≤〉 is not unique, due to
possible permutations of row and columns. We use upper triangular adjacency matrices. Due to the following
theorem, every adjacency matrix can be transformed into an upper triangular form by choosing an appropriate
linear order 4:

Theorem 1 (see, e.g., [3, 19]). Let L = 〈L,≤〉 be a finite lattice. Then there exists a linear order 4 on L which
extends ≤, i.e. for every a, b ∈ L, if a ≤ b then a 4 b.

Thus, we can consider an upper triangular adjacency matrix in which rows and columns are listed in the
order given by 4. Fig. 1 shown a Hasse diagram of a finite lattice with L = {0, a, b, c, d, 1}. An adjacency matrix
whose rows and columns are ordered by a linear order 4 extending ≤ such that 0 4 a 4 b 4 c 4 d 4 1 is
depicted in the left part of Fig. 1 (for better readability we replaced 1s by “crosses” and 0s by “blanks”). It is
easy to see that if 4 is an extension of ≤, the corresponding adjacency matrix is upper triangular.

For |L| = n, the upper triangle contains n(n+1)
2 entries but not all of them carry an essential information.

Namely, since 0 ≤ a, a ≤ a, and a ≤ 1, for each a ∈ L, we can ignore the corresponding entries (diagonal, first
row, and last column). The remaining inner triangle, which in our case is the gray area in Fig. 1, still uniquely
represents ≤. For an n-element lattice, the inner triangle contains

max
(

0, 3 +
n(n− 5)

2

)
(4)

entries. Such entries can be encoded by a binary vector of length (4). For instance, the lattice from Fig. 1 can
be represented by a binary vector 001110 (i.e., by a concatenation of binary vectors 001, 11, and 0 encoding the
bits from rows a, b, and c of the grey area of the adjacency matrix). The following theorem asserts universality
of representing n-element lattices by lattice orders ≤ on a fixed set L with a fixed linear order 4 which extends
≤.

Theorem 2. Fix an n-element set L and a linear order 4 on L. Then for every n-element lattice L′ = 〈L′,≤′〉
there is a lattice order ≤ on L such that

(i) 4 extends ≤ and
(ii) L′ = 〈L′,≤′〉 is isomorphic to L = 〈L,≤〉.

Proof. Denote L = {a1, . . . , an} and L′ = {a′1, . . . , a′n} and assume a1 4 a2 4 · · · 4 an. Take a linear order
4′ that extends ≤′. We can write a′i1 4′ a′i2 4′ · · · 4′ a′in

, where {i1, . . . , in} = {1, . . . , n}. Define a map
h : L → L′ by h(aj) = a′ij

(j = 1, . . . , n) and a binary relation ≤ on L by aj ≤ ak iff a′ij
≤′ a′ik

. Clearly, h is an
isomorphism between 〈L′,≤′〉 and 〈L,≤〉.
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Due to Theorem 2, every n-element lattice can be represented by a binary vector encoding the inner triangle
of an adjacency matrix of a lattice order on a fixed set L with a fixed linear order 4. A natural choice is
L = {1, . . . , n} and 1 4 2 4 · · · 4 n. Clearly, not every binary vector encoding the inner triangle of an
adjacency matrix represents a lattice order.

Procedure meet(leq, i, j)

Data: two-dimensional array leq (dimensions n× n); 0 ≤ i < j ≤ n− 1
Result: infimum of elements given by indices i and j
if leq [i, j] = 1 then1

return i2

else3

for k from i− 1 downto 0 do4

if leq [k, i] = 1 and leq [k, j] = 1 then5

return k6

end7

end8

end9

Procedure join(leq, i, j)

Data: two-dimensional array leq (dimensions n× n); 0 ≤ i < j ≤ n− 1
Result: supremum of elements given by indices i and j
if leq [i, j] = 1 then1

return j2

else3

for k from j + 1 upto n− 1 do4

if leq [i, k] = 1 and leq [j, k] = 1 then5

return k6

end7

end8

end9

Computational Issues A representation of a lattice by a binary vector encoding the inner triangle of an
adjacency matrix has several advantages. It is concise and makes possible an efficient computation of ≤, ∧, ∨,
and transitive closures. For instance, a ≤ b can be checked in a constant time by accessing the corresponding
adjacency matrix entry. Moreover, the upper triangular form ensures that if a ≺ b (i.e., if a 4 b and a 6= b),
then b � a. Hence, b � a can sometimes be decided even without accessing adjacency matrix. Suprema and
infima can be computed with asymptotic time complexity O(n), where n = |L|. Consider L = {a0, . . . , an−1}
and 4 such that a0 4 a1 4 · · · 4 an−1. If ≤ (represented by an upper triangular adjacency matrix) is a
lattice order, infima and suprema can be computed by procedures meet and join. Both the procedures accept
two-dimensional array leq representing the adjacency matrix and indices i and j (i < j) of elements in L as
input arguments. The returned values are indices of the infimum and supremum of the elements, respectively.
Both the algorithms are sound:

Proof of soundness of meet (leq, i, j) and join (leq, i, j). We examine meet because the soundness of join can
be justified analogously. Lines 1–3 check whether ai ≤ aj in which case i is returned. Otherwise (i.e., if ai � aj),
the infimum is found among elements a0, . . . , ai−1 in a loop (lines 4–9). The loop goes from k = i− 1 down to
0. The greatest index k for which ak ≤ ai and ak ≤ aj is returned (line 6). Such ak is the greatest lower bound.
Indeed, ak ∈ L({ai, aj}) due to line 5. Since ak is an element with the greatest k satisfying ak ∈ L({ai, aj}),
no al with l < k can be strictly greater than ak because 4 extends ≤. This shows that ak is the greatest lower
bound of ai and aj .

Note that due to our representation of ≤, it is not necessary to compute the cones given by (1) and (2)
and then determine their greatest and least elements—both the tasks are done simultaneously in less than n
elementary steps.
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Procedure transitive-closure(leq)
Data: two-dimensional array leq (dimensions n× n)
Result: transitive closure of relation represented by leq
for i from 1 upto n− 4 do1

for j from i + 1 upto n− 3 do2

if leq [i, j] = 1 then3

for k from j + 1 upto n− 2 do4

if leq [j, k] = 1 then5

set leq [i, k] to 16

end7

end8

end9

end10

end11

Another problem we need to deal with is computing transitive closures of relations represented by upper
triangular adjacency matrices. As we discuss later, when generating lattices, we modify adjacency matrices of
transitive relations by updating selected entries from 0 to 1. After this operation, we compute the transitive
closure of the relation to ensure that the adjacency matrix represents a partial order. An algorithm for computing
a transitive closure is described in procedure transitive-closure. The procedure accepts an upper triangular
adjacency matrix and alters it by inserting 1s. The procedure is sound:

