SOME QUASIVARIETIES OF COMPLEX ALGEBRAS THAT ARE VARIETIES

PETER JIPSEN

For many classes \mathcal{K} of structures one finds that the SP closure of the class $Cm\mathcal{K}$ of complex algebras of members of \mathcal{K} is also closed under H. If \mathcal{K} is closed under ultraproducts, e.g. an elementary class, then $SPCm\mathcal{K}$ is a quasivariety (since $P_uCm\mathcal{K} \subseteq CmP_u\mathcal{K}$). So the above observation says that the quasivariety generated by \mathcal{K} is a variety. In this note we find some conditions on the class \mathcal{K} for which this is always the case. The main result explains for example why SPCm(semilattices) is a variety whereas SPCm(semigroups) is just a quasivariety.

Let $(f_i: i < \kappa)$ be a sequence of function symbols, each with some fixed arity. For brevity we often write $f(x_0, \ldots, x_{n-1}) = f(\underline{x})$, where f is assumed to have arity n.

Definition 1. Let $\mathbf{A} = (A, f_i^{\mathbf{A}} : i < \kappa)$ be a universal algebra. For each $f_i^{\mathbf{A}} : A^n \to A$ define $\hat{f}_i : \mathcal{P}(A)^n \to \mathcal{P}(A)$ by

$$\hat{f}_i(\underline{X}) = \{ f_i(\underline{x}) : x_i \in X_i \text{ for all } j < n \}.$$

The full complex algebra CmA is defined as $(\mathcal{P}(A), \cup, \sim, \emptyset, \hat{f}_i : i < \kappa)$. Here \sim denotes unary complementation with respect to the largest set A. Note that \hat{f} should really be denoted \hat{f}^{CmA} , but we will usually drop the superscripts on both f and \hat{f} . If f is a constant (0-ary function symbol) then the above definition reduces to $\hat{f} = \{f\}$. When confusion is unlikely, we also omit the \hat{f} on operation symbols and identify singleton sets with their unique element.

Full complex algebras are examples of complete and atomic Boolean algebras with normal operators. A *complex algebra* is any subalgebra of a full complex algebra. When considering them in the abstract setting of BAOs, the Boolean operations will be denoted by $+,\cdot,-,0,1$.

Actually the notion of a complex algebra is usually defined more generally for relational structures $\mathbf{U} = (U, R_i : i < \kappa)$. In this case one defines

$$\hat{f}_i(\underline{X}) = \{ y \in U : R_i(x_1, \dots, x_n, y) \text{ where } x_j \in X_j \text{ for } j = 1 \dots n \}.$$

Let K be a class of structures, and define

$$Cm\mathcal{K} = \{Cm\mathbf{A} : \mathbf{A} \in \mathcal{K}\}.$$

As usual, $\mathbf{V}(\mathcal{C})$ denotes the variety or equational class generated by a class of algebras \mathcal{C} . Recall that $\mathbf{V}(\mathcal{C}) = \mathbf{HSPC}$, where \mathbf{HC} , \mathbf{SC} , \mathbf{PC} are the class of homomorphic images, all subalgebras and all products of members of \mathcal{C} .

Problem 2. Under what conditions on K is VCmK = SPCmK?

Recall that a map $h: \mathbf{W} \to \mathbf{U}$ is a relational structure homomorphism if $R_i^{\mathbf{W}}(x_0, \dots, x_n)$ implies $R_i^{\mathbf{U}}(h(x_0), \dots, h(x_n))$ for all $x_0, \dots, x_n \in W$ and all $i < \kappa$. Such a map h is called a *bounded morphism* if, in addition, it also satisfies the condition: for all $i < \kappa$, all $y_0, \dots, y_{n-1} \in U$ and $x_n \in W$

 $R_i^{\mathbf{U}}(y_0, \dots, y_{n-1}, h(x_n))$ implies there exist $x_0, \dots, x_{n-1} \in W$ such that $h(x_j) = y_j$ for j < n and $R_i^{\mathbf{W}}(x_0, \dots, x_n)$.

