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Abstract. We show that every locally integral involutive partially or-
dered monoid (ipo-monoid) A = (A,⩽, ·, 1,∼,−), and in particular every
locally integral involutive semiring, decomposes in a unique way into a
family {Ap : p ∈ A+} of integral ipo-monoids, which we call its integral
components. In the semiring case, the integral components are semirings.
Moreover, we show that there is a family of monoid homomorphisms
Φ = {φpq : Ap → Aq : p ⩽ q}, indexed on the positive cone (A+,⩽), so
that the structure of A can be recovered as a glueing

∫
Φ
Ap of its inte-

gral components along Φ. Reciprocally, we give necessary and sufficient
conditions so that the Płonka sum of any family of integral ipo-monoids
{Ap : p ∈ D}, indexed on a lower-bounded join-semilattice (D,∨, 1),
along a family of monoid homomorphisms Φ is an ipo-monoid.

Keywords: Residuated lattices · Involutive partially ordered monoids ·
Semirings · Płonka sums · Frobenius quantales.

1 Introduction

Idempotent semirings are algebras of the form (A,∨, ·, 1) where (A,∨) is a
semilattice (with order x ⩽ y ⇐⇒ x ∨ y = y), (A, ·, 1) is a monoid, and
the monoid operation distributes over the join. They play an important role
in mathematics, logic, and theoretical computer science, since they generalize
distributive lattices and expand to Kleene algebras and residuated lattices. An
involutive semiring is an idempotent semiring with operations ∼ and − satisfying:

x ⩽ y ⇐⇒ x · ∼y ⩽ −1 ⇐⇒ −y · x ⩽ −1.

These algebras are term-equivalent to involutive residuated lattices and, in the case
that the lattice is complete, to Frobenius quantales (see [5] and [4]). Furthermore,
algebras of binary relations are involutive semirings under the operations of
union, composition, and complement-converse. The structural characterization
obtained in this paper is valid for more general partially ordered structures called
involutive po-monoids where the semilattice (A,∨) is replaced by a poset (A,⩽).

An ipo-monoid is integral when the monoid identity 1 is also the top element
of the order, that is, the inequality x ⩽ 1 holds. This is a very important property
for residuated lattices, since it is equivalent to the proof-theoretical rule called
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weakening. In this work we identify a much larger class, namely the class of
locally integral ipo-monoids.

The main result in this paper is that every locally integral ipo-monoid A can
be decomposed in a unique way into a family of integral ipo-monoids {Ap : 1 ⩽ p},
which we call its integral components. Two locally integral ipo-monoids can have
the same integral components, but may differ in the way these components are
glued together. We find in the literature similar situations in which a number of
structures are glued together to form a new one: for instance, in [6] it is described
how chains can be attached to an odd Sugihara monoid in order to form a
commutative idempotent residuated chain, and in [8] how Boolean algebras can
be glued together to form commutative idempotent involutive residuated lattices.

In our present case, we associate to every locally integral ipo-monoid A a
join-semilattice indexed family of monoid homomorphisms Φ = {φpq : Ap → Aq :
1 ⩽ p ⩽ q} between its integral components so that the structure of A can
be completely recovered as an aggregate or glueing

∫
Φ
Ap of these integral

components along Φ in two stages: first, the monoid part of A turns out to be
the Płonka sum of the family Φ, and the involutive negations can be defined
componentwise. Then, we recover the order of A using the product, the negations,
and the local identities.

As an application of our results, we can combine certain semantics for fuzzy
logics with semantics for relevance logic using, for example, the well-understood
MV-algebras as building blocks of a glueing.

We exploit this decomposition in order to prove that several properties of
locally integral ipo-monoids are local, in that a locally integral ipo-monoid satisfies
them if and only if all its integral components satisfy them. One of the most
significant local properties established here is local finiteness.

Previous research into the structure of doubly-idempotent semirings can be
found in [1, 2]. The structure of all finite commutative idempotent involutive
residuated lattices is completely described in [8] in a step-by-step decomposition.
In the current paper, this is significantly generalized to all locally integral ipo-
monoids, without any restrictions regarding finiteness, commutativity, or full
idempotence. A similar use of Płonka sums can be found in [7], where the structure
of even and odd involutive commutative residuated chains is studied.

We set the terminology and notation in Section 2, and describe the fundamen-
tal properties of ipo-monoids needed in the rest of the paper. In Section 3, we
introduce the class of locally integral ipo-monoids and show that every locally inte-
gral ipo-monoid is the glueing of its integral components. Finally, in Section 4, we
solve the reverse problem, that is, we provide necessary and sufficient conditions
so that the glueing of a system of integral ipo-monoids is an ipo-monoid.

2 Involutive Partially Ordered Monoids and Semirings

An involutive partially ordered monoid, or ipo-monoid for short, is a structure
of the form (A,⩽, ·, 1,∼,−) such that (A,⩽) is a poset (i.e., ⩽ is a reflexive,
antisymmetric, and transitive binary relation on A), (A, ·, 1) is a monoid (i.e., ·
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is an associative binary operation on A and 1 is its identity element) satisfying:

x ⩽ y ⇐⇒ x · ∼y ⩽ 0 ⇐⇒ −y · x ⩽ 0, (ineg)

where, by definition, 0 = −1.1 The unary operations ∼ and − are called involutive
negations. If there is no danger of confusion, we will write xy instead of x · y.
Given an ipo-monoid A, we say that A is cyclic if it satisfies ∼x = −x. An
element x of A is central if x ·y = y ·x for any other y ∈ A, and A is commutative
if all its elements are central. An element x of A is idempotent if x · x = x, and
A is idempotent if all its elements are idempotent. We will be specially interested
in ipo-monoids with a lattice order. These can be then presented as algebraic
structures (A,∧,∨, ·, 1,∼,−) called iℓ-monoids or involutive semirings.2

Lemma 1. Every ipo-monoid satisfies the following properties:

1. double negation: ∼−x = x = −∼x (dn)
2. rotation: x · y ⩽ z ⇐⇒ y · ∼z ⩽ ∼x ⇐⇒ −z · x ⩽ −y (rot)
3. antitonicity: x ⩽ y ⇐⇒ ∼y ⩽ ∼x ⇐⇒ −y ⩽ −x (ant)
4. residuation: xy ⩽ z ⇐⇒ x ⩽ −(y · ∼z) ⇐⇒ y ⩽ ∼(−z · x) (res)
5. constants: 0 = ∼1, ∼0 = 1, and −0 = 1. (ct)

The properties of the previous lemma will often be used without mentioning
them explicitly. Notice also that the multiplication is residuated, with left and
right residuals z/y = −(y · ∼z) and x\z = ∼(−z · x), respectively, as (res) can
be rewritten as:

x · y ⩽ z ⇐⇒ x ⩽ z/y ⇐⇒ y ⩽ x\z.

