hapter 1
ackground Material

eter Jipsen, Chris Brink*, Gunther Schmidt

s chapter serves the rest of the book: all later chapters presuppose it. It
troduces the calculus of binary relations, and relates it to basic concepts and
sults from lattice theory, universal algebra, category theory and logic. It also
xes the notation and terminology to be used in the rest of the book. Our aim
ere is to write in a way accessible to readers who desire a gentle introduction to
e subject of relational methods. Other readers may prefer to go on to further
apters, only referring back to Chapt. 1 as needed.

" The calculus of sets

‘Our approach to set theory is, for the most part, informal. We use the capital
tters X, Y,Z to denote sets, and lower case z,y,z to denote elements. The
mbols “z € X7 express the fact that z is an element (or member) of the set
.. The empty set is the unique set @ that contains no elements. Singletons are
ts with one element, unordered pairs are sets that contain exactly two elements
‘and unordered n-tuples {1y, ..., 7,1} contain n distinct elements. When conve-
fiient, a universal set U may be defined to represent the largest collection under
consideration.

Given a set X and a property P, the set of all elements of X that satisfy P
‘denoted by

{z e X :P(z)} or {z:ze X and P(z)}.

The 'propert;y P is often described informally, but is understood to be an abbre-
viation for a precise expression in some formal language.

There are several obvious relations and operations defined on sets:

e equality: X =Y if X and Y contain the same elements,

e dnclusion: X C Y if every element of X is also an element of Y,

o union: X U Y = the set of elements in X or Y,

e intersection: X N'Y = the set of elements in both X and Y,

e difference: X — Y = the set of elements in X that are not in Y,

-~ 1Chris Brink gratefully acknowledges the longstanding financial support of the South African
Foundation for Research Development.

° corﬁplement: X=U-X provided that a universal set U has been fixed,
o powerset: P(X) = the set of all subsets of X .

Two sets are said to be disjoint if their intersection is the empty set. ;
The expression “calculus of sets” refers to the many interactions between thes

relations and operations. The main ones are captured by the following observ.

tions: For any universal set U and X, Y, ZC U

X C X ({reflexivity of C}),

e XCVYand Y CZimply X CZ (transitivity of C),

e XCYand YCXimply X =Y (antisymmetry of C),

e XUY=YUX and XNY =YNX (commutativity of U, N),

e (XUY)UZ=XU(YUZ)and (XNY)NZ =XN(YNZ) (associativit
of U, n), .
e XN (YUZ)=(XNnY)u(XNnZ)and XU(YNZ) ~—(XuY)n(XUZ

(distributivity of U, N) and
o XUX=1U and XNnX =0.
Readers familiar with mathematical terminology may note that the first thre
properties show C is a partial order on P(U), and the remaining ones 1mply tha
(P(U),u,n, ,®, U) is a Boolean algebra.
If I is any set, and X = {X; :4 € I} is a collection of sets indexed by [the;

the union and intersection of X are defined by
U)c’:-A" UX,-%{azza:eX,- for some i € 1}2,
i€l

Nx&2NXE{z:ze X foralliel}.
- iel :
From objects £ and y we obtain the ordered pair or simply pair (z,y) with th
characteristic property that (z,y) = (z',y') if and only if z = 2’ and y =y
~ Sequences of length n or n-tuples (%, ..., Zs-1) are characterized by the analogous
property. The Cartesian product of sets Xo, ..., X1 is given by

-1
XoxX oo X Xner=] Xi & {{z0,. ... #01) i € X, for all i < n}.

i=0
If all the sets X; are equal to X, we write X" instead of [Tioy X .
We also fix the following notation for various standard sets:
e N={0,1,2,3,...}, the set of natural numbers.
e Z=1{..,-2,-1,0,1,2,.. .}, the set of integers.
o Q={Z:meZand0# n €N}, the set of rationals.
e R the set of reals.
e B = {true, false}, the set of booleans.

*The s:;fmboi £ signifies that the equalities hold by definition.

alculus of binary relations

binary relation is simply a collection of ordered pairs. More precisely,
elation R from a set X to a set Y is a subset of the set of all pairs
€ X and ¥ € Y. In symbols

RC X xY.

we say that R is a relation over X. Instead of (x,y) € R, we
¢ zRYy. By virtue of being sets, binary relations are partially ordered
The smallest relation is just the empty set §. Depending on the
may also fix a largest relation, called the universal relation, which is
V' (for example V = U?). Another special relation defined for each
identity relation

Iy ={(z,z):z € X}.

ons are sets, all the set-theoretic operations apply. However, relations
ust sets, and the structure of their elements allows the definition
perations. The most common ones are

. domR = {z : there exists y such that zRy},

;rd'riR = {y : there exists z such that zRy},

rse: R™ = {{z,y) : yRz},

position: RS = {(z,v) : there exists z such that zRz and 25y},

residual: R\S = {(z,y) : for all 2z, 2Rz implies 28y},
sidual: R[S = {(z,y) : for all z, ySz implies zRz},
product: R:Y = {z : there exists y € Y such that zRy},

ge set: R(z) = {y : zRy},

entiation: R® = Iy where U is a fixed universal set, and R = R:R™.

e strengths of the relational calculus is that many properties can be
ery compactly. This is demonstrated throughout this book, beginning
t below of common conditions used to classify relations. A relation R

eif Iy C R (i.e., zRz for all z € U),

sitive if RiR C R (ie., xRy aﬁd' yRz imply zRz for all z,y,2 € U),
etrzc if R=R" (i.e., zRy implies yRz for all z,y € U),
vym'metn’c if RONR™ C Iy (ie., zRy and yRz imply z = y),

eorder if it is reflexive and transitive (also called a quasi-order),

quivalence relation if it is a symmetric preorder,

rtial order if it is an antisymmetric preorder.

térsection of transitive relations is again transitive, any relation R is
in'asmallest transitive relation, called the transitive closure of a relation

 R. This relation can be defined directly by R* =N{T:RC T and T5T C T},
and it is easy to prove that

’ =|JR' =RUR*URU--

i€N

The closely related reflezive transitive closure of R is defined as R* = [y U R,
Both operations are of particular interest to computer science since they can model
the behaviour of programs with loops. ‘

- When several operations appear in the same expression, parentheses are used
to indicate the order in which the operations are performed. To avoid proliferation
of parentheses the following convention is adopted:
~ Priority of operations: Unary (superscript) operations {— , =, *, *, ®) are per-
formed first, followed by the binary relation operations (i, 1, /, \) and finally
the binary set operations {U, N).

