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Abstract. For an infinite cardinal n a stronger version of n-distributivity for Boolean 
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Introduction 

Several definitions and results in set theory are motivated by a desire t o  generalise 
the following famous results about w to larger cardinals: 

K,: Konig's infinity lemma: Every tree of height w in which every level has < w 

S, : Stone's representation theorem: Every (w-complete) Boolean algebra is isomor- 

G,: Godel's compactness theorem: Every w-satisfiable subset of L,, is satisfiable. 
R,: Ramsey's theorem: For any set X with 1x1 2 w ,  if the set [XI" of all unordered 

n-tuples of X is partitioned into finitely many blocks, then there is a set Y C X 
with lYl 2 w such that [Y]" is a subset of one of the blocks. 

U, : The ultrafilter theorem: Every (w-complete) meet semilattice of nonzero ele- 
ments of a Boolean algebra can be extended to a (w-complete) ultrafilter. 

elements contains a branch with w elements. 

phic to  a (w-complete) subalgebra of some powerset algebra. 
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In the simplest cases one replaces w with an arbitrary cardinal K and asks for which K 

the properties K,, S,, G,, R, or U, hold. The aim is to  characterise these cardinals 
in different ways or to prove some implications between these properties or variations 
of them. The idea of defining large cardinals via the existence of certain ultrafilters 
in Boolean algebras probably has its roots in [3] and [6]. In this paper we give such 
“ultrafilter definitions” for cardinals with the tree property, and for what we call 
almost compact cardinals (see Theorem 3.4 and Corollary 3.7). 

The partition lattice of a set X has been studied extensively in set theory, lattice 
theory and combinatorics. Partitions of X are precisely the maximal antichains in 
the powerset algebra P(X), and this is one way of defining (abstract) partitions for 
arbitrary Boolean algebras. Although there are some results concerning partitions 
in some special Boolean algebras (see e.g.  [ lo,  Chapter 8, 9]), the general theory of 
partitions in Boolean algebras has received comparatively little attention to date. We 
hope that  our concept of n-partition completeness will convince the reader that it is 
worthwhile to  study properties of partitions in arbitrary Boolean algebras. 

Since the material of this paper is both algebraic and set theoretic, we will assume 
familiarity with only the basics of Boolean algebra and large cardinals (e.g. some 
knowledge of homomorphisms, filters, atomless Boolean algebras as well as regular 
and inaccessible cardinals should suffice). Standard references are [5] and [7]. 

After some preliminary results about partitions in Boolean algebras, the paper 
consists of three main sections that focus on the relation between partition complete- 
ness and weak representability, on atomless partition complete Boolean algebras, and 
on almost compactness respectively. The final section contains some open problems 
about almost compactness which we hope will stimulate further research in this di- 
rect ion. 

0 Preliminaries: Partitions in Boolean algebras 

0.1 Partition semilattices of Boolean algebras 

Let B+ be the set of nonzero elements of a Boolean algebra B .  An antichain in B is a 
subset of pairwise disjoint elements of B+. A subset u of B+ is said to be a partition 
of (or in) B if c is an antichain and the join of u exists and is the top element of B ,  
i.e., C u  = 1 and a . b = 0 for any distinct a, b E u. Note that u is a partition if 
and only if it is a maximal antichain. A partition u is said to  be finer than (or a 
refinement of) a partition T (in symbols r 5 T )  if for any x E u there is a y E T 
such that  x 5 y. We let IIDg be the family of all partitions of B partially ordered by 
the refinement relation between partitions. The coarsest refinement or meet of a set 
of partitions in B is the greatest lower bound in this poset (if it exists). We use the 
symbol I8 for the meet of partitions. Thus for a set S of partitions @ S is the meet 
(if i t  exists). Since Boolean algebras are distributive, the meet of any two partitions 
c, T E Pg is given by 

U @ T  = { x . y :  x ~ a ,  y E ~ a n d x . y # O } ,  

hence Pg is always a meet-semilattice. However, it is well-known that if B is a power- 
set algebraP(X) for some set XI then PB forms a complete lattice (in fact an algebraic 
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lattice, called the partition lattice on X). The following definitions and results at- 
tempt to  show that,  by imposing some completeness criteria on arbitrary Boolean 
algebras, the observation about the powerset algebras can be partially extended to  
the more general setting. 

We assume throughout this paper that K is an infinite cardinal. For a Boolean 
algebra B we let 

= {u E PB : 1.1 < n}. 

Note that for u, r E PB we have IuI 5 Irl whenever r refines 0 .  Therefore IF’; is an 
up-closed subset of IF’g and hence, for any subset S of Pk, the join of S in P$ coincides 
with the join of S in Pg (if it exists). However, even finite joins may not exist in 
Pg (take for example the partitions u = {{0,2}, {1,3}, {4,6}, {5,7}, (8, lo}, . . .} and 
7 = {{0}, { 1,3},  {2,4}, {5,7}, {6,8},  . . .} in the Boolean algebra of finite and cofinite 
subsets of w ) .  The situation is somewhat better for meets: since 

16 €3 TI L 16 x 71 = 161 .IT[, 
IF’% is at least closed under finite meets. 