The fact that · preserves arbitrary existing joins, and therefore is order-preserving,
in both arguments follows easily from these observations. It can be also readily
checked that the involutive negations can be expressed in terms of the residuals
as follows: ∼x = x\0 and −x = 0/x. Since in any commutative ipo-monoid the
equality y/x = x\y holds, every commutative ipo-monoid is cyclic.

Lemma 2. Every ipo-monoid satisfies the following properties:

1. −(∼x · ∼y) = ∼(−x · −y),
2. ∼x is idempotent if and only if −x is idempotent.

Proof. 1. Using (res), (rot), (dn), and (res) again, we obtain z ⩽ −(∼x·∼y) ⇐⇒
z · ∼x ⩽ y ⇐⇒ −y · z ⩽ −∼x ⇐⇒ −y · z ⩽ x ⇐⇒ z ⩽ ∼(−x · −y). Since
z is arbitrary, we deduce that −(∼x · ∼y) = ∼(−x · −y).

2. Assume that ∼x is idempotent. Then, by (dn) and the previous part, −x·−x =
−∼(−x · −x) = −−(∼x · ∼x) = −−∼x = −x. The rest is analogous.

1 Notice that the symmetry of all the properties of Lemma 1, and specially (ct), suggests
that we would obtain the same results had we defined 0 = ∼1.

2 This terminology is based on the observation that (A,∨, ·, 1) is an idempotent unital
semiring since the residuation property of Lemma 1 implies that x(y ∨ z) = xy ∨ xz
and (x ∨ y)z = xz ∨ yz, and ∧ is term definable by the De Morgan laws.
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Lemma 3. For every ipo-monoid A, the following conditions are equivalent:

1. The identity −x · x = x · ∼x holds in A,
2. The identity ∼(−x · x) = −(x · ∼x), that is, x\x = x/x, holds in A.

Proof. Suppose that the equation −x · x = x · ∼x holds in A. In particular, we
have that −∼x · ∼x = ∼x · ∼∼x, that is, x · ∼x = ∼x · ∼∼x. Hence,

∼(−x · x) = ∼(−x · −∼x) = −(∼x · ∼∼x) = −(x · ∼x),

where the middle equality follows from Lemma 2(1). In order to prove the
other implication, suppose that the equation ∼(−x · x) = −(x · ∼x) holds in
A. In particular, we have that ∼(x · ∼x) = ∼(−∼x · ∼x) = −(∼x · ∼∼x) =
∼(−x · −∼x) = ∼(−x · x), where again the last but one equality follows from
Lemma 2(1). Using (dn), we deduce that −x · x = x · ∼x.

Given an ipo-monoid A, we call A+ = {x ∈ A : 1 ⩽ x} the positive cone of A,
and its elements the positive elements of A, and ↓0 = {x ∈ A : x ⩽ 0} the princi-
pal order-ideal generated by 0. We say that an ipo-monoid A is ↓0-idempotent if all
the elements in ↓0 are idempotent. Thus, an involutive semiring is ↓0-idempotent
if and only if the quasiequation x ∧ 0 = x =⇒ x2 = x holds in A. Furthermore,
this property can be expressed by the identity (x ∧ 0)2 = x ∧ 0. Our next result
characterizes ↓0-idempotence in ipo-monoids.

Lemma 4. An ipo-monoid is ↓0-idempotent ⇐⇒ for all x, y ⩽ 0, x · y = x ∧ y.

Proof. If A is ↓0-idempotent, then 0 · 0 ⩽ 0, and applying (rot) we obtain
0 = 0 · 1 = 0 · ∼0 ⩽ ∼0 = 1. Thus, if x, y ⩽ 0, in particular x, y ⩽ 1, and
therefore x · y ⩽ x and x · y ⩽ y. Also, if z ⩽ x and z ⩽ y, then in particular
z ⩽ 0 and so it is idempotent. Thus, z = z · z ⩽ x · y and hence x · y = x ∧ y.
Conversely, if A satisfies that for all x, y ⩽ 0, x · y = x ∧ y, then for any x ⩽ 0,
x · x = x ∧ x = x.

The next result shows that ↓0-idempotence implies that all the elements in
the positive cone are idempotent. The converse is not always true.

Theorem 5. If A is an ipo-monoid so that 0 ⩽ 1 and x ∈ ↓0 is idempotent, then
both ∼x and −x are idempotent. Thus, all positive elements of a ↓0-idempotent
ipo-monoid are idempotent.

Proof. Suppose that A is an ipo-monoid so that 0 ⩽ 1 and x ⩽ 0 is idempotent.
By (ant), 1 ⩽ −x and so, −x = −x·1 ⩽ −x·−x. Also, x ⩽ x implies −xx ⩽ 0 ⩽ 1,
and therefore, −x · x = −x · x · x ⩽ 1x = x, and by (rot), −x · −x ⩽ −x.
Thus, −x · −x = −x. By Lemma 2(2), ∼x is also idempotent. Finally, if A is
↓0-idempotent, in particular 0 · 0 = 0, which implies that 0 ⩽ 1 by (rot), and for
every 1 ⩽ x, we have that ∼x ⩽ 0 is idempotent and therefore so is −∼x = x.
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3 Locally Integral IPO-Monoids and Involutive Semirings

An ipo-monoid is integral if it satisfies the inequality x ⩽ 1. Thus, integral
ipo-monoids form a po-subvariety of the po-variety of ipo-monoids, in the sense
of [9]. Notice that, since the inequality x ⩽ 1 can be expressed as x ∨ 1 = 1 in
the language of involutive semirings, the integral involutive semirings form a
subvariety of the involutive semirings. We will introduce in what follows another
po-subvariety of ipo-monoids and the corresponding subvariety of the variety of
involutive semirings. We say that an ipo-monoid is locally integral3 if

1. it satisfies the identity −x · x = x · ∼x,
2. multiplication is square-decreasing, that is, x2 ⩽ x,
3. it is ↓0-idempotent.

The main goal of this section is a decomposition theorem stating that every
locally integral ipo-monoid (involutive semirings, respectively) can be decomposed
in a very particular way into integral involutive ipo-monoids (involutive semiring,
respectively). Let’s start by proving that integrality implies local integrality.