A substructure **W** of a structure **U** is an *inner substructure* if the injection map is a bounded morphism (i.e. $R_i^{\mathbf{U}}(x_0...x_n)$ and $x_n \in W$ imply $x_0...x_{n-1} \in W$).

For a class K of structures, $\mathbb{H}_b K$ denotes the class of all bounded morphic images and $\mathbb{S}_b K$ denotes the class of all inner substructures of K. Given a structure \mathbf{U} and a set $X \subseteq U$, we define $\mathrm{Sg}_b^{\mathbf{U}}(X)$ to be the intersection of all inner substructures of \mathbf{U} that contain X, and since inner substructures are closed under intersections, this deserves to be called the *inner substructure generated by* X. For $u \in U$ the *one-generated inner substructure* $\mathrm{Sg}_b^{\mathbf{U}}(\{u\})$ is also denoted by $\mathrm{Sg}_b^{\mathbf{U}}(u)$.

The next result is wellknown, and explains the universal algebraic significance of onegenerated inner substructures.

Lemma 3. Let **W** be an inner substructure of **U**. Then **W** is one-generated if and only if Cm**W** is subdirectly irreducible.

Proof. The congruence relations on CmU are in one-to-one correspondence with so-called congruence ideals, which are boolean ideals that satisfy an additional condition. In the case of a complex algebra CmU, this condition is most easily described in terms of a binary relation ρ defined on U by

 $x \rho y$ iff x = y or there exist $\underline{x} \in U^{n+1}$, $i < \kappa$, j < n such that $R_i^{\mathbf{U}}(\underline{x})$, $x = x_j$ and $y = x_n$.

As usual, let $\rho[X] = \{y \in U : x \rho y \text{ for some } x \in X\}, \ \rho^{-1} \text{ denotes the inverse of } \rho, \ \rho^n \text{ the composition of } n \text{ copies of } \rho, \text{ and } \rho^* \text{ the reflexive transitive closure of } \rho.$

A boolean ideal I of CmU is a congruence ideal if for all $X \in I$ we have $\rho[X] \in I$. The congruence ideal generated by an element X in CmU is denoted by ci(X), and can be computed from below by the formula

$$\operatorname{ci}(X) = \bigcup_{k < \omega} \mathcal{P}(\rho^k[X]).$$

The inner substructure generated by a set $X \subseteq U$ is given by $\operatorname{Sg}_b^{\mathbf{U}}(X) = \rho^{*-1}[X]$. So **W** is a one-generated inner substructure of **U** iff $W = \rho^{*-1}[\{u\}]$ for some $u \in U$. We now observe that $w \in \rho^{*-1}[\{u\}]$ iff $w\rho^k u$ for some $k < \omega$ iff $\{u\} \in \operatorname{ci}(\{w\})$ iff $\operatorname{ci}(\{u\}) \subseteq \operatorname{ci}(\{w\})$.

This shows that **W** is one-generated by $u \in \mathbf{U}$ iff $\operatorname{ci}(\{u\})$ is a minimal nontrivial congruence ideal of $\operatorname{Cm} \mathbf{W}$, which means that $\operatorname{Cm} \mathbf{W}$ is subdirectly irreducible.

The following result is a dual version of Birkhoff's subdirect embedding theorem.