Recall that  a lattice is n-complete if the join and the meet of any subset with less 
than n elements exist. A sublattice L’ of a lattice L is a n-complete sublattice if L’ is 
n-complete and the joins and the meets of subsets with less than K. elements in L‘ and 
L coincide. If the lattice or sublattice has at most n elements, we drop the reference 
to  K. Of course the same terminology applies to  Boolean algebras, and in this case 
closure under n-meets is equivalent to  closure under n-joins since complementation 
is an isomorphism from a Boolean algebra to  its dual. A n-complete subalgebra of a 
powerset algebra is refered to  as a n-set algebra. 

Suppose now that B is n-complete and u E Pg. Then all joins of subsets of u 
exist, hence the powerset algebra P(u) is isomorphic to a complete subalgebra of B .  
It is convenient to  identify P(u)  with this complete subalgebra, so that we may drop 
the phrase “isomorphic to”. This convention also allows us to  observe that for any 
infinite cardinal X 5 n, any n-complete Boolean algebra is an updirected union of 
powerset algebras: B = U { P ( u )  : u E IF’$}. 

L e m m a  0.1. Let B be a n-complete Boolean algebra. 

(i) For any u E P;, the partition lattice Pp(,,) is (isomorphic to) the principalfilter 

(ii) For any S C P i ,  if @ S exists in Pi, then the join o f S  exists in P;. 
b) of 

P r o o f .  For (i) we observe that if T 2 u, then each element of T is a join of 
elements of u. To prove (ii), let u = @ S  E P;. Then S c Pq,,), a complete lattice, 
so the join of S exists in Pp(,,). By (i) this join coincides with the join in Pk. 0 

C o r o l l a r y  0.2. For any n-complete Boolean algebra B,  the set P$, ordered by 
refinement, is a lattice. 

P r o o f .  As observed earlier, P; is closed under finite meets, so by (ii) of the 
0 

Note that P& has a bottom element iff B is atomic and has less than n atoms. 
preceding lemma, it is also closed under finite joins. 

(Of course IF’; always has (1) as top element.) 
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0.2 Completeness and partition completeness 

A Boolean algebra B is said to be K-distributive if it is K-complete and for any cardinal 
X < n and any set { a i j  E B : i, j < A}  we have 

ni<xCj<xai,j = C ~ ~ A A  ni<xai,j(i). 

It can be shown (see e.g.  [7, p. 2171) that n-distributivity is equivalent to the fol- 
lowing condition: A n y  collection of less t h a n  K part i t ions f r o m  Pk has  a coarsesi 
ref inement  ( n o t  necessarily in Pk). A Boolean algebra is completely distributive if it 
is &-distributive for all K .  The following strengthening of 6-distributivity is central to 
our results. 

D e f i n i t i o n  0.3.  We say that a Boolean algebra B is n-part i t ion complete if P5 
is a K-complete meet semilattice, i. e., the coarsest refinement of any collection of less 
than n partitions from P i  exists and is in P;. 

E x a m p l e  0.4.  

(i) If 1x1 < K ,  then the powerset algebra P(X) is n-partition complete since P ( X )  
is completely distributive and IF’;(,) = Pp(x) in this case. 

(ii) I t  is well-known that every n-set algebra is K-distributive (see [7, p. 2161). In 
Section 1 we show that for any strongly inaccessible K ,  the concepts of K-distributivity 
and K-partition completeness coincide. Hence for strongly inaccessible n, every n-set 
algebra is tc-partition complete. 
(iii) A complete atomless Boolean algebra B is called a n-Sus l in  algebra if it is 

Ic-distributive and every antichain has less than n elements. Note that being a Ic-Suslin 
algebra is equivalent to Pk = PB, so B is K-partition complete. 

Other examples of K-partition complete Boolean algebras are the basic K-tree 
algebras in Section 2. 

The following example demonstrates that K-partition completeness is strictly stron- 
ger than n-distributivity. Let B be the (completely distributive) powerset algebra of 
the half-open unit interval [ O , l )  and let u, be the partition of [ O , l )  into n equal 
half-open intervals of length l / n .  Then S = {a, : n E w }  is a countable subset of 
P> (actually of Pg) but @ S = { {u} : 0 5 a < 1) is not in P>. Hence B is not 
N 1 -partition complete. 

L e m m a  0.5. If B is  a K-parti t ion complete Boolean algebra, t h e n  B is n-complete .  
P r o o f  . Assume B is n-partition complete, and consider a subset S of B with 

IS1 < K .  Let u = @ { { b ,  -b} : b E S}.  Then S is a subset of the complete Boolean 
algebra P(u) ,  so c = II S exists in P(u) .  We claim that either c = 0 or c E u, whence 
c E B and therefore c is also the meet of S in B. 

Suppose c # 0 and c $! u. Then there exists distinct x, y E u such that 2, y 5 c. 
But now the partition u’ = {x + y} U (u \ {x, y}) is a refinement of { b ,  -b} for all 
b E S, and u < u’ E Pk. Since u is the coarsest refinement of the collection 

0 

The above lemma is a special case of the more general result that any n-bounded 
Boolean power of a K-complete lattice with respect to a K-partition complete Boolean 
algebra is K-complete. It is implicitely in [ll]. 