Proof of soundness of procedure transitive-closure (leq). Our procedure is a simplified version of the usual algo-
rithm for computing transitive closures. Let leq , leq∗, and leqc denote the original input relation, its transitive
closure, and the relation produced by procedure transitive-closure (we tacitly identify the relations with their
adjacency matrices). Clearly, if leq is transitive, line 6 does not change any nonzero entry to 1, i.e. leq is not
modified and we have leq = leq∗ = leqc. Otherwise, there are 1 ≤ i < j < k ≤ n − 2 such that leq [i, j] = 1,
leq [j, k] = 1, and leq [i, k] = 0. Therefore, line 6 changes at least one zero entry in leq to 1. Obviously,
leq ⊂ leqc ⊆ leq∗. Hence, is suffices to prove that leq∗ ⊆ leqc. Consider indices p and q such that leq∗[p, q] = 1
and leq [p, q] = 0 (a nontrivial case). It remains to show that leqc[p, q] = 1. Let i @ k denote the fact that
leq [i, k] = 1 and there is no j such that i < j < k, leq [i, j] = 1, and leq [j, k] = 1. Since leq∗[p, q] = 1 there are
indices p = j1 @ j2 @ · · · @ jl = q. Now, consider the three nested loops between lines 1–11. Let i = p = j1,
j = j2, and k = j3. Since leq [i, j] = leq [j1, j2] = 1 and leq [j2, j3] = 1, both if-conditions (lines 3 and 5) are true
and line 6 will set leq [i, k] = leq [j1, j3] to 1. When the computation reaches configuration i = p = j1, j = j3,
and k = j4, we already have leq [i, j] = leq [j1, j3] = 1 from the previous step and leq [j, k] = leq [j3, j4] = 1, i.e.
line 6 will set leq [i, k] = leq [j1, j4] to 1. By induction, leq [p, q] = leq [j1, jl] will be set to 1 after finitely many
steps. As a consequence, leqc[p, q] = 1, finishing the proof.

3.2 Characteristic vectors of finite lattices

In this section, we consider properties of lattices which we use in heuristic tests, described in Section 3.3,
to quickly recognize non-isomorphic lattices. The properties are shared by isomorphic lattices but are highly
unlikely to be shared by non-isomorphic lattices. The properties of a given lattice are encoded by a characteristic
vector which we now describe.

Consider a finite lattice L = 〈L,≤〉 and a linear order 4 extending ≤. We define

P(L) =
{{a, b} | a, b ∈ L, a 6= 0, b 6= 1, and a 6= b

}
. (5)

For each a ∈ L, we define four non-negative integers v1(a), . . . , v4(a), characterizing some of the properties of a:

v1(a) = |L({a})| = |{b ∈ L | b ≤ a}|, (6)
v2(a) = |U({a})| = |{b ∈ L | a ≤ b}|, (7)
v3(a) = |{A ∈ P(L) | a =

∧
A}|, (8)

v4(a) = |{A ∈ P(L) | a =
∨

A}|, (9)
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and put

v(a) = 〈v1(a), v2(a), v3(a), v4(a)〉. (10)

By definition, v1(a) and v2(a) represent the numbers of elements which are less/greater than or equal to a.
Values of v3(a) and v4(a) represent the numbers of pairs of elements from L whose infimum/supremum gives a.
Roughly speaking, v1(a), . . . , v4(a) represent a “position” of a ∈ L in the lattice. Note that v(a) depends on the
lattice order ≤ on L, i.e. two different ≤1 and ≤2 on L can yield different v(a)s. In order to make L = 〈L,≤〉
explicit, we denote vi(a) and v(a) by vL

i (a) and vL(a).

Example 1. Recall the finite lattice from Fig. 1. The values of vis are shown in the following table:

L 0 a b c d 1
v1 1 2 2 3 4 6
v2 6 3 4 2 2 1
v3 2 1 3 0 0 0
v4 0 0 0 1 3 2

That is, v1(0) = 1, v2(0) = 6, v3(0) = 2, v4(0) = 0, i.e. v(0) = 〈1, 6, 2, 0〉; etc. v3(b) = 3 means there are exactly
three subsets in P(L) whose infimum yields b, namely: {b, c}, {b, d}, and {c, d}.

In order to determine equality of vectors v(a) (for all a ∈ L), we sort them according to their lexical ordering.
That is, we define a lexical (linear) order 6lex on four-tuples of integers as follows. For x = 〈x1, x2, x3, x4〉 ∈ Z4

and y = 〈y1, y2, y3, y4〉 ∈ Z4 we put x 6lex y iff either x = y (tuples are identical) or there is i ∈ {1, . . . , 4} such
that, for each j < i, xj = yj and xi < yi.

Definition 1 (characteristic vector). A characteristic vector of a finite lattice L = 〈L,≤〉 is a vector of integers
which results by concatenating vectors v(a) (a ∈ L) listed in the lexical order 6lex.

Example 2. In case of the lattice from Fig. 1, we can see that

v(0) 6lex v(a) 6lex v(b) 6lex v(c) 6lex v(d) 6lex v(1).

That is, the characteristic vector is a concatenation of vectors v(0), v(a), v(b), v(c), v(d), and v(1):

〈1, 6, 2, 0, 2, 3, 1, 0, 2, 4, 3, 0, 3, 2, 0, 1, 4, 2, 0, 3, 6, 1, 0, 2〉.

Example 3. Fig. 2 shows all five-element lattices and the corresponding tables describing values of vis. The
columns of the tables are already listed in the lexical order 6lex. For instance, the characteristic vector of L5,2

is given by a concatenation of v(0), v(c), v(a), v(b), and v(1), i.e.

〈1, 5, 2, 0, 2, 2, 0, 0, 2, 3, 1, 0, 3, 2, 0, 1, 5, 1, 0, 2〉.

Determining the characteristic vector of a given n-element lattice can be solved with an asymptotic complex-
ity of O(n3). Indeed, traversing trough the binary vector representing the adjacency matrix is done in O(n2)
steps, each such a step requires a computation of infima and suprema, which can be done in O(n) steps. Thus,
we need O(n3) steps to find the values of all v(a)s. Finally, an efficient sorting algorithm like heap-sort can
be used to sort v(a)s according to 6lex in O(n log n) steps which does not increase the asymptotic complexity.
Thus, the overall time complexity of determining the characteristic vector is O(n3).

3.3 Heuristic tests of non-isomorphism

A direct procedure to test whether two n-element lattices are isomorphic, given by the definition of an isomor-
phism, leads to generating n! bijective maps between two n-element lattices and checking whether some of them
is an isomorphism. In this section we propose a procedure which quickly disqualifies most of non-isomorphic
lattices. In general, it cannot be used to decide whether two lattices are isomorphic. In the latter case, we use
a brute force checking of bijections between lattices. However, the advantage of our procedure is that even if we
are compelled to check the bijections, we can restrict ourselves only to “isomorphism candidates”. The number
of isomorphism candidates is in most cases much smaller than n!. We start with the following obvious theorem.
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L5,1 0 a b c 1
v1 1 2 2 2 5
v2 5 2 2 2 1
v3 3 0 0 0 0
v4 0 0 0 0 3

L5,2 0 c a b 1
v1 1 2 2 3 5
v2 5 2 3 2 1
v3 2 0 1 0 0
v4 0 0 0 1 2

L5,3 0 a b c 1
v1 1 2 2 4 5
v2 5 3 3 2 1
v3 1 1 1 0 0
v4 0 0 0 3 0
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L5,4 0 a b c 1
v1 1 2 3 3 5
v2 5 4 2 2 1
v3 0 3 0 0 0
v4 0 0 1 1 1

L5,5 0 a b c 1
v1 1 2 3 4 5
v2 5 4 3 2 1
v3 0 2 1 0 0
v4 0 0 1 2 0

Figure 2: All five-element lattices (up to isomorphism) and their characteristic vectors written in tables.