- Algebraic properties of relation operations

The most obvious properties of operations defined on relations are listed below.
¢ Composition is associative: (RiS):T = R{(S:T).)

e [y is an identity for the composition of relations on U: IysR = R = Rily.

e Composition distributes over union: R(SU T) = RSURT
and (RUS)T = RTUST.
- o Conversion distributes over union: (RUS)" =R US™.
¢ Conversion is an involution: (R™)” = R.
o Conversion antidistributes over composition: (R;S)” = S™R™.
e Composition satisfies what are known as the Schréder equivalences {which
will later be related to right- and left conjugates):

RSNT =0 & RTNS=0 < TS NR=0.

& The reflexive transitive closure satisfies
R = Iy URR" and RSCS == R55CS .

Many other relationships hold, but the ones mentioned above have the distinction
that they form the basis for an abstract treatment of relations.

Viewing relations as sets of ordered pairs is appealing in its simplicity, but
for many applications in computer science it is more useful to “type” a relation
R C X x Y by explicitly recording its source X and target Y. So we define a
typed relation from X to Y to be a triple (R, X,Y), where R C X x Y. The

“set of all typed relations from X to Y is denoted by [X < Y], and instead of
TelX & Y]wealsowrite T: X <+ Y. When working only with typed relations,
the adjective “typed” is usually omitted. All the operations and properties of

_interchanges the source and target, and the binary operations are only defined
* when the sources and targets of the respective relations are compatible. For the

- (untyped) relations apply here as well, with the understanding that conversion

_d”pe‘rations U, N the relations must have the same sources and the same targets,
~and for the other operations, if R: X <+ Y, S: Y+ Z and T: X < Z then

R:YeX, RS:XeZ, R\T:Y«Z and T/S: X+ Y.

The additional structure of typed relations leads to further useful definitions. A

relation R : X +» Y is said to be

e univalent if R5R C Iy (i.e. zRy and zRy' imply y = ¢ for all z,y,7¢'),
e totalif Iy C RIR™ (Le. for all z € X there exists y € Y such that zRy),
e 2 function if it is univalent and total,

o injective if RIR™ C Iy (i.e. zRy and z'Ry imply z =z’ for all z,2', y),
o surjective if Iy C RR (i.e.for all y € Y there exists £ € X such that

zhy),
" ea bijection if it is an injective and surjective function (i.e. B;R” = Ix and
 RUR=1Iy).

If R: X ¢ Y is a function, we write R : X — Y. If R is not total but univalent
then it is called a partial function.

In either case we will normally use the symbols f, g, A instead of relational
symbols, and the notation “y = f(z)” instead of “zfy”. For two functions f :
X =Y and g: Y — Z, the composite function g o f is defined by go f = f,g,
with the result that (g of)(a:) = g{f(z)).

The notion of “binary relation” can obviously be generalized to higher dimen-
sions: an n-ary relation based on sets Xy, ..., X, is simply a subset of the n-ary
Cartesian product Xp X ... x X,_1. Although less pervasive than binary rela-
tions, these generalizations arise naturally in logic, algebra, database theory and
many other areas. In the above definition, the elements of an n-ary relation are
n-tuples indexed by the set H = {0,...,n — 1}. In applications to computer
science it is often convenient to allow arbitrary index sets. For example, if the
3-tuple t = (Smith, Jane, 1234567) represents an entry in a phonebook, a suitable
index set would be H = {lastname, firstname, phonenumber}. Such descriptive
indices are also called attributes in database theory. Associated with each index i
is a domain of values D(1), e.g. D(lastname) would be the collection of lastnames
valid for a phonebook.

An H-tuple t is now simply a function from H to Uien D(z) such that
t(i) € D(3), and the set of all H-tuples is the Cartesian product Ten D3).
A relation with index set H is a subset of this Cartesian product. Note that if
H ={0,...,n ~ 1} then an H-tuple is just an n-tuple and a relation with index
set H is an n-ary relation.

Given a Cartesian product [[;cpy Xi there is for each 1 € H a projection func-
tion :
m: [Xi = Xi defined by mi(t) & t(4).

i€l
For a subset J of H, each H-tuple ¢ gives rise to a J-tuple t[J] defined by
restricting the function ¢ to values from J. This provides a generalized projection
function 7, : [liew Xi — Tljes X; given by m,(t) £ ¢[J].

(a) (b) ©)

Fig. 1.1 Some posets and their Hasse diagrams

Using the above notions, any relation over an index set H can be decomposed into a

binary relation. A particular decomposition is determined by a subset J of H, and

each H-tuple ¢ is mapped to the pair (¢[J], ¢[J]), where complementation is with

respect to H. Conversely, given disjoint sets J, K and a binary relation in which

all pairs have J-tuples as first component and K -tuples as second component,

- each pair (z,y) can be mapped to a unique J U K -tuple ¢ defined by ¢[J] = z
and {[K]=

1.3 Partially ordered structures

~ As mentioned in Sect. 1.2, a binary relation R on a set X is a partial order if

it is reflexive, transitive and antisymmetric. The pair (X, R) is called a partially
~ordered set or poset. Usually “R” is replaced with a more suggestive symbol “C”
- (read “less-or-equal”), in which case R is written 3 (read “greater-or-equal”).
- If X has only a few elements then it is quite instructive to represent (X,C) by
- a Hasse diagram where an element z is connected by a straight line to a distinct
~element y higher up on the page if and only if z T y and there exists no z € X

distinct from z and y with z £ 2z C y. Some examples of posets and their Hasse
diagrams are given in Fig. 1.1.