Proposition 6. Every integral ipo-monoid is locally integral.

Proof. Suppose that A is an integral ipo-monoid. The inequality 1 · x ⩽ x
implies that 1 ⩽ x\x, and therefore x\x = 1, by the integrality of A. Analogously,
x/x = 1, and hence x\x = x/x, which by Lemma 3 is equivalent to −x ·x = x ·∼x.

The square decreasing property follows immediately from the monotonicity
of multiplication, since x ⩽ 1 implies that xx ⩽ 1x = x.

Finally, ∼x ⩽ 1 implies that 0 ⩽ x, for all x in A, and in particular ↓0 = {0}.
Furthermore, 1 · 0 ⩽ 1 implies that 0 · 0 = 0 · ∼1 ⩽ ∼1 = 0, whence we deduce
that 0 · 0 = 0, proving that A is ↓0-idempotent.

Given a locally integral ipo-monoid A, we define for every x in A the elements
0x = x·∼x and 1x = −0x. Local integrality implies that 0x = −x·x and 1x = ∼0x,
by Lemma 3, and hence ∼1x = −1x = 0x. Notice also that 1x = x\x = x/x, and
hence 0x ⩽ 0 and 1 ⩽ 1x. Thus, both 0x and 1x are idempotent. We will use
the interval notation [0x, 1x] = {y ∈ A : 0x ⩽ y ⩽ 1x}. The equivalence relation
x ≡ y if and only if 1x = 1y partitions every locally integral ipo-monoid in its
equivalence classes Ax = {y ∈ A : 1x = 1y} and, obviously, x ∈ Ax. The next
lemma offers a very useful description of Ax.

Lemma 7. For any locally integral ipo-monoid A and all x and y in A:

1. 0∼x = 0−x = 0x and 1∼x = 1−x = 1x,
2. x ∈ [0x, 1x], and therefore 0x ⩽ 1x,
3. 1x · y = y ⇐⇒ 1x ⩽ 1y,
4. y ∈ [0x, 1x] ⇐⇒ [0y, 1y] ⊆ [0x, 1x],
5. y ∈ Ax ⇐⇒ y ∈ [0x, 1x] and 1x · y = y.
3 This class forms a po-quasivariety, by definition. It is not known whether it is a

po-variety or a proper po-quasivariety.
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Proof. 1. A simple computation shows that 0∼x = −∼x ·∼x = x ·∼x = 0x, and
therefore 1∼x = −0∼x = −0x = 1x. The proof that 0−x = 0x and 1−x = 1x
is analogous.

2. The square-decreasing property, namely, x · x ⩽ x, can also be expressed as
x ⩽ x\x = 1x, by residuation. Thus, using part (1), we have that 0x = 0∼x =
−1∼x ⩽ −∼x = x. That is, x ∈ [0x, 1x].

3. 1x ⩽ 1y = y/y is equivalent to 1x · y ⩽ y, by residuation. And since 1 ⩽ 1x,
we also have that y ⩽ 1x · y. Hence, 1x · y ⩽ y is equivalent to 1x · y = y.

4. For the left-to-right implication, notice that 0x ⩽ y ⩽ 1x implies that
0x ⩽ ∼y ⩽ 1x, by (ant), and then 0x = 0x · 0x ⩽ y · ∼y = 0y. By (ant) again,
we obtain that 1y ⩽ 1x. The reverse implication is a consequence of part (2).

5. If y ∈ Ax, then 1y = 1x, and thus y ∈ [0y, 1y] = [0x, 1x], by part (2). Moreover,
1x · y = 1y · y = y, by part (3). For the reverse implication, notice that if
y ∈ [0x, 1x] and 1x · y = y, then 1y ⩽ 1x, by part (4), and 1x ⩽ 1y, by
part (3).

Next, we will use the description of Ax of the previous lemma in order to
show that the sets Ax are closed under several operations of A.

Lemma 8. Let A be a locally integral ipo-monoid. For every x in A:

1. Ax is closed under the involutive negations,
2. Ax is closed under multiplication,
3. Ax is closed under all existing nonempty joins and nonempty meets.

Proof. 1. By Lemma 7(1), if y ∈ Ax then 1∼y = 1y = 1x, and hence ∼y ∈ Ax.
2. If y, z ∈ Ax then y, z ∈ [0x, 1x], by Lemma 7(5). Hence, 0x = 0x · 0x ⩽ y · z ⩽

1x · 1x = 1x. Also by Lemma 7(5), we have 1x · (y · z) = (1x · y) · z = y · z,
since y ∈ Ax. Thus, again by Lemma 7(5), y · z ∈ Ax.

3. Suppose that ∅ ̸= Y ⊆ Ax and the join
∨
Y exists in A. Since for every

y in Y , y ∈ Ax ⊆ [0x, 1x], we obtain that also
∨
Y ∈ [0x, 1x]. And since

multiplication distributes with respect to all existing joins, we have that
1x ·

∨
Y =

∨
y∈Y 1x · y =

∨
y∈Y y =

∨
Y . Thus, by Lemma 7(5),

∨
Y ∈ Ax.

The closure under all existing nonempty meets can be obtained from the fact
that Ax is also closed under negations and

∧
Y = −

∨
y∈Y ∼y.

Our next goal is to find a canonical representative for each equivalence class Ax.
But first, we will provide useful characterizations of A+ and ↓0.

Lemma 9. Let A be a locally integral ipo-monoid. For all p and a in A, we have
that p ∈ A+ if and only if p = 1p and a ∈ ↓0 if and only if a = 0a. In particular,
both involutive negations coincide for positive elements and for elements in ↓0.

Proof. We already know that p ⩽ 1p is valid for all p in A. If moreover 1 ⩽ p,
then 1p = p/p ⩽ p/1 = p. The other implication is trivial, since we know that
1 ⩽ 1p is true for all p. The second part follows from the following equivalences:

a ∈ ↓0 ⇐⇒ ∼a ∈ A+ ⇐⇒ 1a = 1∼a = ∼a ⇐⇒ a = −1a = 0a.

The last part is true, since for every p ∈ A+, ∼p = ∼1p = −1p = −p, and
analogously for the elements of ↓0.
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Lemma 10. Let A be a locally integral ipo-monoid. For every x in A, 1x is the
only positive element of Ax and 0x is the only element of Ax below 0.