Theorem 3. Let L1 and L2 be lattices, h : L1 → L2 be a lattice isomorphism. Then, for each a ∈ L1,

vL1(a) = vL2
(
h(a)

)
. (11)

As a consequence, two isomorphic finite lattices have the same characteristic vectors.

Hence, any two finite lattices with different characteristic vectors are not isomorphic. Thus, a quick non-
isomorphism test can be performed by checking the inequality of characteristic vectors. If the characteristic
vectors of L1 and L2 are equal, we cannot tell whether L1

∼= L2 and need further analysis. Suppose the
characteristic vectors of L1 and L2 are equal and both L1 and L2 are defined on the same universe set L linearly
ordered by a fixed 4. In order to confirm/deny that L1 and L2 are isomorphic, it is not necessary to go through
all permutations of L (bijections h : L → L) because Theorem 3 says that the elements corresponding under
any isomorphism of L1 and L2 must have the same values of v(· · ·), see (11). Thus, it suffices to generate and
check only permutations satisfying (11). We call such permutations isomorphism candidates:

Definition 2 (isomorphism candidates). Let L1 = 〈L,≤1〉 and L2 = 〈L,≤2〉. A permutation h : L → L is
called an isomorphism candidate if (11) is satisfied for each a ∈ L1.

Example 4. Consider the lattice from Fig. 1 and its characteristic vector from Example 1. Suppose we arrive at
a lattice with the same characteristic vector. Since all columns of the table in Example 1 are pairwise distinct, to
decide whether the two lattices are isomorphic, it suffices to check just one permutation (just one isomorphism
candidate).

Example 5. In case of lattice L5,3 from Fig. 2 we would have to check two isomorphism candidates, because two
columns in the corresponding table are equal. In case of L5,1, we would have to check 3! = 6 candidates, because
three columns of the table are equal, etc. One can see that in case of five-element lattices, the non-isomorphic
lattices have pairwise different characteristic vectors. Hence, no checking of candidates is necessary. However,
for lattices with |L| ≥ 8, there are situations when the heuristic test fails as we show later. Therefore, checking
all isomorphism candidates is necessary if |L| ≥ 8.
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Figure 3: Eight element lattices that fail the heuristic non-isomorphism test.

Figure 4: Nine element lattices that fail the heuristic non-isomorphism test.

The heuristic test of non-isomorphism takes two lattices L1 = 〈L,≤1〉 and L2 = 〈L,≤2〉 as its input, and
outputs “true” (may or may not be isomorphic) or “false” (not isomorphic):

Algorithm 1 (heuristic test of non-isomorphism).

(i) Count 1’s in the binary vector encoding L1 and in the binary vector encoding L2. If the numbers of 1’s
in both the vectors are different, return “false”. Otherwise go to step (ii).

(ii) Determine characteristic vectors of L1 and L2. Return “true” if the vectors coincide; return “false”
otherwise.

Denote the output of the heuristic test for L1 and L2 by IsoH(L1,L2). If IsoH(L1,L2) is “false” then,
according to our previous observations, L1 and L2 are not isomorphic. If IsoH(L1,L2) is “true”, we employ
an exact test of isomorphism. The exact test accepts as its input the lattices and their characteristic vectors
(computed by the previous use of the heuristic test). The output of the exact test is “false” (not isomorphic)
or “true” (isomorphic). The exact test proceeds as follows:

Algorithm 2 (exact test of isomorphism).

(i) Initialize the generator of isomorphism candidates given by the characteristic vector. Proceed with step
(ii).

(ii) If there are no further isomorphism candidates left for checking, return “false”. Otherwise, take the next
isomorphism candidate h and go to step (iii).

(iii) For each a, b ∈ L, check condition (3). If the condition is true for each a, b ∈ L, return “true”. Otherwise,
skip h (i.e., remove h from the list of isomorphism candidates) and go to step (ii).

Now, we consider the situations when a failure of the heuristic test occurs, i.e. when IsoH(L1,L2) is “true”
for non-isomorphic lattices L1 and L2, in which case the heuristic test alone is not sufficient to decide whether
L1 and L2 are isomorphic. We explore the frequency of such failures. First, let us show that such situations do
occur.

Example 6. Consider the eight-element lattices from Fig. 3 and denote them by L1 and L2 (from left to
right). Both the lattices have the same characteristic vector. Namely, the following table contains entries of the
characteristic vector:

L1 0 a b c d e f 1
L2 0 a b c d f e 1
v1 1 2 2 2 3 3 4 8
v2 8 3 3 4 2 2 2 1
v3 10 1 1 3 0 0 0 0
v4 0 0 0 0 1 1 4 10
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1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 2 5 15 53 220 1049 5682 34502 232070
2 0 0 0 0 0 0 0 1 13 125 1159 10963
3 0 0 0 0 0 0 0 0 1 18 212 2035
4 0 0 0 0 0 0 0 0 0 2 28 388
5 0 0 0 0 0 0 0 0 0 0 6 102
6 0 0 0 0 0 0 0 0 0 0 4 65
7 0 0 0 0 0 0 0 0 0 0 0 16
8 0 0 0 0 0 0 0 0 0 0 0 6

10 0 0 0 0 0 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 0 0 0 0 1
13 0 0 0 0 0 0 0 0 0 0 0 2
16 0 0 0 0 0 0 0 0 0 0 0 1

Table 1: Numbers of characteristic vectors of given orders.

As we can see, two pairs of elements have the same columns, i.e. the exact test of isomorphism would go
through 2! · 2! = 4 isomorphism candidates. Each of the four candidates is a map h : L → L where h(0) = 0,
{h(a), h(b)} = {a, b}, h(c) = c, {h(d), h(e)} = {d, f}, h(f) = e, and h(1) = 1. Thus, we either have h(a) = a and
h(b) = b, or h(a) = b and h(b) = a. In either case, h cannot be an isomorphism: (i) if h(a) = a, then a ≤1 f and
h(a) = a �2 e = h(f), which violates (3); (ii) if h(a) = b, then h(b) = a, i.e. b ≤1 f and h(b) = a �2 e = h(f),
which again violates (3). Hence, L1 and L2 are not isomorphic while having the same characteristic vector. Note
that L1 and L2 are the only eight-element lattices (up to isomorphism) that fail the heuristic test and, at the
same time, are the smallest lattices that fail the test. Fig. 4 shows three pairwise non-isomorphic nine-element
lattices which share the same characteristic vector. Hence, any two distinct lattices of the three depicted in
Fig. 4 would fail the heuristic test.