In a poset (X,C) an element z is an upper bound of asubset Y of X if z J y
for all y € Y. The least upper bound of Y, also called the join of ¥ and denoted
by |} Y, is the (unique) upper bound that is less than every other upper bound of
Y. Of course upper bounds and least upper bounds don’t necessarily exist for all
subsets (see Fig. 1.1 (a), (b)). In particular, since every element is an upper bound
of the empty set, | |@ exists if and only if (X,) has a least element, denoted by
A (read “bottom”). The largest element of a poset, if it exists, is denoted by T
(read “top”). :
A nonempty subset C of X is a chain if it is linearly ordered, i.e. z y or
- yLzforall z,y € C. This definition allows us to define a complete partial order
(¢cpo for short) as a poset (X,C) in which every chain has a least upper bound.
 In computer science cpos are mainly used as models of denotational semantics
- for programs. A poset endowed with extra structure is naturally thought of as
a partially ordered structure. Algebraic versions of the calculus of sets and the
- calculus of relations are in a natural way represented as such structures.

he greatest lower bound or meet of a subset Y in a poset (X,C) is denoted by
‘717, and can be defined as the least upper bound of Y in the dual poset (X,1).
‘»:jgattice is a nonempty poset in which every two-element subset {z,y} has a join
“zUy =Mz, y} and a meet My =Kz, y}. These two operations are
“associative: (zUy)Uz=zlU(yUz)and (zNy)Nz=2zN(yNz),
ccommutative: tUly=ylUz and zMNy=yNz,

idempotent: z iz =z and z Mz = z, and satisfy the
~absorptive laws: (zUy)MNz =2 and (zNy)Uz =1z.

The equational properties listed above characterize lattices in the following sense:
Given aset X with two binary operations Lt and M that satisfy the above equations
{gr.v_all z,y,2 € X, define a relation £ on X by

zly sUy=uy.

Then (X,) turns out to be a lattice in which the join and meet operations agree
th Ut and M. Hence a lattice may be viewed as either a poset (X,C) or an
~algebraic structure (X,U,M). It is easy to give examples of a set of sets closed
" under union and intersection; this would be an example of a lattice.
~ i In a lattice the least upper bound of any finite nonempty subset can be found
. by repeated application of the join operation. A lattice (X, L) is said to be
o bounded if it has a smallest element I (= {0 =[1X) and a largest element
. T {(=UX=n0),
. complete if every subset Y has a join || Y. In that case Y also has a meet
MY =Li{all lower bounds of Y},
¢ complemented if it is bounded and every z € X has a complement T such
o that zUF =T and zNZT = 1L,

 “distributive if z U {yM2) = (zUy)N(zUz2) and zM{ytlz) =
forall z,y,z€ X.
e note that in a distributive lattice the complement of an element is unique
{(whenever it exists).

(zNny)Ud(znz)

Boolean algebras

With the above terminology, a Boolean algebra is defined as a complemented dis-
tifibutive lattice A = (A,u,M, ,.L,T). Since it can be proved that Boolean
~ algebras satisfy De Morgan’s laws Uy =Z MY and 211y =T U T, it is actually
- enough to list only the operations U, and L. The others are recovered as
T=1.

Tbﬁvé"theory of Boolean algebras is an abstract algebraic version of the calculus of
sets (Sect. 1.1) and propositional logic {Sect. 1.6). Standard examples of Boolean
: algebras are the collection of all subsets of a universal set U:

=(P(U),u,”,0).

zMy=7TUY and

Figure 1.1 (¢) shows the Hasse diagram of such an algebra when U is a 3-element
- set. Other examples are obtained by considering subcollections C € P(U) with
- the property that @ € C and for all X,Y € C we also have both XU Y € C
~and X € C. Then C = (C,U,) is also a Boolean algebra®, referred to as a
. subalgebra of B. In fact, by a fundamental result of Stone, dating back to 1935,
- every Boolean algebra can be obtained in this way (up to isomorphism).

To make this precise, we need a few definitions. An atom in a Boolean algebra
is a minimal non- L element. In the algebra B above, the atoms are the singleton
subsets of U. A subset F of a Boolean algebra is

o meet-closed if z,y € F implies z My € F,

.o anupsetif x € F and 2 C y imply y € F,

" e a filter if it is a meet-closed upset,

e an ultrofilter if it is a filter, I ¢ F and for all z in the algebra either z € F
orz € F.

- The last condition is equivalent to saying that F is a maximal proper filter. For
- example, given an atom a in a Boolean algebra, there is exactly one ultrafilter ¥
~ containing a, namely F = {z: a T z}. Now the ultraﬁlters of a Boolean algebra
- A can serve as atoms of another algebra.

Theorem 1.3.1 (Stone’s Representation Theorem) Let Uy be the set of all ul-
- trafilters of A. The function o : 4 — P(l44) defined by

o(z)E{Fecly:z€F}

18 aBooiean algebra embedding, i.e. o(zUy) = o(z)Uo(y), 0(F) = o(z), o(L) =0
and o is injective. 0O

" Relation algebras

Here we define abstract algebraic structures that capture many of the algebraic

- properties of relations. They are based on Boolean algebras augmented by the

operations ; (binary relation composition) and ~ (unary converse), and a distin-
guished element I (identity).

An (abstract) relation algebra is of the form (A4,U,

o (AL,

_ ® ; is associative and distributes over L,

4,57, T) where
, L) is a Boolean algebra,

: o 7 is an involution, distributes over LI and antidistributes over ;,
I is an identity for ; and

s 752770y forall 2,y € A.
- The last-mentioned inequality states that z = z£7;7 is a solution of ziz T y.

“In the presence of the first three properties, this is in fact the largest solution.
M(jreover, the inequality is equivalent to the claim that, for all z,y,2 € A:

TiyNez=1 = z7zNy=1 < ziy MNz= 1.

_ ®Since the axioms for lattices, distributivity and complementation are equational.

" These are exactly the Schréder equivalences, and hence the properties listed here
~for abstract relations are the same as for relations in Sect. 1.2 (under the subhead-
'-mg “Algebraic properties of binary relations”). A standard example of a relation
~—algebra is the set of all relations on a universe U, called the full relation algebra
over U: .

U —_, @,;,V y IU) .

Rel(U) = (P(U?)

j Booiean modules and Peirce algebras

- Observe that in a relation algebra the nonboolean operations :, ~ and I dis-
tribute in each argument over the Boolean join U.* Such operations are called
- operators, and algebras of this type are collectively referred to as Boolean algebras
“with operators or BAOs for short. An operator is said to be normal if it has value
- A whenever one of the arguments is 1. A normal BAO is one in which every
-operator is normal. It is easy to show that relation algebras are normal BAOs.