Proof. Obviously, 1x ∈ [0x, 1x] and also 1x · 1x = 1x, since 1x ∈ A+. Thus,
1x ∈ Ax, by Lemma 7. Also, as we mentioned before, 1 ⩽ 1x. For any positive
p ∈ Ax, we would have that p = 1p = 1x, by Lemma 9. The second part follows
from (ant) and the fact that Ax is closed under the involutive negations.

Remark 11. Notice that the previous lemma tells us that for every x in A, there
is only one positive element p so that Ax = Ap. This means that the family
{Ax : x ∈ A} is actually indexed by A+ and that for all p, q ∈ A+, we have
Ap = Aq if and only if p = q. Furthermore, from Lemma 9 and the previous
comment, ↓0 = {0x : x ∈ A} = {0p : p ∈ A+}.

We can now show that the relation and operations of a locally integral
ipo-monoid furnish each equivalence class Ax with the structure of an integral
ipo-monoid, with a suitable identity.

Proposition 12. If A is a locally integral ipo-monoid, then for every p in A+,
the structure Ap = (Ap,⩽, ·, 1p,∼,−), where the relation and the operations are
the restrictions to Ap of the corresponding relation and operations of A, is an
integral ipo-monoid. If in addition A is a semiring, cyclic, or commutative, then
Ap is also a semiring, cyclic, or commutative, respectively, for all p in A+.

Proof. By Lemma 8, every Ap is closed under multiplication and the involutive
negations, and 1p ∈ Ap. Therefore, the structure Ap is well defined, (Ap,⩽) is a
poset, and since 1p · x = x for all x ∈ Ap by Lemma 7, (Ap, ·, 1p) is a monoid.
Moreover, since the only element of Ap below 0 is 0p = −1p by Lemma 10, we
deduce from the property (ineg) of A that for all x, y ∈ Ap,

x ⩽ y ⇐⇒ x · ∼y ⩽ 0p ⇐⇒ −y · x ⩽ 0p,

which is precisely the property (ineg) for the structure Ap. Finally, by Lemma 7
again, Ap ⊆ [0p, 1p], and therefore x ⩽ 1p for all x ∈ Ap.

The proof for the locally integral involutive semirings follows from the fact
that Ap is also closed under all binary joins and meets, by Lemma 8.

We call every Ap an integral component of A. As we saw in Proposition 12,
some properties of A are inherited by every of its integral components. Sometimes
the opposite is also true. We say that a property of ipo-monoids is local whenever
an ipo-monoid has it if and only if all its integral components have it.

Given a locally integral ipo-monoid A, the sets A+ and ↓0 are obviously
partially ordered by the order of A. The next proposition describes these two
posets.

Proposition 13. Let A be a locally integral ipo-monoid. Then (A+, ·, 1) is a
lower-bounded join-semilattice whose order coincides with the order of A. Also,
(↓0, ·, 0) is an upper-bounded meet-semilattice, whose order coincides with the
order of A, and is dually isomorphic to (A+, ·, 1). If, in addition, A+ is finite,
then (A+,⩽) is a distributive lattice dual to (↓0,⩽).
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Ap

↓0

A+

A1

A

1

0

0p

1p

Fig. 1. Representation of the structure of a locally integral ipo-monoid

Proof. For the first part, notice that A+ is closed under products. For all p, q ∈ A+,
we have that that p = 1 · p ⩽ pq and analogously q ⩽ pq. Furthermore, if p ⩽ r
and q ⩽ r, then pq ⩽ r2 ⩽ r. This shows that (A+, ·, 1) is a join semilattice
whose induced order is the restriction of ⩽, and whose lower bound is 1.

As for the second part, the map η : A+ → ↓0 given by η(p) = ∼p = 0p is
bijective (Remark 11) and for any two elements p, q ∈ A+, we have that p ⩽ q
if and only if η(q) = 0q = ∼q ⩽ ∼p = 0p = η(p), by (ant), and η(1) = ∼1 = 0.
Therefore, the restriction of ⩽ to ↓0 is a meet-semilattice ordering with upper
bound 0. And by Lemma 4, given two elements 0p, 0q ∈ ↓0, we have 0p ·0q = 0p∧0q.

Finally, if A+ is finite, then also ↓0 is finite and therefore a lattice with
respect to the restricted order. Since meet and multiplication coincide in ↓0,
and multiplication distributes with respect to joins, (↓0,⩽) is distributive, and
therefore also (A+,⩽) is distributive.

Remark 14. Notice that the dual isomorphism η : (A+, ·, 1) → (↓0, ·, 0) sends
joins to meets, and therefore, for any two positive elements p and q, we have that

0p · 0q = η(p) · η(q) = η(p · q) = 0pq.

Also, since we showed in the previous proposition that the product of two
positive elements is their join, then we deduce that multiplication of positive
elements is commutative. We can actually improve on this result.

Proposition 15. All positive elements of locally integral ipo-monoids are central.

Proof. Suppose that p is positive and let x be an arbitrary element. The equality
p · 0px = p(−(px) · px) = p(px · ∼(px)) = ppx · ∼(px) = px · ∼(px) = 0px implies
by (rot) that −(px)x ⩽ −(px) · px = 0px ⩽ 0px · 1px ⩽ ∼p = −p, since 1 ⩽ p and
1 ⩽ 1px. Hence, xp ⩽ px, by (rot).

Now, applying (rot) to xp ⩽ xp, we obtain −(xp)x ⩽ −p = ∼p, and by (rot)
again, p · −(xp) ⩽ −x. Finally, since xp ⩽ px is true for any x, in particular we
have that −(xp)p ⩽ p · −(xp) ⩽ −x, and by (rot) one last time, px ⩽ xp.

As we saw in Lemma 8, every integral component of a locally integral ipo-
monoid is closed under multiplication. But, what happens when we multiply
elements from different components? The following lemma answers this question.
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Lemma 16. Given a locally integral ipo-monoid A, positive elements p and q,
and elements x ∈ Ap and y ∈ Aq, the product xy is in Apq.

Proof. The inequalities 1p = p ⩽ pq = 1pq and 1q = q ⩽ pq = 1pq imply that
Ap ∪Aq ⊆ [0p, 1p]∪ [0q, 1q] ⊆ [0pq, 1pq], and therefore x, y ∈ [0pq, 1pq], whence we
deduce that xy ∈ [0pq, 1pq]. Moreover, 1pq ·(xy) = pqxy = pxqy = 1x ·x·1y ·y = xy,
by Lemma 9, Proposition 15, and Lemma 7. Hence, by Lemma 7, xy ∈ Apq.