Remark 1. Is a failure of the heuristic test rare? We have investigated this problem for lattices with up to 12
elements. Suppose c is a characteristic vector c of a finite lattice. By an order of c, denoted ||c||, we mean the
number of pairwise non-isomorphic lattices whose characteristic vector is exactly c. If ||c|| = 1, there is just one
finite lattice (up to isomorphism) with c in which case the heuristic test does not fail. For small lattices, ||c|| = 1
for every characteristic vector, i.e. the isomorphism can be decided by the heuristic test. Table 1 shows the
numbers of characteristic vectors of given orders. The columns of the table correspond to sizes of lattices, the
rows correspond to orders of characteristic vectors, and the table entries show how many characteristic vectors
(of orders given by rows and sizes given by columns) there are. As mentioned above, for n ≤ 7, there are only
vectors of order 1.

To sum up, for |L| ≤ 7 the heuristic test never fails. For |L| ≥ 8 the heuristic test can fail but we can use
the information present in characteristic vectors to avoid brute-force checking of all possible bijections between
two lattices. Later, we show the numbers of candidates being checked during the isomorphism tests and will see
that on average our approach significantly reduces the numbers of bijections needed to decide the isomorphism
of lattices.

3.4 Generation of finite lattices: brute-force algorithm

This section describes a brute-force algorithm for generating lattices which employs the heuristic test described
in the previous section. A more efficient algorithm derived from this algorithm is presented in the next section.

Non-isomorphic finite lattices of a given size n can be generated the following way. First, we create an
initial lattice which is encoded by a binary vector (see Section 3.1) containing all 0s and add it to a list of
generated lattices. The partially ordered set given by this binary vector is a lattice which, for |L| = n, contains
an antichain of n − 2 elements (i.e., n − 2 elements of the lattice are incomparable). Then, we go through all
possible binary vectors of the given length. For every vector we check if it represents a lattice which has not
yet been generated. If so, we add the lattice to the set of generated lattices and continue with the next binary
vector. The procedure goes on until we generate the final lattice, which is the lattice encoded by the binary
vector full of 1s. Such a vector encodes an n-element chain. During the procedure, we use the isomorphism tests
described in Section 3.3. Our method of generation of lattices is described by the following recursive procedure:
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Algorithm 3 (brute-force generating of finite lattices).

(i) Set binary vector so that it represents the initial n-element lattice.

(ii) Check if the current binary vector represents a lattice order. If yes, go to step (iii). Otherwise, go to
step (iv).

(iii) Check if ≤ (lattice order represented by the current binary vector) is isomorphic to a lattice which has
already been generated—use the heuristic and exact tests described in Section 3.3.

– If ≤ is not isomorphic to any of the generated lattices, add ≤ to the set of generated lattices and go to
step (iv).

– If ≤ is isomorphic to some previously generated ≤′ and if in addition ≤ equals ≤′ (i.e., ≤ has already
been found), then end this branch of recursion.

– Otherwise (i.e., ≤ is isomorphic to some previously generated ≤′ but ≤ differs from ≤′), go to step (iv).

(iv) Loop over all values of the binary vector ≤ which are equal to 0; for each of them, perform the following
steps one by one:

– Make a copy ≤′ of ≤ (copy of binary vectors).

– Set to 1 the current value in ≤′ which equals 0.

– Compute the transitive closure of ≤′ (using procedure transitive-closure from Section 3.1).

– Recursively call (ii) for ≤′.
After the loop finishes, halt computation.

Proof of soundness of Algorithm 3. Soundness of the algorithm directly follows from the fact that the algorithm
goes over all possible upper triangular adjacency matrices represented by binary vectors. For all isomorphic
n-element lattices, the algorithm stores exactly one of them, due to step (iii).

Remark 2. Our test of isomorphism which is based on the heuristic and exact tests seems to be very efficient.
For example, generating 9-element lattices using our isomorphism tests took under 2 minutes while the same
algorithm which uses only the exact test needed over 8 hours.

3.5 Generation of finite lattices: incremental algorithm

We were able to use the brute-force algorithm to generate lattices with at most 10 elements. We now describe
a more efficient algorithm derived from the brute-force one. The algorithm uses lattices with n elements to
generate all lattices with n + 1 elements. We use the following assertion:

Theorem 4. Let L = 〈L,≤〉 be a finite lattice with |L| > 1, c ∈ L be a coatom in L. Then L′ = L − {c}
equipped with ≤′ which is a restriction of ≤ on L′ is a lattice which is a ∧-sublattice of L.

Proof. Clearly, ≤′ is a partial order. Because c is a coatom, for any a, b ∈ L′ such that a 6= 1, we have

L≤′({a, b}) = {x ∈ L′ |x ≤′ a and x ≤′ b} = {x ∈ L |x ≤ a and x ≤ b} = L≤({a, b}).

As a consequence, L≤′({a, b}) has a greatest element which is the infimum of {a, b} in L′. If both a = b = 1 then
obviously L≤′({a, b}) = L′ and L≤({a, b}) = L. Thus, the infimum of a, b ∈ L′ in L′ agrees with the infimum
of a, b ∈ L′ in L, showing that L is a ∧-sublattice of L. It remains to show that L is a ∨-semilattice. Take any
a, b ∈ L′. We distinguish several situations according to

U≤({a, b}) = {x ∈ L | a ≤ x and b ≤ x}.

If c 6∈ U≤({a, b}) then U≤({a, b}) = U≤′({a, b}), i.e. the supremum of {a, b} in L′ exists and equals the
supremum of {a, b} in L. Suppose c ∈ U≤({a, b}). If a ∨ b = c (the supremum of {a, b} in L equals c), we must
have U≤({a, b}) = {c, 1}. Hence, U≤′({a, b}) = {1}, i.e. the supremum of {a, b} in L′ equals 1. If a ∨ b 6= c, the
least element of U≤({a, b}) equals the least element of U≤′({a, b}), i.e. in this case the supremum of {a, b} in L′

equals a ∨ b (the supremum of {a, b} in L). To sum up, we have shown that L′ = 〈L′,≤′〉 is a lattice.

Remark 3. In general L′ = 〈L′,≤′〉 from Theorem 4 is not a ∨-sublattice of L = 〈L,≤〉. For instance, the
eight-element Boolean lattice L = 〈2{a,b,c},⊆〉 does not contain any seven-element sublattice [19].
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5-element lattice 6-element lattices generated from the 5-element lattice

Figure 5: Hasse diagrams of all six-element lattices constructed from five-element lattices.

Theorem 4 can be used as follows. In our representation of finite lattices by upper triangular adjacency
matrices, the last nontrivial column (i.e., the column before the one corresponding to 1) represents a coatom.
Considering the example from Fig. 1, this is the column corresponding to d. If we “remove” the column and row
corresponding to d, we obtain another upper triangular adjacency matrix. According to Theorem 4, this is an
adjacency matrix of a 5-element lattice. This lattice is isomorphic to L5,2 from Fig. 2. In general, any adjacency
matrix of an n-element lattice contains an adjacency matrix of some (n − 1)-element lattice. This observation
allows us to use n-element lattices to generate (n + 1)-element lattices simply by adding a column and a row
representing a new coatom. This significantly reduces the number of new entries in upper triangular adjacency
matrices during the computation.