- Let A be a relation algebra. A (left) Boolean A-module is a Boolean algebra
B:= (B,u, , L) together with a mapping f : A x B — B, where f(r,z) is
written r:z and called the Peirce product, such that forall r,s € A and z,y € B:

' r{zly)=rzlr:y,
o (rus)iz=rizllsiz,

coe (ris)yiz =risiz),

e liz=ux,
o ligxg=1,
o rFZLE

To see that Boolean modules are a type of BAQO, one can define for each r € 4 a
unary operation f,:B - B by f.(z) = r:z. Then the first equation above states
that each f. is an operator. For a concrete example of a Boolean module, consider
A = Rel(U), B = (P(U),u, ,0) and R:X is the Peirce product defined in
Sect. 1.2. Thus, whereas relation algebras are an algebraic version of relations
acting on each other, Boolean modules are an algebraic version of relations acting
on sets.
. It is occasionally useful to consider also relation-forming operations on sets.
One such is the cylindrification, which associates with any set X contained in
some universe U the relation X¢ = {(z,u): 2z € X and u € U}. A Peirce algebra
(A B) is a Boolean A-module B with an additional unary (postfix) operation
: B — A, such that for all reA and z € B

2T =z and (rT)*=rT.

The concrete example above can be expanded to a Peirce algebra by defining X ¢
to be the relation X x U.

4The constant I does so vacuously, since it has no arguments.

Residuation and conjugation

' When dealing with operations on partial orders, there are several recurring con-
- cepts that are simple, but important.
- Let (X,C) and (Y,) be two partially ordered sets. A map f: X ~— Y is

e order-preserving (or isotonic) if z T 2’ implies f(z) C f(z'),

o join-preserving if f(z U y) = f(z) U f(y) whenever z Uy exists in X,
o completely join-preserving if f{L}S) = |U{f(s) : s € S} whenever {|5 exists
in X, ; ‘ '
- o residuated if there is a map ¢: Y — X, called the residual of f, such that
fle) Ty z C g(y)

A residuated map f and its residual g are also referred to as a Galois connection
or adjunction. In the latter case f is the lower adjoint (of g), and ¢ is the upper
adjoint (of f)5. ‘

A simple example of a residuated map is the function f(z) = z7, defined on
- any relation algebra. The residual of f is in fact f itself, since the statements
z7 Cyand z Ty~ are equivalent. (For residuals of relations see below.)

The notion of a (completely) meet-preserving map is defined dually by inter-
~ changing U with M, and || with . The following result implies that the properties
- above are listed in increasing order of strength.

Theorem 1.3.2 Let (X,C) and (Y,C) be posets. If f: X — Y is residuated,

then it is completely join-preserving and hence order-preserving. Furthermore, the
3 residual ¢ is unique, completely meet-preserving, and is given by

gy =z e X :f(z)Ey}.

For a partial converse, if (X,L0) is a complete lattice and f is completely join-
preserving then f is residuated. 0

For a map f : A -~ B, where (4,U, , L) and (B,U, ,.L) are Boolean

algebras, the dual of f is defined by f?(z) = f(%). Furthermore, f is said to be
- conjugated if there is a map h: B — A, called the conjugate of f, such that

L= forallze X, ye VY.

“ flz)yNy=14 <= zNh{y)=41 forall ze X,ye Y.
 (Or, equivalently,
' fBYCT7 <= zLhly) forallze X, ye Y.

~ In this form it may be compared to the definition above of a residuated map.)
- A natural example of a conjugated map is the function fi(z) = aiz, defined for
- any element ¢ in a relation algebra. The conjugate map is h,(y) = a”;y, since
the expressions aiz My = L and «”iyM 2z = 1L are equivalent. In fact, in this
_case the conjugate map is usually called the right conjugate. If we reverse the
~order of the composition, and define the map (f') (z) = z:a, then the conjugate

.. ®In categorical terms fis the Jeft adjoint (of ¢), and ¢ is the right adjoint (of f). To avoid
v confusion with left and right residuals of relations, we refrain from this terminology.

ap (which will now be called the left conjugate) is (h'),(y) = y:a~, since the
cpressions z;aMy = A and y;a” Mz = 1L are equivalent. This explains the
of the word “conjugate” in connection with the Schroder equivalences (under
algebraic properties of relation operations” in Sect. 1.2).
- For maps between Boolean algebras, residuals and conjugates are duals of each
her (ie. g = h?), so a map is conjugated if and only if it is residuated. (How-
er, conjugation has the advantage of being a symmetric property: if A is the
jugate of f, then f is the conjugate of h.) In particular the residual g, of
‘the function f, above is given by (h.)*(y) = ha(g) = a™;7. It is easy to check
iat this satisfies the definition of a residual: the expressions f,(z) C y and
%'C gu(y) are equivalent. Again, in this case the residual is usually called the
right residual, and the left residual will be given by the dual of the left conjugate:
((h).)4(y) = (W) (7) = §:a~. It is easy to verify that for binary relations these
characterisations of right and left residual coincide with those given in Sect. 1.2.

Fixed points of order-preserving maps

Given a recursively defined function such as the factorial function g, defined by
g(0) = 1 and g(n +1) = (n+ 1) - g(n), one can legitimately ask what object
represents g. One solution is to view the recursion at a higher level: for every
(partial) function z : N — N, define a (partial) function f(z) (often called a

Jfunctional since it maps functions to functions) by the (nonrecursive) equations
f@)(0)=1 and f(g)(n+1)=(n+1) 2(n)

and look for a solution of the equation f(z) = z. Any such solution is called a
fized point of f. In this example it can be shown that there is exactly one solution,
namely z(n) = n!, but for other recursive equations there may be many or no
solutions.

 Recursively defined functions are prominent in computer science and, as in the
above example, the meaning of a recursive definition can be viewed as a fixed point
of a related function(al). So it is important to find general conditions under which
a function is guaranteed to have fixed points.

Knaster and Tarski (1927) proved that, for any universe U, an inclusion-
preserving function f : P(U) — P(U) has at least one fixed point. This result
was generalized by Tarski to arbitrary complete lattices.