All these results point toward the idea that locally integral ipo-monoids are
built up from integral ones, or at least their monoid reducts are, by means
of a Płonka sum. This construction was first introduced and studied in [10–
12]; for more recent expositions see [13] and [3]. Given a compatible family of
homomorphisms between algebras of the same type {φij : Ai → Aj : i ⩽ j},
indexed by the order of a lower-bounded join-semilattice (I,∨,⊥), its Płonka sum
is the algebra S of the same type defined on the disjoint union of their universes
S =

⊎
i∈I Ai, so that for every constant symbol c, cS = cA⊥ , and for every n-ary

operation symbol σ and elements a1 ∈ Ai1 , . . . , an ∈ Ain , σS(a1, . . . , an) =
σAj (φi1j(a1), . . . , φinj(an)), where j = i1 ∨ · · · ∨ in. The compatibility condition
of the family of homomorphisms says that for every i ∈ I, φii is the identity
on Ai, and that if i ⩽ j ⩽ k then φjk ◦ φij = φik. One can readily prove that
the Płonka sum of a compatible family of homomorphisms is well defined and it
satisfies all regular equations that hold in all the algebras of the family. Recall
that a regular equation is an equation in which the variables that appear on the
left-hand side are the same as the variables that appear on the right-hand side.

Given a locally integral ipo-monoid, we would like to find a compatible family
Φ of monoid homomorphisms indexed on the order of A+, so that the monoid
reduct of A can be reconstructed as the Płonka sum of Φ. Consider, for every
pair of positive elements p ⩽ q, the map φpq : Ap → Aq given by φpq(x) = qx.

Lemma 17. Let A be a locally integral ipo-monoid and p ⩽ q two positive
elements. Then φpq : Ap → Aq is a well defined monoid homomorphism. Moreover,
it respects arbitrary nonempty existing joins and therefore is monotone.

Proof. For all positive elements p and q, and x ∈ Ap, we have that qx ∈ Aqp,
by Lemma 16. Moreover, by Proposition 13, the inequality p ⩽ q implies that
pq = q. Hence, the map φpq : Ap → Aq is well defined. Furthermore, φpq(1p) =
q1p = qp = q = 1q and for all x, y ∈ Ap,

φpq(x · y) = qxy = qqxy = qxqy = φpq(x) · φpq(y),

since q is positive and therefore idempotent and central, by Proposition 15. This
shows that φpq is a monoid homomorphism. Finally, if ∅ ̸= Y ⊆ Ap is such that∨
Y exists, then φpq

(∨
Y
)
= q ·

∨
Y =

∨
y∈Y qy =

∨
y∈Y φpq(y).

Proposition 18. Let A be a locally integral ipo-monoid. Then, its associated
family Φ = {φpq : Ap → Aq} is compatible family of monoid homomorphisms
indexed by the order of the join semilattice (A+, ·, 1).
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Proof. For every positive element p and x ∈ Ap, we have φpp(x) = px = 1px = x,
by Lemma 7, since x ∈ Ap. That is, φpp is the identity homomorphism on Ap.
And if p ⩽ q ⩽ r are positive elements, then φqr(φpq(x)) = rqx = rx = φpr(x),
since rq = r by Proposition 13, because q ⩽ r.

As we will show in the next result, the monoid reduct of a locally integral
ipo-monoid is the Płonka sum of the family above. Although this is not the case
for the rest of the structure, still we can recover it from its integral components.
Recall that a property is local if it is satisfied by an ipo-monoid if and only if it
is satisfied by all its local components.

Theorem 19. Let A be a locally integral ipo-monoid and Φ its associated
family of monoid homomorphisms defined above. Then, its Płonka sum S =(⊎

Ap, ·S, 1S
)

is the monoid reduct of A. Moreover, if we define ∼Sx = ∼Apx
and −Sx = −Apx, for every x ∈ Ap with p positive, and

x ⩽S y ⇐⇒ x ·S ∼Sy = 0pq, for all x ∈ Ap and y ∈ Aq,

then
(⊎

Ap,⩽S, ·S,∼S,−S
)

is A. Furthermore, cyclicity and commutativity are
local properties.

Proof. By Remark 11, the set {Ap : p ∈ A+} is a partition of A, and therefore⊎
Ap = A. The element 1S = 1A1 = 1, and given two elements x ∈ Ap and

y ∈ Aq, for arbitrary positive elements p and q, and r = pq, we have that

x ·S y = φpr(x) ·Ar φqr(x) = rx · ry = rrxy = rxy = 1r · (xy) = xy,

since r is positive, and therefore central and idempotent, and xy ∈ Ar by
Lemma 16. The involutive negations of every integral component Ap are the
restrictions of the corresponding operations of A, by Proposition 12, and therefore
∼Sx = ∼Apx = ∼x and −Sx = −Apx = −x.

Notice also that for every x ∈ Ap and y ∈ Aq, for p and q positive, x ⩽ y if
and only if x · ∼y ⩽ 0, by (ineg). Since x · ∼y ∈ Apq and the only element below
0 in Apq is 0pq by Lemma 9, we have that

x ⩽ y ⇐⇒ x · ∼y ⩽ 0 ⇐⇒ x · ∼y = 0pq ⇐⇒ x ·S ∼Sy = 0pq ⇐⇒ x ⩽S y.

Finally, A is commutative if and only if all its integral components are commuta-
tive, since commutativity is expressible by the regular equation x · y = y · x. The
same is true for cyclicity.

Corollary 20. A locally integral ipo-monoid A is idempotent if and only if
all its integral components are Boolean algebras. In particular, any idempotent
ipo-monoid is commutative if and only if it satisfies −x · x = x · ∼x.

Proof. An integral ipo-monoid is idempotent if and only if it is a Boolean algebra,
because if A is idempotent then for all x, y ∈ A, x·y = x∧y. Indeed, x·y ⩽ 1·y = y
and analogously x · y ⩽ x. And if z ⩽ x and z ⩽ y, then z = z · z ⩽ x · y. Hence,
the result follows from the fact that a locally integral ipo-monoid is idempotent
if and only if all its integral components are idempotent.
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The previous corollary covers the structural decomposition results in [8]. In
this paper it is also shown that the variety of commutative idempotent involutive
residuated lattices fails to be locally finite. Without the lattice operations, however,
we have the following result.

Corollary 21. Local finiteness is a local property of ipo-monoids.