Lemma 4. Any structure is a bounded morphic image of the disjoint union of its onegenerated inner substructures, i.e. $\mathbf{U} \in \mathbb{H}_b \mathbb{U}_d \{ \operatorname{Sg}_b^{\mathbf{U}}(u) : u \in U \}$. Proof. Let $\mathbf{W} = \bigcup \{ \operatorname{Sg}_b^{\mathbf{U}}(u) \times \{u\} : u \in U \}$ be a disjoint union of the one-generated inner substructures of \mathbf{U} , and define $f: \mathbf{W} \to \mathbf{U}$ by f((x,u)) = x. Now $R_i^{\mathbf{W}}((x_0,u_0),\ldots,(x_n,u_n))$ holds iff $u_j = u_k$ for $j,k \leq n$ and $R_i^{\operatorname{Sg}_b^{\mathbf{U}}(u)}(x_0,\ldots,x_n)$. The forward implication shows that f is a structure homomorphism. On the other hand, if $x_0,\ldots,x_{n-1} \in U$, $(x_n,u) \in V$, and $R_i^{\operatorname{Sg}_b^{\mathbf{U}}(u)}(x_0,\ldots,x_n)$, then $R_i^{\mathbf{W}}((x_0,u),\ldots,(x_n,u))$ and $f((x_j,u)) = x_j$, hence f is a bounded morphism.

From the duality between structures with bounded morphisms and complex algebras with homomorphisms, we have the following corollary:

Corollary 5. For any structure U, $CmU \in SP\{Cm(Sg_b^U(u)) : u \in U\}$.

A class \mathcal{K} is said to be closed under one-generated inner substructures if $\operatorname{Sg}_b^{\mathbf{U}}(u) \in \mathcal{K}$ for all $\mathbf{U} \in \mathcal{K}$ and all $u \in \mathbf{U}$. The next result was originally proved by Yde Venema [Ve] for the class of semilattices.

Theorem 6. Let K be a class of structures that is closed under ultraproducts and one-generated inner substructures. Then VCmK = SPCmK.

Proof. Suppose \mathcal{K} is closed under ultraproducts and one-generated inner substructures, and let $\mathbf{A} \in \mathbf{VCm}\mathcal{K} = \mathbf{HSPCm}\mathcal{K}$. This means there is an algebra \mathbf{B} and structures $\mathbf{U}_i \in \mathcal{K}$ such that \mathbf{B} is a subalgebra of $\prod_{i \in I} \mathrm{Cm} \mathbf{U}_i = \mathrm{Cm} \sum_{i \in I} \mathbf{U}_i$, and \mathbf{A} is a homomorphic image of \mathbf{B} . From the duality between BAOs and structures (cf. [Go89]), the canonical structure $\mathrm{Cs}\mathbf{A}$ is an inner substructure of $\mathrm{Cs}\mathbf{B}$, which in turn is a bounded homomorphic image of $\mathrm{CsCm} \sum_{i \in I} \mathbf{U}_i$. By the Fine-van Benthem-Goldblatt Theorem [Go89] 3.6.1, $\mathrm{CsCm} \sum_{i \in I} \mathbf{U}_i$ is a bounded homomorphic image of an ultrapower of $\sum_{i \in I} \mathbf{U}_i$, and by Theorem 2.1.(13) of [Go95], this ultrapower is a bounded morphic image of a disjoint union of ultraproducts of the family $\{\mathbf{U}_i : i \in I\}$. Since \mathcal{K} is closed under ultraproducts, we have shown that $\mathrm{Cs}\mathbf{B}$ is a bounded morphic image of a disjoint union of members of \mathcal{K} , say $h : \sum_{i \in I} \mathbf{V}_i \to \mathrm{Cs}\mathbf{B}$.