Example 7. Fig. 5 illustrates how 6-element lattices are generated from 5-element lattices by adding new
coatoms. The first column of the table represents a five-element lattice. The remaining lattices in each row
represent 6-element lattices which can be constructed from the 5-element lattice the way we have just described.
The black nodes in the Hasse diagrams represent new coatoms. Observe that if we remove such coatoms then,
according to Theorem 4, we obtain a lattice isomorphic to the 5-element lattice in the left-most column.

The following algorithm accepts as an input a collection of all n-element lattices and produces a list of all
(n + 1)-element lattices. Each of the n-element lattices is used to form an upper triangular adjacency matrix
which has the same entries as the adjacency matrix of the n-element lattice plus a new column representing a
new coatom. Then, only the values in this new column are considered for generating (n + 1)-element lattices.
The algorithm proceeds as follows:

Algorithm 4 (generating finite lattices incrementally).

(i) If there are no more n-element lattices, halt computation. Otherwise, take first n-element lattice L, remove
it from the collection of n-element lattices, and go to (ii).

(ii) Construct a binary vector encoding an upper triangular adjacency matrix for a lattice with n + 1 elements.
Fill values of the vector so that (a) values corresponding to the last nontrivial column of the adjacency
matrix (new coatom) are filled with zeros and (b) other values encode the upper triangular adjacency matrix
of L. Continue with (iii).
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size of L 1 2 3 4 5 6 7 8 9 10 11 12

vector length 0 0 0 1 3 6 10 15 21 28 36 45
possible relations 20 20 20 21 23 26 210 215 221 228 236 245

generated lattices 1 1 1 2 8 37 201 1273 9677 86105 887112 10406211
tests of isomorphism 0 0 0 0 3 22 148 1055 8661 80921 859881 10277785
generated candidates 0 0 0 0 3 22 155 1158 10054 97113 1058787 12765905

ratio – – – – 1.00 1.00 1.05 1.10 1.16 1.20 1.23 1.24
non-isomorphic lattices 1 1 1 2 5 15 53 222 1078 5994 37622 262776

Table 2: Lengths of vectors encoding finite lattices up to 12 elements.

(iii) Check if the current binary vector represents a lattice order. If yes, go to step (iv). Otherwise, go to
step (v).

(iv) Check if ≤ (lattice order represented by the current binary vector) is isomorphic to a lattice which has
already been generated—use the heuristic and exact tests described in Section 3.3.

– If ≤ is not isomorphic to any of the generated lattices, add ≤ to the set of generated lattices and go to
step (v).

– If ≤ is isomorphic to some previously generated ≤′ and if in addition ≤ equals ≤′ (i.e., ≤ has already
been found), then end this branch of recursion.

– Otherwise (i.e., ≤ is isomorphic to some previously generated ≤′ but ≤ differs from ≤′), go to step (v).

(v) Loop over all values of the binary vector ≤ which are equal to 0 and which correspond to the last nontrivial
column of the upper triangular adjacency matrix. For each of them, perform the following steps one by
one:

– Make a copy ≤′ of ≤ (copy of binary vectors).

– Set to 1 the current value in ≤′ which equals 0.

– Compute the transitive closure of ≤′ (see procedure transitive-closure from Section 3.1).

– Recursively call (iii) for ≤′.
After the loop finishes, go to step (i).

Proof of soundness of Algorithm 4. Soundness follows from the soundness of Algorithm 3 and from Theorem 4.

Remark 4. Since the loop contained in (v) of Algorithm 4 goes just over the entries corresponding to the last
nontrivial column of the adjacency matrix, we have significantly reduced the search space in which we look for
finite lattices.

Remark 5. An interesting thing to note is the average number of isomorphism candidates that are used during
each isomorphism test. Recall that when the heuristic test is positive, we must decide the isomorphism by
finding an appropriate bijection between lattices (this is a part of the exact test). Using characteristic vectors,
we can restrict ourselves to certain bijections only, namely to isomorphism candidates described in Section 3.3.
The average number of such isomorphism candidates is surprisingly low: during the generation of 12-element
lattices, the algorithm checks approximately 1.24 isomorphism candidates per each isomorphism test. The exact
values are depicted in Table 2. Columns of the table correspond to sizes of lattices. The first two rows contain
the information about the length of binary vectors encoding adjacency matrices and the total number of all
binary vectors of such lengths. The third row contains the numbers of all generated lattices, including the
isomorphic ones. The next three lines depict the numbers of exact isomorphism tests performed, the number
of isomorphism candidates used in these tests, and their ratio. As we can see, the ratio is close to 1, i.e., on
average we need just one isomorphism candidate per isomorphism test. Hence, roughly speaking, if two lattices
are isomorphic, the map proving the isomorphism is usually the first candidate considered. Thus, the exact
isomorphism test using isomorphism candidates is very efficient for lattices with |L| ≤ 12.
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⊗ 0 a1 a2 · · · an−2 1
0 0 0 0 · · · 0 0
a1 0 a1

a2 0 a2

...
...

...
an−2 0 an−2

1 0 a1 a2 · · · an−2 1

Figure 6: Initial assignment of lattice values to a table for ⊗ and procedure fill.

4 Generation of finite residuated lattices

In this section we describe a way to generate residuated lattices of a given size. We describe an algorithm which,
for a given finite lattice L = 〈L,∧,∨, 0, 1〉, generates all pairs 〈⊗,→〉 of adjoint operations on L. The algorithm
from Section 3 and this algorithm provide us with an algorithm for generating residuated lattices up to a given
size.

4.1 Representation of finite residuated lattices

Let L = 〈L,∧,∨, 0, 1〉 be a finite lattice. By definition of a residuated lattice, we are looking for all couples
〈⊗,→〉 of operations such that 〈L,⊗, 1〉 is a commutative monoid, and ⊗ and → satisfy adjointness. Note
that not all finite lattices admit adjoint operations ⊗ and →. The algorithm which is described later in this
section generates only ⊗ (multiplication, truth function of “fuzzy conjunction”) and tests a condition which is
equivalent to the existence of → (residuum, truth function of “fuzzy implication”) satisfying adjointness with ⊗.
Namely, we take advantage of the following assertion:

Theorem 5. Let L = 〈L,∧,∨, 0, 1〉 be a finite lattice, 〈L,⊗, 1〉 be a commutative monoid such that ⊗ is
monotone w.r.t. ≤. Then the following are equivalent:

(i) there exists (unique) → satisfying adjointness w.r.t. ⊗;
(ii) for each a, b, c ∈ L: a⊗ (b ∨ c) = (a⊗ b) ∨ (a⊗ c);
(iii) → given by a → b =

∨{c ∈ L | a⊗ c ≤ b} satisfies adjointness w.r.t. ⊗.

Proof. Follows from finiteness of L and properties of residuated lattices. The equivalence if (i) and (iii) is shown,
e.g., in [4]. In general, (i) is true iff a⊗∨

i∈I bi =
∨

i∈I(a⊗ bi) holds for any a, bi ∈ L (i ∈ I), see [4]. Since L is
finite, the latter condition is equivalent to (ii).