Proof. Suppose that the integral components of A are locally finite and let
X ⊆ A be a finite set and J = {1x : x ∈ X}. Without loss of generality, we
can assume that J is closed under binary joins (i.e., products), and that J ⊆ X.
We will prove the proposition by induction on the cardinality of J . Let p be
a minimal element in J and Yp the closure of Xp = X ∩ Ap under products
and involutive negations. Since Ap is locally finite, Yp is also finite. Consider
the finite set X ′ = (X ∖ Xp) ∪ {ry : y ∈ Yp, p < r ∈ J} and notice that
J ′ = {1x : x ∈ X ′} = J ∖ {p}, which is closed under binary joins, and J ′ ⊆ X ′.
By the inductive hypothesis, the subalgebra B generated by X ′ is finite. And
since J ′ is closed under binary joins, B ⊆

⋃
q∈J′ Aq. Now, for any y ∈ Yp and

x ∈ B, yx = (ry)x ∈ B and xy = x(ry) ∈ B, where r = p · 1x ∈ J ∖ {p}. Since
1 ∈ B and both Yp and B are closed under products and involutive negations,
the universe of the subalgebra generated by X is Yp ∪ B, which is finite. The
reciprocal is obvious.

4 Glueing Constructions

The last theorem of the previous section shows how every ipo-monoid is an
aggregate of its integral components. Our next question is, what are the conditions
that a family of integral ipo-monoids and a family of homomorphisms should
satisfy so that the construction of Theorem 19 is a (locally integral) ipo-monoid?

To make this question precise, let’s assume that D = (D,∨, 1) is a lower-
bounded join semi-lattice, A = {Ap : p ∈ D} is family of integral ipo-monoids, and
Φ = {φpq : Ap → Aq : p ⩽D q} is a compatible family of monoid homomorphisms.
We call (D,A, Φ) a semilattice direct system of integral ipo-monoids. Letting
Ap = (Ap,⩽p, ·p, 1p,∼p,−p), for all p in D, we define the structure∫

Φ
Ap =

(⊎
D Ap,⩽G, ·G, 1G,∼G,−G

)
,

where
(⊎

D Ap, ·G, 1G
)

is the Płonka sum of the family Φ, and therefore a monoid,
and for all p, q ∈ D, a ∈ Ap, and b ∈ Aq, ∼Ga = ∼pa and −Ga = −pa, and

a ⩽G b ⇐⇒ a ·G ∼Gb = 0p∨q.

We call this structure
∫
Φ
Ap the glueing of A along the family Φ.

With this definition, one can restate Theorem 19 as saying that every locally
integral ipo-monoid A is the glueing

∫
Φ
Ap of its integral components along the

family of homomorphisms Φ = {φpq : Ap → Aq} determined by φpq(x) = qx.
Our question is, given a system (D,A, Φ) of integral ipo-monoids, what are the
conditions that Φ must satisfy in order to ensure that

∫
Φ
Ap is an ipo-monoid?
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Fig. 2. Structure of a locally integral ipo-monoid

We start our analysis by identifying some relevant elements of
∫
Φ
Ap. But first,

notice that since ∼G and −G are defined componentwise on the disjoint union⊎
D Ap, we can safely drop the superscripts and subscripts of these operations.

Now, according to the definition of the Płonka sum, 1G = 1A1 = 11. Let’s set
0G = −1G = −11 = 01.

The next lemma can be interpreted as saying that the glueing
∫
Φ
Ap is indeed

an “aggregate” of the integral ipo-monoids Ap, although not necessarily an ipo-
monoid itself, since the relation ⩽G could be not transitive. In the example of
Figure 3, 0r ⩽G 0p ⩽G 1p ⩽G 1q, but 0r ⩽̸G 1q.

p

q r

s

D

0p

0q 0r

0s

1p

1q 1r

1s

Φ

φpq φpr

φrsφqs

0p

0q

0r

0s

1p

1q

1r

1s

∫
Φ
Ap

⩽̸

Fig. 3. A glueing of integral ipo-monoids that is not an ipo-monoid

Lemma 22. If
∫
Φ
Ap is the glueing of a system of integral ipo-monoids (D,A, Φ),

then the restrictions of ⩽G, ·G, ∼G, and −G to Ap are ⩽p, ·p, ∼p, and −p,
respectively. Moreover, for all p ⩽D q and a ∈ Ap, we have that φpq(a) = 1q ·G a.

Proof. The fact that ∼G and −G restricted to Ap are ∼p and −p is immediate,
by the definitions. Now, if a, b ∈ Ap, then p ∨ p = p, and by the definition of
⩽G we have that a ⩽G b ⇐⇒ a ·G ∼b = 0p ⇐⇒ φpp(a) ·p φpp(∼b) = 0p ⇐⇒
a ·p ∼b = 0p ⇐⇒ a ⩽p b, since φpp is the identity on Ap. For the same reason,
a ·G b = φpp(a) ·p φpp(b) = a ·p b. Finally, if p ⩽D q and a ∈ Ap, then φpq(a) =
φpq(1p ·p a) = φpq(1p) ·q φpq(a) = 1q ·q φpq(a) = φqq(1q) ·q φpq(a) = 1q ·G a.

Remark 23. An immediate consequence of this result is that ⩽G is a reflexive
relation, since for every p ∈ D and a ∈ Ap, we have that a ⩽G a if and only
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if a ⩽p a, which we know is true. This result also implies that ∼G and −G

satisfy (dn), since ∼G−Ga = ∼p−pa = a = −p∼pa = −G∼Ga.

It seems obvious that, for
∫
Φ
Ap to be an ipo-monoid, the condition (ineg)

has to be satisfied, what imposes on the family Φ the following balance condition:

for all p, q ∈ D, a ∈ Ap, b ∈ Aq, a ·G ∼b = 0p∨q ⇐⇒ −b ·G a = 0p∨q. (bal)

One can readily check that the commutativity of
∫
Φ
Ap implies that Φ is balanced.

We will prove next that when Φ is balanced, the operations ∼G and −G are
involutive with respect to the relation ⩽G.

Lemma 24. If
∫
Φ
Ap is the glueing of a system of integral ipo-monoids (D,A, Φ)

so that Φ satisfies (bal), then for all p, q ∈ D, a ∈ A, and b ∈ B,

a ⩽G b ⇐⇒ −b ⩽G −a ⇐⇒ ∼b ⩽G ∼a.

Proof. The first equivalence can be proven as follows: a ⩽G b ⇐⇒ a·G∼b = 0p∨q

⇐⇒ −b ·G a = 0p∨q ⇐⇒ −b ·G (∼−a) = 0p∨q ⇐⇒ −b ⩽G −a. For the other
equivalence, just notice that ∼b ⩽G ∼a ⇐⇒ a = −∼a ⩽G −∼b = b.