bounded morphic image of a disjoint union of members of \mathcal{K} , say $h: \sum_{j\in J} \mathbf{V}_j \to \mathrm{Cs}\mathbf{B}$. Let $W_j = \{w \in V_j : h(w) \in \mathrm{Cs}\mathbf{A}\}$. Then $\sum_{j\in J} \mathbf{W}_j = h^{-1}[\mathrm{Cs}\mathbf{A}]$, and each \mathbf{W}_j is an inner substructure of \mathbf{V}_j since preimages of inner substructures and components of disjoint unions are again inner substructures. By the preceding lemma, for each $j \in J$, \mathbf{W}_j is a bounded morphic image of one-generated inner substructures which, by assumption, are in \mathcal{K} (since they are one-generated inner substructures of $\mathcal{V}_j \in \mathcal{K}$). In summary, we have shown that $\mathrm{Cs}\mathbf{A} \in \mathbb{H}_b \mathbb{U}_d \mathcal{K}$. Applying the duality again, we get $\mathrm{CmCs}\mathbf{A} \in \mathrm{SPCm}\mathcal{K}$. Since \mathbf{A} is a subalgebra of its canonical extension $\mathrm{CmCs}\mathbf{A}$, we finally obtain $\mathbf{A} \in \mathrm{SPCm}\mathcal{K}$.

If K is a universal class of algebras, we also prove a converse to the above result.

Theorem 7. Let K be a universal class of algebras (i.e. closed under subalgebras and ultra-products). Then $\mathbf{VCm}K = \mathbf{SPCm}K$ if and only if K is closed under one-generated inner substructures.

Proof. Suppose \mathcal{K} is a class of algebras such that $\mathbf{S}\mathcal{K} = \mathcal{K}$ and $\mathbf{VCm}\mathcal{K} = \mathbf{SPCm}\mathcal{K}$, and assume that $\mathbf{U} \in \mathcal{K}$, but for some $u \in U$, $\mathbf{W} = \operatorname{Sg}_b^{\mathbf{U}}(u) \notin \mathcal{K}$. Since CmU maps homomorphically onto CmW, we have CmW $\in \mathbf{HCm}\mathcal{K} \subseteq \mathbf{VCm}\mathcal{K} = \mathbf{SPCm}\mathcal{K}$. By Lemma 3 CmW

is subdirectly irreducible, hence $CmW \in SCm\mathcal{K}$. As \mathcal{K} is a class of algebras, for each $i < \kappa$ the class $SCm\mathcal{K}$ satisfies the universal formula

$$X_0 \neq \emptyset, \ldots, X_{n-1} \neq \emptyset \Rightarrow \hat{R}_i(X_0, \ldots, X_{n-1}) \neq \emptyset.$$

Now, because \mathcal{K} is assumed to be closed under subalgebras, we have $\mathbf{W} \notin \mathbf{S}\mathcal{K}$. It follows that \mathbf{W} is a substructure but not a subalgebra of \mathbf{U} , so there are $x_0, \ldots, x_{n-1} \in W$ and $i < \kappa$ such that $R_i^{\mathbf{W}}(x_0, \ldots, x_{n-1}, x)$ does not hold for any $x \in W$. But this contradicts the fact that $\mathrm{Cm}\mathbf{W} \in \mathbf{SCm}\mathcal{K}$ since if we take $X_j = \{x_j\}$, then the universal formula above does not hold in $\mathrm{Cm}\mathbf{W}$.

The reverse direction follows immediately from the previous theorem. \Box

It is easy to check that the varieties of groups, rings, lattices and Boolean algebras are closed under one-generated inner substructures, since their members have no proper inner substructures. Hence the following classes are varieties: SPCm(groups), SPCm(lattices), and SPCm(Boolean algebras). For groups this result is wellknown since it produces the class of group relation algebras. The class of all semilattices is also closed under one-generated inner substructures, since they are the principal filters in a meet semilattice. Therefore SPCm(semilattices) is a variety. However, the class of semigroups is not closed under one-generated inner substructures, as can be seen by examining the constant 2-element semigroup. It follows that SPCm(semigroups) is not closed under H (but it is a quasivariety).

References

[Go89] R. Goldblatt, Varieties of Complex Algebras, Ann. Pure Applied Logic 44 (1989), 173–242.

[Go95] R. Goldblatt, Elementary Generation and Canonicity for Varieties of Boolean Algebras with Operators, Algebra Universalis 34 (1995) No. 4, 551–607.

[Ve] Y. Venema, private communication.