Theorem 1.3.3 (Tarski’s Fized Point Theorem, 1955) Let (X,C) be a com-
plete lattice and suppose f : X — X is order-preserving. Then the set F = {z €
X : f(z) = £} is nonempty. In fact (F,) is a complete lattice® with least element
NF =[{z € X : f(z) C z} and largest element || F ={J{z € X : 2 T f(z)}. O

A similar Tesult holds for complete partial orders. The least element of (F,C)
is {by definition) the least fized point of f, denoted by pf. The greatest fixed point
of f is vf = || F. When a recursive definition has several solutions, it is often
the least fixed point that is of interest. The preceding result implies that uf is
characterized by the conditions

6Note that in general (F,C) is not a sublattice of (X, o).

oo f(uf)

e f(2) Cz == uf Cz (induction).

= uf (computation) and

1.4 Relational structures and algebras

Posets and Boolean algebras are specific examples of relational structures and
(universal) algebras. To define these concepts in general, we first need the notion
- of a (similarity) type, which is a function 7 : FrUR, —= {0,1,2,...} where 7, is

~a set of function symbols and R, is a disjoint set of relation symbols or predicate
~ symbols. For a symbol s € F, UR, we say that s has arity 7(s). A relational
structure of type 7 is of the form U = (U, (f¥)scx,, (R¥)rer,), where

- e U is a set called the universe of U,
e f4isa 7(f)-ary operation on U, ie. f¥: U™ — U and
o RY is a 7(R)-ary relation on U,ie RY C UTR),

~ The distinction between the symbol s € F, U R, and its inierpretation s
is important, even though the superscript is often omitted in a context where
confusion is unlikely. A 0-ary operation ¢ from U® = {@} to U is also called a
constant, and ¥ is usually identified with the value ().

If the set of relation symbols is empty then we say that 7 is an algebraic type. A
(universal} algebra is a relational structure of such a type. For example a Boolean
algebra has an algebraic type 7 = {(1J,2),(" ,1),(.L,0)} and a relation algebra
has an algebraic type ' = 7U{(;,2), (7, 1), (I, 0)}. Some other algebras mentioned
in later chapters are

U

. semigroups (S, *) where * is an associative binary operation,

[2

monoids (M, %, e) where (M, *) is a semigroup and e is an identity element,

f.

groups (G, *,7*,e) where (G, *,¢) is a monoid and ~! is a unary inverse

operation (zxz7} = e =37 % 1),

semilattices (S,U), where Ui is an associative, commutative and idempotent
binary operation.

- Given a set V', the set of terms of type v with variables from V is defined as

_ the smallest set T (V) such that

o VT T, (V) and

Ceif ty,... tay € T(V), f € Fr and n = 7(f) then the (uninterpreted)
_ string of symbols f(ty, ..., te1) 18 in T V).

This set is the universe of an algebra 7, (V)=T = (TAV),(f)ser,), called the
f(absolutely free) term algebra of type T genemted by V with the operations f7
given by

Tt .t flto, .

The terms in 7 (@) are known as initial (or ground) terms and 7,{D) is called the
~instial algebra of type T.

ne1) = tne1) for t; € T{V), i <n=r1(f).

For. example the initial algebra of type {(z,0),{s,1)} is the Peano algebra

“on which the arithmetic of the natural numbers is based (0 = z, 1 = s(2),
2=3(s(2)),..)
Let A, B,B; (i1 € I) be algebras of type 7.
e Aisa subalgebraof Bif AC B and FA(ao,. . 0n1) = fB(ag, ..., Gner) for

“all g € A, j<n=r7(f) andall f € F,.

e h: A - Bisa homomorphism if h is a function from A to B and
O h(fMaos - an)) = fP(R(a0), - han-a)) for all 6 € A, § < n=7(f)
~andall f € F,. '
e B is a homomorphic image of A if there exists a surjective homomorphism
- from A to B. o

e A is isomorphic to B, in symbols A = B, if there exists a bijective homo-
. morphism from A to B.

o A= Tlc; Bi, the product of algebras By, if A = [I;e; B; and f# is defined
" ‘coordinatewise by

mi(f a0, aa)) = fB*(We(ao)

for all e €A j<n=7(f)andall fcF, .

A is a subdirect product of algebras B; (i € I)if A is a subalgebra of [1;c; Bi

‘and for each ¢ € I and each b € B; there is an a € A such that the i-th

“coordinate of a is b (indicated by writing e; = b).

o A is subdirectly irreducible if whenever A is isomorphic to a subdirect prod-
““uct of algebras B; (i € I) then A = B; for some i € 1.7

The Jast two notions are used in the following important result.

heorem 1.4.1 (Birkhoff ’s Subdirect Product Theorem, 1944) Every algebra is

somorphic to a subdirect product of subdirectly irreducible algebras. =

A congruence on an algebra A is an equivalence relation R on A that is
ompatible with the operations of A in the sense that

; ' aoRbo and .) an—1)RfA(b97 ooy bpe)

or‘ail ai,bi € A, i < n=7(f) and all f € F,. The set of all congruences
‘an algebra A is denoted by Con(A); it is closed under arbitrary intersections
and hence is a complete lattice®?. Congruences provide a way of describing all
_hdmomorphzc images of an algebra. Given a congruence R on A, the gquotient
~ algebra A/R is defined on the set A/R of equivalence classes (“[a]g” denotes the
~ equivalence class of a} by

fA/R([aO]R, ey [an«I}R) = [fA(ac, ey an-l)IR

forall ag,...,a,-1 € 4,1 <'n=7(f) and all f € F,. The compatibility condition
~above guarantees that these operations are well-defined. The so-called canonical

> Ti(@n-1))

. and a,.1Rb,_; implies fA(ao, el

"Note that if I = @ then [],c4 B: is a one-element algebra, hence one-element algebras are
not subdirectly irreducible.
... %1In fact it is an algebraic lattice since every congruence is the join of the compact (=

: finitely
generated) congruences that it contains.

map 7 : A~ A/R defined by n(a) = [a]g is a surjective homomorphism, so A/R
- is a homomorphic image of A. Conversely, given any surjectwe homomorphism
h: A— B, the kernel of h, defined by

ker(h) = {(z,) € 4% : h(z) = h()},

is a congruence on A, and A/ ker(h) & B. (This is usually called the Homomor-
phism Theorem, or sometimes the First Isomorphism Theorem).

" Some algebras, particularly those we are interested in, such as Boolean algebras
‘and relation algebras, are entirely defined by equations. We postpone a discussion
‘of these till after we have dealt with equational logic in Sect. 1.6.