Our next step should be to analyze the sets G+ = {a ∈
⊎

Ap : 11 ⩽G a} and
↓G01 = {a ∈

⊎
Ap : a ⩽G 01}.4 In particular we will show that the elements of

G+ are the elements of the form 1p, and the elements of ↓G01 are the ones of
the form 0p, for some p ∈ D.

Lemma 25. If
∫
Φ
Ap is the glueing of a system of integral ipo-monoids, then

for all p in D and a in Ap, we have that

11 ⩽G a ⇐⇒ a = 1p and a ⩽G 01 ⇐⇒ a = 0p.

Proof. Since 1 ⩽D p, for all p, in particular p = 1 ∨ p. Hence, 11 ⩽G a ⇐⇒
φ1p(11) ·p φpp(∼pa) = 0p ⇐⇒ 1p ·p ∼pa = 0p ⇐⇒ ∼pa = 0p ⇐⇒ a = −p0p =
1p. The proof of the second equivalence is analogous.

Reflecting on Proposition 13, we would like to show that the relation ⩽G

endows G+ with a structure of join-semilattice isomorphic to D, and ↓G01 with
a structure of meet-semilattice dually isomorphic to D. In general, this will
not be true. For this to hold, it will be necessary to assume an extra property
of Φ. We will prove first that this property is valid for the family of monoid
homomorphisms associated to a locally integral ipo-monoid.

Lemma 26. Let A be a locally integral ipo-monoid and p ⩽ q positive elements.
Then, φpq(0p) = 0q if and only if p = q.

Proof. The implication from left to right is obvious, since p = q implies that φpq

is the identity map. As for the other implication, just notice that p < q implies
that 0q < 0p ⩽ q · 0p = φpq(0p), and therefore φpq(0p) ̸= 0q.
4 Notice that, even though we don’t know whether ⩽G is a partial order (and actually,

it will not be one in general), these definitions still make sense.
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This suggests the following condition for Φ, which we call zero avoidance:

for all p ⩽D q, φpq(0p) = 0q ⇐⇒ p = q. (za)

Lemma 27. If
∫
Φ
Ap is the glueing of a system of integral ipo-monoids (D,A, Φ)

and Φ satisfies (za), then for all p and q in D, 1p ⩽G 1q ⇐⇒ p ⩽D q and
0p ⩽G 0q ⇐⇒ q ⩽D p.

Proof. For all p, q ∈ D, with r = p ∨ q, we have the following equivalences:
1p ⩽G 1q ⇐⇒ φpr(1p) ·r φqr(0q) = 0r ⇐⇒ 1r ·r φqr(0q) = 0r ⇐⇒ φqr(0q) =
0r ⇐⇒ q = r = p ∨ q ⇐⇒ p ⩽D q. The proof of the second equivalence is
analogous.

The previous lemma seems to capture the spirit of Proposition 13. Notice
though that this proposition is more specific, as it says that the join of two
positive elements, as well as the meet of two elements below 0, is their product.
We can readily see that, in the glueing

∫
Φ
Ap along a family Φ satisfying (za),

for any two elements p and q in D, with r = p ∨ q, we have

1p ·G 1q = φpr(1p) ·r φqr(1q) = 1r ·r 1r = 1r = 1p∨q = 1p ∨ 1q.

But, for the case of the elements of ↓G01, this will not always be true: for instance,
in the example of Figure 3, 0q · 0r = 1s ̸= 0s = 0q∨r. We will need to impose an
extra condition on Φ:

for all p, q ∈ D, 0p ·G 0q = 0p∨q. (∗)

Notice that condition (∗) is not spurious, as it is equivalent to the fact that for all
p, q ∈ D, 0p ⩽G 1q, which is a desirable property, since we know that 0p ⩽G 01,
01 ⩽G 11, and 11 ⩽G 1q, and we want ⩽G to be a partial order, and in particular
transitive. Thus, the condition (∗) will be a consequence of a much more general
condition on Φ:

for all a, b, c ∈
⊎
Ap, if a ⩽G b and b ⩽G c, then a ⩽G c. (tr)

Our next result characterizes the condition (tr) in simpler terms.

Lemma 28. If
∫
Φ
Ap is the glueing of a system of integral ipo-monoids (D,A, Φ)

and Φ satisfies (bal), then Φ satisfies (tr) if and only if it satisfies:

1. for all p ⩽D q, and a, b ∈ Ap, a ⩽p b =⇒ φpq(a) ⩽q φpq(b); (mon)
2. for all p ⩽D q, p ⩽D r, and a ∈ Ap, ∼φpq(a) ⩽G φpr(∼a); (lax)
3. for all p ∨ r ⩽D v, a ∈ Ap, and b ∈ Ar,

φrv(∼b) ⩽v ∼φpv(a) =⇒ a ⩽G b. (∼lax)

Proof. First, notice that for all p ⩽D q and a ∈ Ap, we have that a ·G ∼φpq(a) =
φpq(a) ·q φqq(∼φpq(a)) = φpq(a) ·q ∼φpq(a) = 0q, what implies that a ⩽G φpq(a).
We will use this property several times in what follows. Suppose now that Φ
satisfies both (bal) and (tr).
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(mon) Suppose that a, b ∈ Ap are such that a ⩽p b, and let p ⩽D q. Then, by
the property above, a ⩽G b ⩽G φpq(b), and by (tr), we obtain that a ⩽G φpq(b).
Hence, φpq(a) ·q ∼φpq(b) = a ·G ∼φpq(b) = 0q, and therefore φpq(a) ⩽q φpq(b).
(lax) By the property above, we have that a ⩽G φpq(a) and ∼a ⩽G φpr(∼a), and
by Lemma 24, ∼φpq(a) ⩽G ∼a. We deduce by (tr) that ∼φpq(a) ⩽G φpr(∼a).
(∼lax) By the property above, we have that a ⩽G φpv(a) and ∼b ⩽G φrv(∼b),
and by Lemma 24, ∼φpv(a) ⩽G ∼a. If in addition we have φrv(∼b) ⩽v ∼φpv(a),
then φrv(∼b) ⩽G ∼φpv(a) and we deduce by (tr) that ∼b ⩽G ∼a, and so a ⩽G b.