{ { b ,  -b} : b E S } ,  this is a contradiction. 
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Every Boolean algebra B is w-complete and P(i; forms a lattice. By Corollary 0.2, 
if B is n-complete, then Pg is a lattice. The following result is a stronger version of 
this corollary. 

P r o p o s i t i o  n 0.6. A Boolean algebra B is n-partition complete if and only if the 
poset Pg is a n-complete lattice. 

P r o o f .  Suppose B is n-partition complete and let S be a subset of IF’; with 
IS1 < n. Then @ S  exists in Pk, hence by Lemmas O.l(ii) and 0.5, the join of 
S also exists. The converse follows immediately from the definition of n-partition 

Recall that a Boolean algebra homomorphism is n-complete if it preserves joins 
and meets of subsets with less than K elements. A filter in a Boolean algebra is 
n-complete if the meet of any subset with less than K elements exists and is again in 
the filter. For later use we collect below some standard results about n-completeness. 
The proofs are simple extensions of the w-complete case (see e. g. [7]). 

L e m m a  0.7. Let A ,  Ai (i E I) be n-complete Boolean algebras, and suppose f is 
a surjective homomorphism from A onto a Boolean algebra B. 

completeness. 0 

(i) f is n-complete iff ker f is a n-complete ideal. 
(ii) Iff is n-complete, then B is n-complete. 
(iii) The direct product IIrAi is n-complete. 
(iv) If F is a n-complete filter on I ,  then the canonical surjective homomorphism 

from IIrA; to the reduced product IIFA~ is n-complete. 
(v) Iff is n-complete and C is a n-complete subalgebra of B,  then the preimage 

f-l[C] is a n-complete subalgebra of A. 
(vi) Any n-complete filter in a n-complete subalgebra of A extends to a n-complete 

filter in A.  
The next proposition shows that n-partition completeness is preserved by n-com- 

plete homomorphisms. 
P r o p o s i t i o n  0.8. Let A and B be n-complete Boolean algebras, and suppose 

f : A --H B is a n-complete surjective homomorphism. 
(i) The map f : Pi -+ Pg, defined by 

f(0) = {f(.) : . E u and f(.) # 0) = f[.I \ (01 
is a meet semilattice surjective homomorphism. 

(ii) If A is n-partition complete, then B is n-partition complete. 
P r o o f .  
(i) The n-completeness of f  ensures that for any u E Pi we have Cf^(u)  = f (Cu) = 

f( 1) = 1 , whence f maps into Pg . The preservation of finite meets is inherited from f . 
To see that f is onto, let X < K and suppose that r = {bi : i 5 A}  is a partition in B. 
We need to  construct u E Pi such that f(u) = r. For each i 5 X choose ui E A 
such that f (u i )  = b i ,  and define ci = ui . II{-uj : j 5 A, j # i}. Then ci . cj = 0 for 
i # j ,  and since f is n-complete, f(ci) = bi . II{-bj : j < A, j # i} = bi # 0. There- 
fore c; # 0 for all i < A.  Let 6’ = {ci : i < A}  and c = Xu‘. If c = 1 take u = u’, else 
take u = u’ U {-c}. In either case, u E Pg and f(o) = r. 
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(ii) Assume that A is n-partition complete and let S be a subset of P& with 
IS1 < K.  By part (i) we can choose for each r E S a partition u, E Pi such that 
f(u,) = 7. Let u = @{u, : 7 E S}. It follows from the n-completeness of f that  

0 

Note that the converse of (ii) does not hold: take A to  be any Boolean algebra 
that is not n-partition complete and has at least one atom. Let B be the quotient of A 
modulo a principal (hence complete) ultrafilter. Then the canonical homomorphism 
from A to  A I F  is complete and A / F  E 2 is n-partition complete. 

f(u) is the coarsest common refinement of S. 

0.3 Ultrafilters and partitions 

Our next proposition generalizes the well-known result about n-complete ultrafilters 
in powerset algebras (see [l, p. ISO]). Although it  is probably known, we include a 
proof for the sake of completeness. 

P r o p o s i t i o n  0.9. Let B be a n-complete Boolean algebra and let F be an ultra- 
filter i n  B.  Then  the following are equivalent: 

(i) F is n-complete. 
(ii) A n y  u E Pi has exactly one element in common with F .  

P r o o f .  Assume (i), and let u E PL. Then II{-z : z E u} = 0, whence it follows 
from the n-completeness of F that -z $ F for some z E 6. Since F is an ultrafilter, 
x is also an element of F ,  and since u is an antichain, there is exactly one such x. 

Conversely, assume (ii) and for some A < K let {ui : i < A }  be a subset of F .  
If u = I I i < x ~ i  4 F ,  then -U = Ci<x(-ai) E F .  Let bi = ~i . (-Cj<iaj) .  Then 
{bi : i < A }  C B is an antichain that joins to -a and satisfies bi 5 -ui for each 
i < A .  Consider the partition u = {u} U {bi : i < A and bi # 0). Since a 4 F ,  it 
follows from (ii) that  bi E F for some i < A. This however implies --a; E F which 
contradicts ui E F .  0 

Condition (ii) of the preceding lemma defines a function from P& to  B+, and the 
collection of all such functions is characterized by the following result. 