- L5 Categories

The language of categories is often used to present a topic at a high level of
- abstraction. A category C consists of a class® of objects Objc and a class of
morphisms Morc that satisfy the following conditions.

e For each morphism f there is an object source f from which the mor-

phism originates and an object target f where it ends. If source f =
 and target f = B then we write f : A — B.
"~ o For all morphisms f : A — B and g : B — C there exists a composition
morphism*® gof: A — C, and for any h: C — D we have associativity
~ ho(gof)=(hog)of.

o For each object A there is an identity morphism idg : A — A, and for any
f:A-—>Band g: B—> A wehave idgog=g and foidg = f.

- The collection of all morphisms between objects A,B € Objg is denoted by
" Morgl[4, B]. Some categories of interest are

* Set with sets as objects and functions as morphisms,

e Rel with sets as objects and relations as morphisms, and

s Alg with algebras as objects and homomorphisms as morphisms.

The language of category theory is well-suited to describing relationships be-
tween different areas of mathematics. Functors are structure-preserving maps
between categories that make such relationships explicit and provide a reliable
means for transferring results between different fields. More precisely, a covariant
functor F : C — D maps objects to objects and morphisms to morphisms (from
C to D) such that

e Ff:FA-—FB for any morphism f: A — B,

e F(gof)=(Fg)o(Ff) for any morphisms f: A— B, g: B— C and
e F(idy) =idp 4 for any object A. ‘

‘ 9The distinction between set and class is not relevant here, so readers unfamiliar with classes
- may just think of them as sets.

 ®Recall that we have used the small circle rather than the semicolon to indicate functional
- composition; we do the same for morphisms. It is useful to keep in mind that by convention this
inverts the order: gof = fig.

For a contravariant functor the third condition is kept, but the first two conditions
are changed to
e Ff:FB-—F A for any morphism f : A — B,
"o F(gof)=(Ff)o(Fg) for any morphisms f A-B,g:B-C.
A functor F: C = D is
e full if for all A, B € Objg and every g: F A — F B there exists f : A~ B
~ such that Ff = g, i.e. the restriction of F to Morc[4, B] is surjective (onto
" Morp[F A,F B]). ,
o faithful if the restriction of F to Morg[A, B] is injective (one-one) for all
A, B € Obj¢,
" e dense if for every D € Objp there exists an object C € Objg such that
- FC=D,
o an equivalence if ¥ is covariant, full, faithful and dense,
o a duality if F is contravariant, full, faithful and dense.

" Two categories C and D are equivalent if there exists an equivalence F : C — D,
and they are dual if there exists a duality F: C = D.

1.6 Logics

There are many general perspectives on what constitutes a logic. Here we take

the view that a logic consists of a collectlon of “similar” theories, defined by the

following three items.

Syntaz, specifying the symbols (variables, relation symbols, function symbols, con-
nectives and /or quantifiers) of the theory, and how to combine them to obtain
the properly formed expressions one wants to reason about. These expres-

' sions are traditionally called {well-formed) formulae (or sentences) of the
logic.

Semantics, defined by a collection of models (i.e. mathematical structures, such
as in Sect. 1.4) in which the symbols are interpreted, and a notion of truth
of a sentence in a model. For a model M and a sentence ¢, the expression
“p is true in M’ is abbreviated M k= .11 A sentence ¢ is called a logical
consequence of a set of sentences L, in symbols X k= ¢ if in every model in
which all sentences of ¥ are true, ¢ is also true. Sentences that aré logical
consequences of the empty set (satisfied by all models under consideration)
are called valid.

A proof system, which specifies an effective method by which a sentence ¢ can be
“proved” from a set of sentences ¥, in symbols ¥ . Sentences deducible
from the empty set are called theorems.

For a given theory, the proof system is said to be sound with respect to the se-
mantics if every proof produces only logical consequences, i.e.

ko ko

1= is called the satisfaction symbol and denotes semantical truth.

implies

 for all sentences ¢ and all sets of sentences . The proof system is said to be
-complete if the converse holds, i.e. if every logical consequence has a proof within
~ the logic.

A particular theory is normally identified with its set of logical truths, which
coincides with its set of theorems if the proof system is sound and complete. The
method for deriving proofs is usually based on

" agioms: a set of sentences that are considered theorems (by definition) and

s proof rules: a collection of rules specifying how a sentence of a given form
- can be deduced from finitely many other sentences.

In this case the set of all theorems is the smallest set that contains all the axioms
~ and is closed under application of the proof rules. There are many different styles
* of proof systems such as natural deduction, Gentzen sequent calculus, tableaux
" method, resolution, connection method, Hilbert style, Fitch style, etc. Some of
~ these systems are very close to the style of proof used in everyday mathematics,
while others are more suitable for automated theorem proving. We will not con-
sider any of these systems in general since, from a logical point of view, the exact
nature of the proof system is not important, as long as it is sound and complete.
(The situation is similar to a program written in different programming languages,
some more suitable for humans, others for machines, but from the user’s point of
~ view the correctness of the program should be the primary concern.) Related the-
ories of the same logic are obtained by modifying the semantics (restricting the
interpretations) or the proof system (extending the set of axioms and/or proof
rules). We now describe some particular logics.

- Classical propositional logic

’The most basic classical reasoning system restricts itself to a language £ consisting
- of sentences ¢ built up from propositions po, pi, P2, ... combined with a unary

propositional sentences is the smallest set S that contains all the propositions, as
- well as ~p and (¢ V) for all ¢,¢) € §. The following abbreviations are used to
- aid readability:
(o A) 2 (= V),
9= Y Emp VY,

e PR (YA (Y-).
To avoid excessively many parentheses, — is given highest priority, followed by V,
A with equal priority and finally — and ¢ with lowest priority.