In order to prove the reverse implication, suppose that Φ satisfies (bal) and
the three above conditions, and p, q, r ∈ D, with s = p ∨ q, t = q ∨ r, u = p ∨ r,
a ∈ Ap, b ∈ Aq, and c ∈ Ar are such that a ⩽G b and b ⩽G c. Then, by definition
of ⩽G, we have that φps(a) ·s φqs(∼b) = 0s and φqt(b) ·t φrt(∼c) = 0t, whence we
deduce that φps(a) ⩽s −φqs(∼b) and φrt(∼c) ⩽t ∼φqt(b). Taking v = s ∨ t, we
deduce by (mon) that φpv(a) ⩽v φsv(−φqs(∼b)) and φrv(∼c) ⩽v φtv(∼φqt(b)).
Moreover, by (lax), we have that ∼φqt(b) ⩽G φqs(∼b) and by Lemma 24, we
deduce that −φqs(∼b) ⩽G −∼φqt(b) = φqt(b), and therefore

φpv(a) ·v φrv(∼c) ⩽v φsv(−φqs(∼b)) ·v φtv(∼φqt(b)) = 0v,

which implies that φpv(a) ·v φrv(∼c) = 0v and hence φrv(∼c) ⩽v ∼φpv(a), and
applying (∼lax), a ⩽G c.

Remark 29. Notice that if a compatible family Φ satisfies (bal), then it satis-
fies (lax) if and only if for all p ⩽D q, p ⩽D r, and a ∈ Ap, −φpq(a) ⩽G φpr(−a).

Lemma 30. If
∫
Φ
Ap is the glueing of a system of integral ipo-monoids (D,A, Φ)

and Φ satisfies (bal), (za), and (lax), then ⩽G is antisymmetric.

Proof. Suppose that p, q ∈ D with r = p∨q, and a ∈ Ap and b ∈ Aq are such that
a ⩽G b and b ⩽G a. That is, φpr(a) ·r φqr(∼b) = 0r and φqr(b) ·r φpr(∼a) = 0r,
or equivalently φpr(a) ⩽r −φqr(∼b) and φqr(b) ⩽r −φpr(∼a). By (lax), we get

φpr(a) ⩽r −φqr(∼b) ⩽r φqr(−∼b) = φqr(b) ⩽r −φpr(∼a).

Hence, we would have that φpr(0p) = φpr(a ·p ∼pa) = φpr(a) ·r φpr(∼pa) = 0r.
By (za), this only is possible if p = r. By a symmetric argument, we also obtain
that q = r, and therefore p = q. Thus, by Lemma 22, we have that a ⩽p b and
b ⩽p a, and therefore a = b.

We are now in the position to prove our main result.

Theorem 31. A structure A is a locally integral ipo-monoid if and only if there
is a system (D,A, Φ) of integral ipo-monoids satisfying (bal), (za), and (tr) so
that A =

∫
Φ
Ap.

Proof. As we showed in Theorem 19, if A is a locally integral ipo-monoid, then
(A+, ·, 1) is a lower-bounded join-semilattice, its integral components form a
family {Ap : p ∈ A+} of integral ipo-monoids, and we have a compatible family
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Fig. 4. Two glueings, one being a semiring, the other just an ipo-monoid

of monoid homomorphisms Φ = {φpq : Ap → Aq : p ⩽ q} given by φpq(x) = qx,
so that A =

∫
Φ
Ap. Moreover, Φ satisfies condition (bal) since A satisfies (ineg),

condition (za) by Lemma 26, and condition (tr) since ⩽ is a partial order.
Conversely, if (D,∨, 1) is a lower-bounded join-semilattice, {Ap : p ∈ D}

is a family of integral ipo-monoids, and Φ = {φpq : Ap → Aq : p ⩽D q} is a
compatible family of monoid homomorphisms satisfying (bal), (za), and (tr), then
⩽G is a reflexive binary relation on

⊎
Ap by Remark 23, which is also transitive

since it satisfies (tr), and antisymmetric by Lemma 30. That is,
(⊎

Ap,⩽G
)

is a poset. By construction,
(⊎

Ap, ·G, 1G
)

is a monoid. Furthermore, since
Φ satisfies (bal) and the only element in ↓G01 ∩ Ap is 0p, for every p ∈ D, by
Lemma 25, we deduce that

∫
Φ
Ap satisfies (ineg) and therefore it is an ipo-monoid.

It can be readily checked that for all p ∈ D and x ∈ Ap, −Gx ·G x = x ·G ∼Gx,
since these involutive negations and products are computed inside Ap, which is
integral. For the same reasons, one can check that x ·G x ⩽G x, since the product
is computed inside Ap and the restriction of ⩽G to Ap is ⩽p, by Lemma 22.
And since ↓G01 = {0p : p ∈ D} by Lemma 25 and 0p ·G 0p = 0p∨p = 0p
by (∗), which is a consequence of (tr), we also have that

∫
Φ
Ap is ↓0-idempotent.

In summary,
∫
Φ
Ap is locally integral. Since for all p ∈ D and x ∈ Ap, 1x =

∼G(−Gx ·Gx) = ∼p(−px ·px) = 1p, we deduce that {Ap : p ∈ D} is the family of
integral components of

∫
Φ
Ap. Also, by Lemma 22, we know that φpq(x) = 1q ·Gx,

for all p ⩽D q and x ∈ Ap, that is, Φ is the family of homomorphisms of the
decomposition of Theorem 19.

Corollary 32. Given any nonempty family of nontrivial integral ipo-monoids
(involutive semirings, respectively) there is a locally integral ipo-monoid (involutive
semiring, respectively) whose integral components are the given ones.

Proof. If {Ap : p ∈ D} is a nonempty family of nontrivial ipo-monoids, let’s
choose a lower-bounded linear order on D and let D = (D,∨, 1) be the associated
lower-bounded join-semilattice. Then, the set Φ = {φpq : Ap → Aq : p ⩽D q} of
maps so that φpq(x) = 1q if p < q and φpq(x) = x if p = q is a compatible family
of monoid homomorphisms satisfying (bal), (za), (mon), (lax), and (∼lax). By
Theorem 31,

∫
Φ
Ap is a locally integral ipo-monoid whose integral components are

{Ap : p ∈ D}. If in addition all the integral components are involutive semirings,
then

∫
Φ
Ap is also an involutive semiring, since the join of a ∈ Ap and b ∈ Aq in∫

Φ
Ap is either their join in Ap, if p = q, or 1p∨q, if p ̸= q.
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Fig. 5. All integral involutive semirings up to size 5 and an integral ipo-monoid of size 6,
as components for constructing locally integral idempotent semirings and ipo-monoids.
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