C o r o l l a r y  0.10. Let B be a n-complete Boolean algebra. Then  B has a n-com- 
plete ultrafilter iff there is a meet semilattice homomorphism f : Pi - B+ such that 
f(.) E 0- 0 

1 Partition completeness and weak representability 

A Boolean algebra is said to  be n-strongly representable if i t  is isomorphic to  a n-set 
algebra, and n-weakly representable if it is a n-complete homomorphic image of a n-set 
algebra. In this section we show that every n-partition complete Boolean algebra is 
n-weakly representable, and if K is strongly inaccessible, then these two concepts co- 
incide. We first observe that by Lemma 0.7(v)(vi), a Boolean algebra is n-weakly 
representable if and only if it is n-completely embedded into a n-complete homomor- 
phic image of a powerset algebra (or a n-completely reduced power of 2). 
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T h e o r e m  1.1. Every n-partition complete Boolean algebra is n-weakly repre- 

P r o o f .  Recall that for u E P:, the powerset algebra P(u)  is (isomorphic to) a 
complete subalgebra of the n-complete Boolean algebra B, and that if we identify P ( u )  
with this subalgebra, then B is an updirected union of the collection {P(u)  : u E Pi}. 
An updirected union is of course a special case of a direct limit, and it was proved 
in [4] that every direct limit is embeddable into a reduced power. We wish to argue 
that, with a suitably chosen filter, this embedding is n-complete. Let F be the filter 
in P ( P 5 )  generated by the collection of principal ideals {(u] : u E P%}. Since the 
intersection of two principal ideals in IF': is again principal, F is simply the collection 
of all subsets of IF'$ that contain a principal ideal (u] for some u E IF'$. 

Suppose now that B is n-partition complete. Then the generating collection for F ,  
and hence F itself, is closed under meets of subsets with less than n elements. There- 
fore F is n-complete. Let C be the direct product of the algebras P(u)  for u E Pi, and 
define A to be the reduced product IIF{P(u) : u E Pt}. Being a product of powerset 
algebras, C is of course isomorphic to a powerset algebra. By Lemma 0.7(iv), the 
canonical homomorphism 7~ : C --w A is n-complete, hence A is n-complete. The 
embedding f from B to A is defined as follows: For b E B consider the partition 
u = { b ,  - b }  (or u = (1) if b E (0, l}), and for T E P5 let 

sentable. 

- b i f r < u ,  
1 otherwise. b(r) = 

Then b E C, so we may define f ( b )  = b/F. It remains to  show that f is injective and 
preserves meets of subsets with less than n elements (preservation of joins follows from 
this). Suppose b/F = 1/F for b E B. Then the set E = { T  : b ( ~ )  = 1) is in F, so there 
exists some partition p E P i  such that (el E .  But for any common refinement T of 
{ b ,  - b }  and e,  we have b = b(r) = 1, so the kernel off is trivial. Now let S be a subset 
of B with IS1 < n, and define b = II S and e = @{{a ,  -a }  E P$ : a E S} .  The meets 
exist because B is n-partition complete. We have to show that f ( b )  = IIf[S]. Since 
a E P ( e )  for all a E S ,  it follows that b E P(e) .  This means that whenever T 5 e,  we 
get b ( ~ )  = b = II S ,  as well as Z ( T )  = a for all a E S.  Hence (IIaesii)(.r) = II S = E ( T )  
and consequently f ( b )  = b/F = (IIaEsii)/F. Since the canonical homomorphism 7r is 

0 

The above theorem was originally proved by observing that B is isomorphic to the 
n-bounded Boolean power 2[B]" which is a direct limit and hence embeddable into a 
reduced power of 2 by [4]. A slight extension of this classical result shows that if B 
is n-partition complete, then the embedding and the reduced power are n-complete. 
For further details, the interested reader is refered to [ll]. 

T h e o r e m  1.2. Let n be a strongly inaccessible cardtnal. Then for a Boolean 
algebra B ,  the following are equivalent: 

n-complete, the last result is equal to IIaES(ii/F) = f [d .  

(i) B is n-partition complete. 
(ii) B as n-distributive. 
(iii) B is n-weakly representable. 
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P r o o f .  We first prove the equivalence of (i) and (ii), and then show that (iii) 
implies (i). The remaining implication follows from Theorem 1.1. Note that the 
equivalence of (ii) and (iii) was previously proved in [3] and [6]. 

By definition (i) implies (ii). To prove that (ii) implies (i), consider a subset S of 
Pk with IS( < n and define X = I u S(. By n-distributivity, the meet u of S exists in 
PB. We need to show that u E P’ . Since K is strongly inaccessible we have X < K 

Suppose (iii) holds, let A be a m e t  algebra and let f : A - B be a n-complete 
surjective homomorphism. Since A is n-distributive, it follows from the equivalence 
of (i) and (ii) that A is n-partition complete. Now (i) follows by Proposition 08.(ii) 

0 

For any set X of size less than n, it is of course obvious that P(X) is n-partition 
complete. From the preceding theorem we get the following result for arbitrary power- 
set algebras. 

C o r 011 a r  y 1.3. Le t  K be a strongly inaccessible cardinal. T h e n  every n - se t  algebra 
is K-part i t ion complete.  In particular,  if P ( X )  is a n y  powerset  algebra, t h e n  P ( X )  i s  

and 1u1 5 Ats[ 5 (A . ISl)”lSl = 2’‘ B ’1 < K .  Therefore u E Pi as required. 

since B is a n-complete image of a K-partition complete algebra. 