Due to Theorem 5, it suffices to generate all monotone, commutative, and associative operations ⊗ for which
1 (greatest element of L) is a neutral element and which satisfy condition (ii) of Theorem 5. If ⊗ satisfies all
these conditions, we can use (iii) to compute the residuum → of ⊗, which is uniquely given.

The basic idea of our algorithm is that we systematically go through all candidates ⊗ which may satisfy
assumptions of Theorem 5 and (ii). Let |L| = n and L = {0 = a0, a1, a2, . . . , an−2, an−1 = 1}. Furthermore,
assume that our indexing extends the lattice order, i.e. that ai ≤ aj implies i ≤ j. For |L| = n, there are nn2

distinct binary operations on L, which is too large a number even for small n. Generating all of them is not
feasible.

The task to find a multiplication can be seen as the task to fill a table as the one in Fig. 6 by lattice values.
A table entry given by row i and column j represents the value ai ⊗ aj . Since ⊗ needs to be commutative, we
can focus only on the upper triangle of the table including the diagonal because in general ⊗ is not idempotent.
Moreover, some lattice values in the table are the same for all multiplications because the properties of residuated
lattices imply

a⊗ 0 = 0⊗ a = 0, a⊗ 1 = 1⊗ a = a.

The other entries in the table can take any values from L−{1}. Fortunately, we can restrict the set of possible
values for each table entry using the following well-known fact:

Theorem 6. Let L be a residuated lattice. Then, for each a, b ∈ L,

(i) a⊗ b ≤ a ∧ b;
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(ii)
∨{c⊗ d | c, d ∈ L such that c ≤ a and d ≤ b} ≤ a⊗ b.

Proof. (i) is a well-known property of residuated lattices, (ii) follows from the monotony of ⊗.

Theorem 6 provides upper and lower bounds for the results of a multiplication. In more detail, for each
a, b ∈ L, the upper bound is given by (i). The lower bound can be computed using (ii) before each new
assignment. Since we assign lattice values to the table one by one, for a considered pair a, b ∈ L of lattice values
we can take all c, d ∈ L such that (i) the value c⊗ d is already assigned, and (ii) c ≤ a and d ≤ b. Then we can
compute the supremum of all such values c⊗ d which is then the lower bound of a⊗ b.

4.2 Algorithm for generating multiplications

In the algorithm, a table for ⊗, such as the one in Fig. 6, is filled from its top-left corner to its bottom-right
corner. The table entries are traversed in the following order: a1⊗a1, a1⊗a2, . . . , a1⊗an−3, a1⊗an−2, a2⊗a2,
a2 ⊗ a3, . . . , an−2 ⊗ an−2. For each new entry being added to the table we check several conditions to see that
⊗ represents a “candidate” for multiplication. Namely, for each a, b, c ∈ L we check

a⊗ (b⊗ c) = (a⊗ b)⊗ c, (12)
a⊗ (b ∨ c) = (a⊗ b) ∨ (a⊗ c), (13)
a ≤ b implies a⊗ c ≤ b⊗ c, (14)

provided that the expressions in (12)–(14) are defined (recall that we deal with a partial operation ⊗ which is
being constructed, i.e., some values of x ⊗ y may not be defined). If the currently assigned value of ai ⊗ aj

violates the conditions above, then we go back and set ai ⊗ aj to another value. Otherwise we move to the
next blank position in the table and compute possible values of the multiplication result given by Theorem 6.
In more detail, for lattice values ai and aj (i.e., values corresponding to position given by indices i and j in the
table) we consider an interval Bounds(i, j) ⊆ L which is

Bounds(i, j) = [b, ai ∧ aj ]

where

b =
∨{amin(k,l) ⊗ amax(k,l) | (k = i and al ≺ aj) or (ak ≺ ai and l = j)}

where am ≺ an denotes that am is covered by an, i.e. am ≤ an and am ≤ c ≤ an implies am = c or an = c.
Then we go through all the values in Bounds(i, j) and set them as the results of ai ⊗ aj . Then we check
(12)–(14) for ai ⊗ aj and the process continues as described above. We finish if we fill the whole table with
values satisfying (12)–(14). Therefore, the algorithm for generating ⊗ can be described as a recursive procedure
generate-multiplications which accepts two parameters: indices of the row and the column of the table in Fig. 6.
The procedure uses a global variable mult, the purpose of which is to represent the two-dimensional table of ⊗.

Proof of soundness of procedure generate-multiplications (i, j). Observe that if ⊗ (multiplication encoded by
the two-dimensional array mult) does not satisfy (12)–(14), ⊗ is never stored. This follows directly from our
previous observations. Hence, procedure generate-multiplications stores at most all possible multiplications of
a given finite lattice. It remains to show that it stores exactly all of them. But this is also easy to see. Indeed,
each ⊗ which is a multiplication satisfying adjointness with → on a residuated lattice satisfies (12)–(14), i.e.
when mult encodes a portion of ⊗, generate-multiplications will always go to line 4 after its invocation. From
lines 12–15 we can see that each value of ai ⊗ aj will be written (at some point) in mult [i, j]. Hence, the
value of a1⊗a1 will be written in mult [1, 1] during the first invocation of generate-multiplications (1, 1) because
a1 ⊗ a1 ∈ Bounds (1, 1). Then, generate-multiplications (1, 2) will be invoked and a1 ⊗ a2 will be written in
mult [1, 2] because a1⊗ a2 ∈ Bounds (1, 2), and so on. Line 16 resets the value of mult [i, j] back to “undefined”.
This is for the sake of correct testing of (12)–(14) because the variable mult is shared among all invocations of
generate-multiplications. The computation stops after finitely many steps.

4.3 Removing automorphisms

In order to generate all non-isomorphic residuated lattices with the lattice part L = 〈L,∧,∨, 0, 1〉, we exclude the
isomorphic copies, which may arise when computing the multiplications ⊗ as described above, by selecting one
representative. The representative is selected using the following lexicographic order. For two multiplications
⊗1 and ⊗2, we put ⊗1 <` ⊗2 iff there exist ai, aj ∈ L such that the following two conditions are both satisfied:
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Procedure generate-multiplications(i, j)

Data: indices 0 < i ≤ j < n− 1
if (12)–(14) are not satisfied then1

return2

else3

// if current row is finished, start filling next row
if j ≥ n− 1 then4

set i to i + 15

set j to i6

end7

// if ⊗ is generated, store its value and terminate
if i ≥ n− 1 then8

store mult9

return10

end11

// fill current table position with possible lattice values
foreach b in Bounds (i, j) do12

set mult [i, j] to b13

call generate-multiplications (i, j + 1)14

end15

// mark current value as undefined
set mult [i, j] to “undefined”16

end17

(i) k < l for ak = ai ⊗1 aj and al = ai ⊗2 aj ,
(ii) ak ⊗1 al = ak ⊗2 al for all ak, al ∈ L such that k < i or (k = i and l < j).

Obviously, <` defines a strict total order on all possible multiplications (binary operations, in general) on
L = 〈L,∧,∨, 0, 1〉. Denote by 6` the reflexive closure of <`.