The semantics of a propositional theory is given by a collection of valuations,

where a valuation is a function from {po, p1, pe, ...} to {true, false}. For a sentence
© and a valuation v, the satisfaction relation v = ¢ is defined inductively:

v k= p; if v{pi) = true,
v = (¢ V) if at least one of v = ¢ and v = ¢ holds,
viE-p ifviEe, (ie v does not hold).

connective — (negation) and a binary connective V (logical or). The set of all

A'set ¥ of sentences logically #mplies a sentence , in symbols ¥ k= ¢, if every
valization v that satisfies all sentences in % also satisfies . A sentence ¢ is called
a logical truth or tautology if @ |= @, i.e. if it is satisfied by all valuations. Two
gentences ,1) are said to be logically equivalent (¢ =) if ¢ » ¥ is a logical
truth. .
“ There are many different proof systems for propositional logic, in many different
styles. Almost any introductory textbook in logic will contain an axiomatisation
of propositional logic with a proof of soundness and completeness. For any such
system there is a natural Boolean algebra associated with the logic, obtained as
foliows. Define two formulae ¢ and v to be provably egquivalent, written ¢ = 7,
iff ¢+ ¢ is a theorem of the logic, i.e. ¢ < 9. This is an equivalence relation,
and so we can form an equivalence class [¢] = {# : ¢ &~ 0} for every formula
. Denote the set of all these equivalence classes by £/, then define over this
‘Guotient set operations arising from the logical connectives as follows:

leln] & e Ay,
vl = e vl

_.’I‘hls method yields, for any logic, what is called its Lindenbaum-Tarski algebro.
| the present case it is easy to check that the Lindenbaum-Tarski algebra of
(classical) propositional logic is in fact a Boolean algebra. Since we have assumed
e formalisation to be sound and complete, it could be proved further that the
equivalence class which is the maximum element in £/~ contains all and only the
tautologies, and that two formulae ¢ and ¢ are provably equivalent iff they are
logically equivalent.

,?Iassicai first-order logic

" In first-order logic we extend propositional logic by considering also the internal
structure of propositions. For a fixed type v and a set V of variables, an atornic
formule is a string of symbols of the form R(%,...,%,—1) such that R € R, and
t.€ T(V) (i < n = 7(R)), where R, and T,(V) are as in Sect. 1.4. The
set Frm, of all first-order formulae of type 7 is the smallest set that contains all
atomic formulae as well as the formulae Jv{(p), ¢ and (e V ¢) forall v € V
and ¢, € Frm,. The symbol 3 is the existential quantifier. The universally
quantified formula Vv () is an abbreviation for —3v (=), and the connectives
A, ~, ¢+ are defined as for propositional logic. Jv and Vv are considered unary
- connectives with higher priority than the binary connectives. Associated with each
formula ¢ is a set free(ip) of free variables. For an atomic formula, free(y) is the
set of variables that occur in «p, and this is extended inductively by

o »free(EU (p)) = free(yp) — {v},
L free(—g) = free(yp),

o free(p V o) = free(yp) U free(v)).
‘A first-order sentence is a formula ¢ that has no free variables (free(y) = 0).

- The semantics of a first-order theory of type 7 is given by a collection of rela-
tional structures of type 7. Each relational structure U/ defines an interpretation
s~ s for the symbols s € F, UR,. This map gives meaning to the function
* and relation symbols of the language. Observe that a valuation v: V - U can be
- extended to v : T,(V) — U by defining v(f{fo, . . ., ta-1)) = fH(@(t0), ..., ¥{tn-1)).
 We say that a formula ¢ is true in U under the valuation v, in symbols U, v =
- if one of the following conditions holds:
; 2} is R(tg,,..,in,.l) and (V(to),..

@ is v and U, v &),
s ¢ VY and at least one of U,v =9 or U,v =9’ holds,

@ is 3z () and U,v' = ¢ for some v/ : V — U such that v and V' agree
. on V—{z}.
‘Finally, a formula ¢ is said to be true in U if U,v k= ¢ for all valuations v. In
~ this case U is also called a model of ¢, in symbols U = ¢.
As with syntax, the proof theory of first-order logic extends that of propo-
sitional logic, typically by giving some axioms and/or rules for dealing with the
© quantifiers. The algebraisation, however, of first-order logic is a considerably more
- complicated matter than for propositional logic. Relation algebras may be consid-
~ered as an attempt to present in equational form first-order logic with no function
symbols and only binary relation symbols. However, as mentioned in Chapt. 2, re-
" lation algebras only-capture a certain fragment of this logic. Other attempts at pre-
senting algebraic versions of first-order logic are the cylindric algebras of [Henkin,
Monk* 1971} and [Henkin, Monk* 1985], and (earlier) the polyadic algebras of [Hal-
mos 1962].

. ,V(t"_i)) = Ru,

~ Equational logic

Equational logic can be considered as that fragment of first-order logic in which

- there is only one relational symbol, “=", to be interpreted as equality. It can also.

~ be added to a formalisation of first-order logic; the result is then first-order logic
- with equality. However, we consider equational logic separately because it is of
~ interest in its own right: one of the central themes of algebraic logic is to reduce
" the reasoning of other proof systems to the elegant proof system of equational
-~ logic.
) The syntax of an equational theory is based on an algebraic type 7 and a set
.V of variables from which one obtains the set of terms T,(V) (Sect. 1.4). The
~ collection of “formulae” is simply the set T.(V) x T,(V). A pair of terms (s, ¢)
 is called an equation and is written s = ¢.

- The semantics of an equational theory of type 7 is given by a collection of
universal algebras of type 7. Each algebra A in this collection determines an
interpretation which maps any f € F, to an operation f#. This interpretation
" can be extended inductively from F, to all terms by considering a term ¢ € T-(V)
“as a template for composing the functions f# that correspond to the function
symbols f in £. The composite function defined by a term ¢ is called the induced
' term function and is denoted by #*. The arity of this function is the number of

istinct variables that appear in the term. An equation s = ¢ is satisfied in A if
the induced term functions s and ¢4 are identical.

-+ Proof systems for equational theories differ in their choice of axioms, but they
all have the following in common:

e reflezivity aziom: -t =1t,

symmetry rule; s =tHt = s,

transitvity rule: r=3s, s=1tFr=1t,
s congruence rule: o =1to,...,8n-1 = ta_1 F (S0, .0, 8ac1) = FlHor - s tni),

substitution rule: s = ¢ - s[v/r] = t{v/r] (where s{v/r] is derived from s
.. by substituting the variable v with the term r in all instances),

forallterms 7,5, 80,..., 501, ¢, 80, -, tnu1, all f € F; and n = 7(f). The smallest
equational theory (of type 7) is given by the set of reflexivity axioms since this set
is closed under the above rules. The set of all equations is the largest equational
theory, obtained by adding an axiom like i v = v’ for distinct variables v, v’.