6-par t i t i on  complete .  0 

2 Atomless  n-parti t ion complete  Boolean algebras for regular K: 

In this section we introduce basic K;-tree algebras for any infinite cardinal K .  In case K 

is regular, they represent a simple way of constructing n-partition complete algebras, 
and are in a sense the building blocks for all atomless n-partition complete Boolean 
algebras (see Proposition 2.4 and Theorem 2.8). 

Recall that a tree is a poset in which the set of predecessors of any element is 
wellordered. A root is an element with no predecessor, a branch is a maximal chain, 
and the ath level is the collection of elements for which the set of predecessors is order- 
isomorphic to  the ordinal a. For more details on trees, the reader should consult [2], 
~51, [71 or PI. 

A tree is said to be n o r m a l  if 

(N1) it has a single root, 
(Nz) each element has at  least two immediate successors in the next level, and 
(N3) for every element z and every nonempty level u, there is some element in u 

that  is comparable with x. 
(A further normality condition given in [7] and [8] which says that ‘distinct elements 
at a level indexed by a limit ordinal must have distinct sets of predecessors’ is not 
required for our purposes.) 

Let K be an infinite cardinal. A n-tree is a single rooted tree of height K ,  in which 
each level has cardinality less than 6. If T is a normal n-tree, then T is dually and 
densely embedded in a Boolean algebra B ,  the Boolean complet ion of T ( (Nz)  ensures 
that the dual order of the tree is separative). Under this embedding the root of the 
T becomes the top element of B and each level of T becomes a member of Pi ( ( N S )  

and T being dense in B imply that the levels of T are partitions). Instead of referring 
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to dual trees and dual embeddings, it is convenient to assume henceforth that trees 
are ordered in the opposite direction and that normal trees are dense subsets of their 
Boolean completion. 

D e f i n i t i o n  2.1. Let T be a normal n-tree, dually embedded in its Boolean 
completion B,  and let LT be the set of all levels in T .  Since B is complete, for each 
u L T ,  the powerset algebra P(u)  is a complete subalgebra of B. Define 

AT = U{P(u)  : u E L T } .  
Then AT is a union of an increasing chain of powerset algebras, and since the height 
of T is an infinite cardinal, AT is clearly atomless. We shall refer to AT as the basic 
n-tree algebra of T .  More generally, a Boolean algebra A is called a basic n-tree 
algebra if it isisomorphic to AT for some normal n-tree T .  A basic n-tree subalgebra 
of a Boolean algebra is any n-complete subalgebra that is also a basic n-tree algebra. 
(Note that the term “tree algebra” refers to a different construction in [7], hence the 
adjective “basic” .) 

E x a m p l e  2.2. Recall that an atomless complete Boolean algebra B is a n-Suslin 
algebra if it is n-partition complete and Pk = PB (see Example 0.4(iii)). If T is a 
normal n-tree in which every antichain has less than K elements, then the Boolean 
completion B of T is called a n-Suslin tree algebra. Note that if K is regular, then B is 
a basic n-tree algebra: Since T is dense in B ,  for any x E B there exists a subset U of 
T such that 2 = CU and the elements of U are pairwise disjoint (see [7, pp. 44, 541). 
It follows from the regularity of K that U C_ P ( u )  for some u E L T ,  whence z E A T .  

For later reference, we make the following two simple observations. 
L e m m a 2 . 3  

(i) Assume B is the Boolean completion of a normal n-tree T .  Then we have 

(ii) If K = 2<‘ ( in  particular if K is strongly inaccessible) then every basic n-tree 
0 

B = u { P ( u )  : u E Pi}, hence B = AT if and only if Pi = IQT. 

algebra has cardinality 5 IC. 

P r o p o s i t i o n  2.4. For a regular cardinal K let T be a normal K-tree. Then 

(i) LT is a decreasing chain which is cofinal in PzT and 
(ii) AT is a n-partition complete Boolean algebra. 

P r o o f .  
(i) Let u be a partition of AT, and amume that JuJ  < IG. Since K is a regular 

cardinal there exists a level T E LT such that u 
(ii) Let S be a subset of with IS1 < K .  It follows from (i) that for every u E S 

there is a ru E LT such that rU refines u. Since K. is regular, there is a level e E LT 
such that (7, : u E S }  By Lemma O.l(i) Pq,) is a 

0 

Not every atomless n-partition complete Boolean algebra is a basic n-tree algebra. 
Let X be a set of cardinality at least IC, and consider the filter F of all subsets S such 
that IX \ S(  < I E .  Then F is cf(n)-complete and I P ( X ) / F (  2 2n ([7, pp. 372-3741), 
hence if K is strongly inaccessible, then by Lemma 2.3(ii), P ( X ) / F  is not a basic 
n-tree algebra. However it is atomless and n-partition complete by Theorem 1.2. 

P(r ) .  Thus T is a refinement of u. 

P.p(,), whence S 
principal filter of PzT, so @ S exists in PiT. 
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It can be shown within ZFC (without assuming that n is strongly inaccessible) that 
for any regular n and y 2 n, there exists an atomless n-partition complete Boolean 
algebra B with IBI 2 y. 