Consider now two distinct adjoint pairs 〈⊗1,→1〉 and 〈⊗2,→2〉 computed by the above backtracking al-
gorithm and the corresponding residuated lattices L1 = 〈L,∧,∨,⊗1,→1, 0, 1〉 and L2 = 〈L,∧,∨,⊗2,→2, 0, 1〉.
It is easily seen that L1 and L2 are isomorphic iff there is a lattice automorphism h : L → L such that
a ⊗2 b = h(h−1(a) ⊗1 h−1(b)). Thus, we proceed as follows. After ⊗ is generated, we compute the set of all
automorphic images {⊗i | i ∈ I} of ⊗ and store ⊗ iff ⊗ is lexicographically least among all {⊗i | i ∈ I}, i.e., iff
⊗ 6` ⊗i for all i ∈ I. Each automorphic image ⊗i of ⊗ is defined by a⊗i b = h(h−1(a)⊗ h−1(b)) where h is a
lattice automorphism of L = 〈L,∧,∨, 0, 1〉. Therefore, in order to apply the procedure, we have to generate all
automorphisms of a given finite lattice L. This can be done in a straightforward manner using characteristic
vectors and automorphism candidates introduced in Section 3.

5 Selected properties of generated structures

In this section we present basic characteristics of finite residuated lattices generated by our algorithms. We
used the algorithms to generate all non-isomorphic residuated lattices with up to 12 elements. Prior to that,
we generated all non-isomorphic lattices up to 12 elements. The tables summarizing the observations from this
section can be found in the appendix. A database of generated lattices is available at:

http://lattice.inf.upol.cz/order/

Numbers of Finite (Residuated) Lattices Table 3 (see appendix) contains a basic summary. The table
columns correspond to sizes of lattices (numbers of their elements). The first row contains the numbers non-
isomorphic lattices. These numbers agree with observations concerning the numbers of lattices from [22]. The
second row contains the numbers of non-isomorphic residuated lattices. The third row contains the numbers of
non-isomorphic linearly ordered residuated lattices (i.e., lattices with every pair of elements comparable). We
can see from the table that small residuated lattices tend to be linear: for |L| = 5, 22 residuated lattices out
of 26 are linear. With growing sizes of |L|, the portion of linear residuated lattices decreases: for |L| = 11, one
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fifth of all the residuated lattices are linear; for |L| = 12 only one seventh of all the residuated lattices are linear.
Another observation concerns the relationship between (numbers of) residuated lattices and (numbers of) their
distinct lattice reducts. Recall that if L = 〈L,∧,∨,⊗,→, 0, 1〉 is a residuated lattice, its reduct 〈L,∧,∨, 0, 1〉 is
a lattice. Thus, we may ask how many n-element lattices are reducts of n-element residuated lattices. This is
shown in the last row of Table 3 which contains the numbers of pairwise distinct non-isomorphic lattice reducts
of all non-isomorphic residuated lattices. For instance, the values in column corresponding to |L| = 12 mean:
there are 262776 non-isomorphic lattices but only 38165 of them can be equipped with ⊗ and → to form a
residuated lattice. Notice that even if the number of residuated lattices rapidly grows with growing |L|, the
number of their lattice reducts compared to the number of all lattices (of that size) decreases. This means that
with growing |L|, the average number of residuated lattices with the same lattice part increases. For instance,
for |L| = 8 the average number of residuated lattices sharing the same lattice part is approximately 77 while for
|L| = 12 it is 803.

Heights and Widths of Finite (Residuated) Lattices The values in Table 3 may suggest that most
residuated lattices can be found on n-element chains. This is so for smaller residuated lattices but it is no longer
true for larger lattices. Namely, consider the heights and widths of the lattices. A height (or width) of a lattice
is the length of the longest maximal chain (or antichain) contained in that lattice. For instance, for |L| = 12,
we can depict the numbers of lattices according to their width and height as in Table 4 (see appendix). The
rows and columns in Table 4 represent heights and widths of lattices, respectively. The table entries represent
the numbers of non-isomorphic lattices with the dimensions given by the corresponding rows and columns. In
a similar way, we can depict the numbers of distinct residuated lattices according to their width and height as
in Table 5. Table 5 shows that the lattice parts of most residuated lattices are “high and thin” but in case
of |L| = 12, the most frequent residuated lattices are those with width 2 (second column of Table 5). Let us
mention that the distribution of all lattices and all lattice reducts according to their dimensions is quite different
from that of residuated lattices. Indeed, the distributions of lattices in Table 4 and Table 6 are similar but quite
different from that in Table 5. Analogous observations can be made for all generated finite residuated lattices
and their lattice reducts with |L| < 12.

Numbers of Finite (Residuated) Lattices Satisfying Additional Conditions Table 7 provides a sum-
mary of the numbers of non-isomorphic lattices which are modular, distributive, have complements, are Boolean,
have relative complements, pseudo-complements, and relative pseudo-complements [19]. Note that the lines for
all, modular, and distributive lattices are known [34], and that it is also know that the numbers in line 3 and line
8 coincide [7]. In addition to that, we consider the following properties of residuated lattices (see [4, 12, 19, 20]):

(MOD) a ≤ c implies a ∨ (b ∧ c) = (a ∨ b) ∧ c (modularity)
(DIS) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (distributivity)

(MTL) (a → b) ∨ (b → a) = 1 (prelinearity)
(Π1) (c → 0) → 0 ≤ ((a⊗ c) → (b⊗ c)) → (a → b) (Π1-property)
(Π2) a ∧ (a → 0) = 0 (Π2-property)

(STR) (a⊗ b) → 0 = (a → 0) ∨ (b → 0) (strictness)
(WNM) ((a⊗ b) → 0) ∨ ((a ∧ b) → (a⊗ b)) = 1 (weak nilpotent minimum)

(DIV) a ∧ b = a⊗ (a → b) (divisibility)
(INV) a = (a → 0) → 0 (involution)
(IDM) a = a⊗ a (idempotency)

These properties are of interest, e.g., when lattices are considered as structures of truth values in many-valued
logics and fuzzy logics [4, 20]. Table 8 contains the numbers of residuated lattices satisfying these conditions.
Table 9 summarizes the numbers of algebras (particular residuated lattices) which are defined by a combination
of the above-mentioned properties. The tables show that BL-algebras are very rare among residuated lattices
up to 12 elements. The situation for MTL-algebras is better but still, only 15 % of all 12-element residuated
lattices are MTL-algebras. An observation which may be surprising is that (Π1) is far more frequent a property
than prelinearity (for |L| ≤ 12).