- For a specific example, consider the equational theory of relation algebras,
based on the type 7 = {(1,2), (" ,1),(L,0),(,2),(7,1),(I,0)}, and axiomatized
by the equations (implicit) on Page 8. More generally, given a class K of algebras
of type 7, we denote by H(K), S(K), P(K), Ps(K), Si(K) the class of all
homomorphic images, all subalgebras, all products, all subdirect products and all
subdirectly irreducibles of (members of) K respectively. For a set ¥ of first-order
formulae of type 7, let Mod(X) = {M : M |= £} be the class of all models
of type 7 that satisfy all formulae in ¥.-If ¥ contains only equations, Mod(Z)
is called an equational class or variety. The following is a fundamental result of
* universal algebra.

Theorem 1.6.1 (Birkhoff’s Preservation Theorem, 1935) A class K of algebras
of type 7 is a variety if and only if K is closed under H, S and P (i.e. H(K) C K,
S(K) C K and P(K) C K).

- Since the intersection of any collection of varieties is again a variety, every class
- of algebras K is contained in a smallest variety V(K}, called the variety generated
by K. Based on Birkhoff’s result, Tarski (1946) showed that V(K) = HSP(K).

Second-order logic

Many important concepts in computer science like well-foundedness cannot be
formalized within the framework of first-order logic. Therefore in second-order
logic the set of variables is extended by relation variebles, which can be used when
building terms, and quantification is allowed on these relation variables.

Validity of a formula ¢ in a relational structure U is defined relative to a
valuation v of individual variables to elements of the universe as well as a valuation
u of n-ary relation variables to n-ary relations on the universe. Similar to the
first-order case we have

o U uvEIR{p) if U W, v p for some v agreeing with u on all relation
variables except R.

~ Again, a formula ¢ (possibly containing free individual or relation variables) is
© true in U if U,u,v = ¢ for all valuations u and v. It is valid if it is true in every
structure U .

: In contrast to first-order logic, second-order logic is incomplete: there is no
~ proof system enumerating all valid second-order sentences. Therefore, attention
is often restricted to certain fragments and/or certain classes of structures. For
example monadic second-order logic allows only monadic (i.e. unary) relation vari-
ables (which are interpreted as subsets of a relational structure).

- Modal logic

It is often helpful to formalize an area without the full generality of the quantifiers,
but with more expressive power than plain propositional logic. In this case one can
‘add further connectives to propositional logic and formalize their intended mean-
ings. For example, when reasoning about a property ¢ of a computer program,
~ statements like “after the next step Q” and “from now on Q" can be viewed as
~ unary connectives applied to the proposition Q. Such unary connectives, often
- called modalities, are usually not truthfunctional: the truth value of a compound
- formula does not depend only on the truth values of its constituent formulae.

3 There are many modal logics; by way of example we consider a basic one called
K. This logic is built from propositions {py,pi,...} and Boolean connectives
-, V, just like ordinary propositional logic, but it also has an additional unary
connective <, called possibility. For any propositional formula ¢, the formula
Oy is read “possibly ©”. A necessity operator O can be defined as its dual:
- O & O,
: The semantics of K, as for other modal logics, is given in terms of a so-called
- Kripke structure: a relational structure W = (W, R) where W is a nonempty
set of “possible worlds”"!? and R is a binary relation on W, usually called the
accessibility relation. A valuation v is a function from {po,p1,...} to P(W). A
- Kripke structure W together with a valuation is called a Kripke model based on
-~ W. Satisfaction of a sentence ¢ in a Kripke model M = (W, R,v) at a world
w € W is defined inductively:

M, w k= p; if w e v(p).

M,wk{pVvy)if MjwEypo Mwk .

M,w k== if M,w .

3 M, w k= Op if M, w' k= ¢ for some w' € W with wRw'.

A sentence ¢ is valid in a Kripke model M, if M, w Epforall we W.

To get a complete formalisation of the modal logic K, start with any complete

. formalisation of propositional logic, and add the following axiom and rules:
‘ e monotonicity: O{p — ¢) — (Op — Ty)
- ® necessitation: @+ Oy

e modus ponens: @, (¢ — ¥) ¢ (if not already included).

127This traditional terminology is motivated by philosophy; in particular by the Leibnizian idea
U that “necessarily true” means “true in all possible worlds”,

“Many- further ‘modal logics can be obtained by adding further axioms to those of
‘K. For exampie a well-known logic called S4 is obtained by adding to K the
‘axioms -

S DOp e

o O — 0O0p,

“In order for this formalisation of S4 to be complete we need to add to its Kripke
‘semantics the stipulation that the accessibility relation should be reflexive and
“transitive — i.e. a quasi-order. This correspondence between logical conditions
“on the modal operators and first-order conditions on the accessibility relation is
ypical of modal logic. The same idea also applies to operators of higher arity
“than just unary, and to the simultaneous use of many different modal operators
- (multi-modal logic).

‘Conclusion

e calculus of relations is pervasive in mathematics and logic, in the same sense

rvasiveness as the caleulus of sets. In this chapter we have highlighted some
spects of it; these serve as background to the remaining chapters, in which we
ddress the role and applications of relational methods in computer science.
The basic connection is that we may think of a program as an input-output
ation: from a given initial state, it terminates (if at all) in another state, where
-4 “state” is thought of as a snapshot of the current values of all the program
ables. If we consider programs to be nondeterministic, then it is natural to
nk of a program simply as a binary relation over the set of all possible states.
relational model of program semantics, then, in its simplest form, is a relational
tructure (S, {R;}ies), where & is the “state space” (the set S of states, usually
tured in some way, e.g. as an ordered set), and {R;}e; is a suitably indexed
‘of binary relations over the state space, representing programs. This can be
ught of as a Kripke structure: the “possible worlds” now being states, and
¢h program acting as an “accessibility relation” in the sense that from a given
nitial state the program can access certain other (terminal) states. A logical
3éharacterisation of program semantics would then aim to find a “program logic”,
ith a modality for each of the programs, which is complete with respect to this
smnantic structure. Alternatively, each of these binary relations over § -can give
ise to a unary operator over P(S) (Peirce product, for example), and since sets
f states may be thought of extensionally as properties (or predicates) of states,
“this would lead to the realm of so-called “predicate transformer semantics”. It is
"'thls close interaction between a relational structure, a logic, and an algebra, that
~allows us to make use of the calculus of relations in a variety of ways.