Recall that a subalgebra of a n-complete Boolean algebra is n-completely generated 
b y  a set X if it is the intersection of all n-complete subalgebras that contain X .  
We note that,  for regular cardinals n,  the basic n-tree algebra AT is n-completely 
generated by T in the Boolean completion B of T ,  so it is a n-complete subalgebra 
of B. 

L e m m a  2.5. For a regular cardinal K: let B be an atomless n-partition complete 
Boolean algebra and let S be a subset o f  Pk with IS1 5 K .  Then there exists a basic 
n-tree subalgebra A of B such that S E P$. 

P r o o f .  Let S = {uj : i < n} be an enumeration of S (possibly with repetitions, 
to  get a sequence of length n). Since B is n-partition complete, we can replace ui by 
@{uj : j < i } ,  hence we may assume that the u; form a chain. Based on this chain, 
we define by induction a (dually) wellordered chain C = {ri : i < n} such that U C  
is a normal n-tree with ith level ri. 

Let 70 = { 1). For a successor ordinal i = j + 1, since B is atomless we can choose 
a partition 7-i E Pk such that ri < rj and r: n rj = 0. Now we let r; = ri @ u;. For a 
limit ordinal i we define rj = @{r, : j < i }  @ ui. Under the induced order of B ,  the 
set T = U C is clearly a n-tree with a single root. Since u n r = 0 for distinct u, r E C ,  
each element of C is a level of T and (Nz) holds. Finally (N3) holds because C is 
ordered by refinement. Let A be the subalgebra that is n-completely generated by T .  
Since A is n-complete, 'P(r) is a complete subalgebra of A for every r E C. It follows 
that A = U{P(r )  : r E C} because the union of all these powerset algebras contains 
T and is n-complete (since n is regular). Now the isomorphism between A and AT is 
easily defined as the union of isomorphisms between corresponding subalgebras P ( r )  
for each r E C. Hence A is a basic n-tree algebra. Since each partition in S is refined 

0 

The next result characterises the basic n-tree algebras internally. Since every 
n-Souslin algebra is a basic n-tree algebra, it is also interesting to  view it in relation to  
[7, Theorem 14.201. 

T h e o r e m  2.6. For a regular cardinal n and a Boolean algebra B the following 
are equivalent: 

by some r in C ,  we have S C Pi. 

(i) B is a basic n-tree algebra. 
(ii) B is an atomless n-partition complete Boolean algebra that is n-completely gen- 

erated b y  a set of cardinality at most n. 
(iii) B is atomless, n-partition complete and Pk has a descending cofinal chain C of 

length K ( i .  e., f o r  each u E Pk there exists r E C such that r refines u). 
P r o o f .  (i) implies (iii) by Proposition 2.4, and (iii) implies (ii) since U C  has 

cardinality 5 n and n-completely generates B. Now suppose (ii) holds and let S be 
the set which n-completely generates B and has (SI 5 n. Then {{z,-z} : z E S }  
is a collection of partitions in Pk of cardinality at most n. By the preceding lemma, 
there exists a basic n-tree subalgebra A of B such that (2, -2) E P$ for all z E S. 

0 So S 5 A ,  and since A is a n-complete subalgebra, it follows that A = B. 
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For example, since every atomless Boolean algebra is w-partition complete, it 
follows from the above theorem that the countable atomless Boolean algebra is a 
basic w-tree algebra (the only one up to  isomorphism since atomless Boolean algebras 
are w-categorical) . 

C o r o l l a r y  2.7. Let IE be a regular cardinal, and suppose B is a n-partition 
complete Boolean algebra. Any family 3 of at most K basic n-tree subalgebras of B 
have a common extension which is also a basic n-tree subalgebra. 

P r o o f .  Since each A E F is isomorphic to  AT for some normal n-tree T ,  the 
image (under the isomorphism) of the levels of T form a chain CA of partitions in IF'; 
of length n. Let S = ~ { C A  : A E F}. Then IS1 = n so by Lemma 2.5 there exists 
a basic n-tree algebra that contains all partitions in S. This algebra is a common 
extension of the algebras in 3, since it is a n-complete subalgebra of B and each 

0 A E 3 is n-completely generated by UCA. 

Boolean algebra. Then B is a nE+-updirected union of basic n-tree algebras. 

The following theorem is a direct consequence of Corollary 2.7. 
T h e o r e m  2.8. For a regular cardinal K let B be an atomless n-partition complete 

0 

In Example 2.2 we observed that a n-Suslin tree algebra is in fact a basic n-tree 
algebra. Applying the preceding theorem to Suslin algebras, we obtain the following 
result. 

C o r o l l a r y  2.9. A Boolean algebra is a n-Suslin algebra if and only i f  it is a 
o 

As noted above, the countable atomless Boolean algebra F ( w )  is the only basic 
w-tree algebra. Thus, for example, every atomless Boolean algebra is an updirected 
union of algebras that are isomorphic to F ( w ) .  A. PINUS noted that this result also 
follows from the downward Lowenheim-Skolem theorem. Furthermore he pointed 
out the following application: The concept of a quasi-universal formula is defined in 
MAL'CEV [9], and it is proved that quasi-universal formulas are preserved under up- 
directed unions. Hence the preceding remark implies that any quasi-universal formula 
which holds in F ( w )  will hold in all atomless Boolean algebras, in other words, the 
quasi-universal theory of atomless Boolean algebras is complete. 

n+ -updirected union of n-Suslin tree algebras. 