Relationship Between Properties of Finite (Residuated) Lattices Table 7 shows the numbers of
lattices having each property but does not show, e.g., how many modular lattices are pseudo-complemented;
similarly for Table 8 and Table 9. To reveal dependencies among properties of lattices and residuated lattices,
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Figure 7: Least lattices that have a specific group of properties.

we constructed Table 10, Table 11, and Table 12. These tables show all combinations of lattice and residuated
lattice properties which appear in the generated databases. In case of Table 10, the columns denote the
same properties of lattices considered in Table 7. The left-most column contains numbers of non-isomorphic
lattices with given combinations of properties. Each row of the tables represents one combination of properties
(properties which are present are marked by “×”). From Table 10 we can see that some combinations of
properties are rare. In addition to that, some combinations of properties do not appear in “small” lattices (up
to certain number of elements). For instance, the least lattice which is only relatively complemented and (in
consequence) complemented has 9 elements and it is depicted in Fig. 7 (left). The least lattice which does not
satisfy any of the properties MOD–RPC (see Table 10) has 7 elements and is depicted in Fig. 7 (middle). The
lattice in Fig. 7 (right) is the least lattice which is only modular, complemented, and relatively complemented.
Table 11 and Table 12 depict dependencies among properties of the generated residuated lattices. Again, some
combinations of properties are rare and some of them appear only in larger structures. For illustration, the least
residuated lattice which satisfies only (MOD) and (Π2) has 9 elements.
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1 2 3 4 5 6 7 8 9 10 11 12

lattices 1 1 1 2 5 15 53 222 1078 5994 37622 262776

residuated lattices 1 1 2 7 26 129 723 4712 34698 290565 2779183 30653419

linear res. lattices 1 1 2 6 22 94 451 2386 13775 86417 590489 4446029

res. lattice reducts 1 1 1 2 3 7 18 61 239 1125 6138 38165

Table 3: Numbers of non-isomorphic finite lattices and residuated lattices up to 12 elements.

1 2 3 4 5 6 7 8 9 10

3 1

4 99 395 288 98 17

5 3847 14418 9536 2115 176

6 3531 37813 43394 12050 952

7 87 15501 48261 23595 2507

8 666 14735 17380 3117

9 849 4704 1792

10 350 456

11 45

12 1

Table 4: Numbers of 12-element lattices with given heights and widths.

1 2 3 4 5 6 7 8 9

4 1

5 3 127 165 88 48

6 240 9383 22627 9638 1335

7 236 99088 332299 161275 18546

8 121970 1363290 1009364 142551

9 1732870 3563657 733266

10 6007716 2709365

11 8168242

12 4446029

Table 5: Numbers of 12-element residuated lattices with given heights and widths.

1 2 3 4 5 6 7 8 9

4 1

5 2 123 159 72 15

6 92 2215 3295 1139 126

7 11 2362 8498 4397 518

8 241 4549 5377 973

9 455 2183 805

10 239 280

11 37

12 1

Table 6: Numbers of 12-element lattice reducts with given heights and widths.

1 2 3 4 5 6 7 8 9 10 11 12

all lattices 1 1 1 2 5 15 53 222 1078 5994 37622 262776

modular 1 1 1 2 4 8 16 34 72 157 343 766

distributive 1 1 1 2 3 5 8 15 26 47 82 151

complemented 1 1 0 1 2 6 18 71 307 1594 9446 63461

Boolean 1 1 0 1 0 0 0 1 0 0 0 0

relatively complemented 1 1 0 1 1 1 1 2 2 4 6 13

pseudo-complemented 1 1 1 2 4 10 29 99 391 1775 9214 54151

relatively pseudo-complemented 1 1 1 2 3 5 8 15 26 47 82 151

Table 7: Numbers of non-isomorphic lattices with selected properties.
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1 2 3 4 5 6 7 8 9 10 11 12

all res. lattices 1 1 2 7 26 129 723 4712 34698 290565 2779183 30653419

modular 1 1 2 7 26 125 660 3923 25445 180113 1389782 11798582

distributive 1 1 2 7 26 124 645 3792 24268 169553 1290956 10823436

(Π1) identity 1 1 1 4 9 46 240 1610 12679 118052 1280764 16074272

prelinear 1 1 2 7 23 99 464 2453 14087 88188 601205 4516962

(Π2) identity 1 1 1 3 8 30 143 794 5090 37036 306456 2897889

strict 1 1 1 3 7 27 129 726 4713 34705 290565 2779212

(WNM) identity 1 1 2 5 11 30 78 238 771 2908 12812 67467

divisible 1 1 2 5 10 23 49 111 244 545 1203 2697

involutive 1 1 1 3 3 12 15 70 112 493 980 4325

idempotent 1 1 1 2 3 5 8 15 26 47 82 151

Table 8: Numbers of residuated lattices with selected properties.

1 2 3 4 5 6 7 8 9 10 11 12

all res. lattices 1 1 2 7 26 129 723 4712 34698 290565 2779183 30653419

MTL-algebras 1 1 2 7 23 99 464 2453 14087 88188 601205 4516962

SMTL-algebras 1 1 1 3 7 24 99 467 2454 14094 88188 601231

WNM-algebras 1 1 2 5 9 21 40 90 180 378 757 1584

BL-algebras 1 1 2 5 9 20 38 81 160 326 643 1314

SBL-algebras 1 1 1 3 5 10 20 41 82 165 326 655

IMTL-algebras 1 1 1 3 3 8 12 35 61 167 333 971

Heyting algebras 1 1 1 2 3 5 8 15 26 47 82 151

G-algebras 1 1 1 2 2 3 3 5 6 8 8 12

NM-algebras 1 1 1 2 1 2 1 4 3 3 2 6

MV-algebras 1 1 1 2 1 2 1 3 2 2 1 4

Π-algebras 1 1 0 1 0 0 0 1 0 0 0 0

ΠMTL-algebras 1 1 0 1 0 0 0 1 0 0 0 0

Table 9: Numbers of selected algebras (particular residuated lattices).

MOD DIS COM BOO REL PCO RPC

168660

72930 ×
62811 ×
1945 × ×
580 × ×
473 ×
338 × × × ×
19 × ×
10 × × ×
4 × × × × × × ×

Table 10: Numbers of lattices sharing selected properties. (legend: MOD = modular, DIS = distributive, COM
= complemented, BOO = boolean, REL = relatively complemented, PCO = pseudo-complemented, RPC =
relatively pseudo-complemented).
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28539974

4511103 ×
705260 × ×

2954 × ×
1556 × ×
1258 × × × ×
1234 × ×

48 × × × × × ×
39 × × ×
19 × × × ×
13 × × × ×
4 × × × × × ×
4 × × × × × × × × × × ×

Table 11: Numbers of residuated lattices sharing selected properties.
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12275528 ×
6404789

3252773 × ×
3025931 × × ×
3009686 × × ×
1509962 × ×
1485172 × × × ×
781939 × × × ×
705260 × × × × ×
653138 × ×
317172 ×
110710 × × ×
101016 ×
55732 × ×
34162 × × ×
15501 ×
5761 × × ×
2713 × × × ×
2271 × ×
1720 × × × ×
1719 × ×
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1556 × × × × ×
1509 × ×
1258 × × × × × ×
1234 × × × ×
1189 × × ×
977 × × × ×
757 × × × × ×
630 × × ×
537 × × × ×
419 × × ×
241 × × × × ×
152 × × × × × × ×
138 × × × × × ×
77 × × × ×
48 × × × × × × × ×
39 × × × × ×
19 × × × × × ×
13 × × × × × ×
10 × × × × ×
4 × × × × × × ×
4 × × × × × × × × × ×

Table 12: Numbers of residuated lattices sharing selected properties (detail).
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