3 Almost compact cardinals 

3.1 Cardinals with the tree property 

A n-tree is said to  be Aronszajn if it does not have a branch of length n. An infinite 
cardinal K has the tree property if every n-tree has a branch of length n (i.e. is not 
an Aronszajn tree). The following proposition summarizes some known results about 
these cardinals. 

P r o p o s i t i o n  3.1 

(i) Every cardinal with the tree property is regular ([8], p. 307). 
(ii) The Konig infinity lemma: w has the tree property. 0 

L e m m a  3.2 ([8, p. 297). Let K be a regular infinite cardinal. If there exists an 
0 Aronstajn n-tree, then there exists a normal Aronszajn n-tree. 
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We are primarily interested in cardinals with the tree property. By Theorem 2.8, 
for regular K ,  every atomless tc-partition complete Boolean algebra is an updirected 
union of basic n-tree algebras. It turns out that K has the tree property iff every basic 
n-tree algebra has a n-complete ultrafilter (see Proposition 3.4). 

The proof of the following lemma is similar to  the "ultrafilter proof" of the Konig 
infinity lemma. 

L e m m a  3.3. Le t  K be a regular cardinal and le t  T be a n o r m a l  n-tree.  T h e n  the  
basic n - t ree  algebra AT has  a n-complete  ultrafi l ter affT i s  a n o t  a n  A r o n t a j n  tree.  

P r o o f .  In the forward direction this follows from Proposition 0.9 and Proposition 
2.4(i). For the reverse direction, suppose T is not Aronszajn and let C be a branch 
of length K in T .  Consider any ultrafilter F in AT which extends C. It follows 
from another application of Proposition 0.9 and Proposition 2.4(i) that F must be 

Combining the preceding lemma with Lemma 3.2 we obtain the following result. 
P r o p o s i t i o n  3.4. Let  K be a regular cardinal. T h e n  K has  t h e  tree property  iff 

0 

We now recall some notions of compact cardinals (characterised by the properties 
we are interested in, rather than in terms of the original definitions). A cardinal K is 
said to  be 

n- complete. 0 

every  basic n- tree algebra has  a n-complete  ultrafilter. 

. weakly  compact  if it is strongly inaccessible and has the tree property, 
0 measurable  if there exists a n-complete nonprincipal ultrafilter in P ( K ) ,  and 
0 strongly  compact  if every proper n-complete filter in any powerset algebra can 

be extended to  a n-complete ultrafilter. 

It is well known that strong compactness implies measurability, which in turn implies 
weak compactness. There is also the notion of @-compactness which covers the whole 
range from measurability to strong compactness: For @ 2 tc we say that K is @-compact 
if K is strongly inaccessible and every n-complete filter in P(p)  that is generated by 
at most p sets can be extended to a n-complete ultrafilter. It can be shown that IC is 
measurable iff it is n-compact, and clearly K is strongly compact iff it is @-compact 
for all @ 2 K .  

Using the concept of n-partition completeness, we now define another range of 
compactness notions which, in case K is strongly inaccessible, cover the whole spec- 
trum from weak to strong compactness. 

D e f i n i t i o n  3.5. For cardinals K 5 y we say that K is y -a lmos t  compact  if K 

has the tree property and every tc-partition complete Boolean algebra with at most y 
elements is n-strongly representable. 

The following characterisation theorem can be compared to  similar characteriza- 
tions of weakly compact cardinals (e. g. [2, p. 292]), with the noteworthy difference 
that we do not assume K is strongly inaccessible. 

T h e o r  e m  3.6. Le t  K be a cardinal wi th  t h e  tree property.  T h e n  for a n y  y 2 K 

t h e  fo l lowing  condi t ions are equivalent: 

(i) K i s  y - a l m o s t  compact.  
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(ii) In any n-partition complete Boolean algebra of cardinality at most y, every proper 
principal filter can be extended t o  a n-complete ultrafilter. 
(iii) Every atomless n-partition complete Boolean algebra of cardinality at most y 

has a n-complete ultrafilter. 
(iv) Every n-partition complete Boolean algebra of cardinality at most y has a n-com- 

plet e ultrafilt er. 
(v) If B is a n-partition complete Boolean algebra of cardinality a t  most y, then 

there is a meet semilattice homomorphism f : Pg -+ B+ such that for all u E Pk, 

(vi) Let A be a n-set algebra which is n-generated by  a set of at most y elements. Let 
F be a n-complete filter in A such that A / F  is  n-partition complete and IA/FI 5 y. 
Then F can be extended t o  a n-complete ultrafilter. 

f (4 E 6. 

P r o o f .  The equivalence of (i) and (ii) is a consequence of the well-known result 
that a Boolean algebra is n-strongly representable iff it is n-complete and every proper 
principal filter can be extended to a n-complete ultrafilter (see e. g. [7, Theorem 0.51). 
Clearly (iii) and (iv) are equivalent since if a Boolean algebra has an atom, then the 
principal filter generated by that atom is complete. The equivalence of (iv) and (v)  
follows from Corollary 0.10. The implication (ii) j (iv) holds trivially, so we complete 
the proof by establishing that (iv) implies (vi) and (vi) implies (ii). 

By (iv) the quotient algebra has a n-complete filter D. Let f : A - A / F  be 
the canonical homomorphism. By Lemma 0.7(i) f is n-complete. Hence f - ' [D]  is a 
n-complete ultrafilter which extends F and therefore (vi) holds. 

Finally, assume (vi). Since B is n-distributive, by [7, Theorem 0.81, there is a 
n-set algebra A,  n-generated by a set of IBl elements, and a n-complete surjective 
homomorphism g : A - B. For a E B+ let H be the principal filter generated by a ,  
and let f : B - B / H  be the canonical homomorphism. It follows from Lemma 0.7(i) 
that f is n-complete. Thus by Proposition 0.8(ii), B / H  is n-partition complete. Now 
h = f o g is a n-complete homomorphism from A onto B / H .  Letting F = ker h,  we 
invoke (v) to  obtain a n-complete ultrafilter U which contains F .  It follows that h[U] 
is a n-complete ultrafilter in B / H  and therefore f-'[h[U]] is a n-complete ultrafilter 
in B which contains a .  Thus (ii) holds and the proof of the theorem is complete. 0 

Let K be a cardinal with the tree property and assume that 
y = K  <r.  Then the following conditions are equivalent: 

C o r o l l a r y  3.7. 

(i) K is y-almost compact. 
(ii) If A is a n-partition complete n-set algebra such that IAJ 5 y, then every 

n-complete proper filter in A can be extended to a n-complete ultrafilter. 

P r o o f .  Suppose K is y-almost compact, and let F be a n-complete filter in a 
n-partition complete n-set algebra A with IAl 5 y. By Proposition 0.8(ii), A / F  is 
also n-partition complete. Since IA/FI 5 y, it follows from Theorem 3.6(iv) that A / F  
has a Ic-complete ultrafilter U. Since the canonical homomorphism f : A - A / F  
is n-complete, f - l [ U ]  is a n-complete ultrafilter which extends F .  Therefore (ii) is 
satisfied. 
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Conversely, we will show that (ii) implies Theorem 3.6(vi). So let A be a n-set 
algebra generated by at most y elements. Since y = n<r we have IAI 5 y. Thus for 
any &-complete filter F in A we have JA/FJ 5 y. It follows from (ii) that any such 
filter can be extended to a n-complete ultrafilter, whence Theorem 3.6(vi) holds. 0 

3.2 Between weak and strong compactness 

The following theorem shows that restricted to  strongly inaccessible cardinals, 
y-almost compactness covers the whole range from weakly compact to measurable 
to  strongly compact cardinals. 

T h e  o r e  m 3.8. Let K: be a strongly inaccessible cardinal. Then we have: 

(i) n is weakly compact iff K: is n-almost compact. 
(ii) For P 2 n, i fn  is 2P-almost compact, then K, is P-compact (in particular, if )c is 

(iii) n is strongly compact if n is y-almost compact for all y 2 n. 
2n-almost compact, then n is measurable). 

P r o o f .  
(i) By Corollary 2.7, any atomless n-partition complete Boolean algebra with at  

most n elements is a basic n-tree algebra, so it follows from Proposition 3.4 and 
Theorem 3.6(iii) that n is n-almost compact iff n has the tree property. Since IC is 
assumed to  be strongly inaccessible, n has the tree property iff K is weakly compact. 

(ii) Let @ _> n and suppose n is 2P-almost compact. Assuming that F is a proper 
n-complete filter in P(p)  that is generated by at most P sets, we need to  show that 
F can be extended to  a n-complete ultrafilter. By Lemma 0.7(i), the canonical ho- 
momorphism 7~ : p ( @ )  - P(@) /F  is n-complete. Since n is strongly inaccessible, by 
Corollary 1.3, P ( p )  is n-partition complete, hence P ( P ) / F  is also n-partition complete 
by Lemma 0.8(ii). Since I’P(P)/FI 5 2P, it follows from Theorem 3.6(v) that there 
exists a &-complete ultrafilter U in P(@)/F.  Now T-’[U] is the desired n-complete 
ultrafilter in P ( p )  which extends F .  

(iii) follows from (ii). 0 

4 Some open problems 

P r o b l e m  4.1. 
(i) Consider the statement “There is a (regular) infinite cardinal K and a cardinal 

y 2 n such that n is y-almost compact”. For which n and y is this statement provable 
(refutable or independent) in ZFC? 

(ii) For which y >_ n is y-almost compactness indescribable? 
P r o b  1 e m  4.2. If n is strongly inaccessible then by Theorem 1.2, the concepts 

n-partition completeness, n-distributivity and &-weak representability coincide. Let 
n be an infinite regular cardinal such that these concepts coincide. Is n strongly 
inaccessible ? If not, is the existence of such an “almost inaccessible” cardinal provable 
(refutable or independent) in ZFC? 

P r o b  1 e m  4.3. By Theorem 3.8(ii), if n is strongly inaccessible and 2n-almost 
compact, then K is measurable. Is the converse false? 
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