
Algebra for Program Correctness
in Isabelle/HOL

A. Armstrong V. B. F. Gomes G. Struth

University of Sheffield

April 28, 2014

Motivation

◦ algebras for program analysis and correctness

◦ Kleene algebra with tests1 (partial correctness)
◦ demonic refinement algebra2 (total correctness)

◦ reference formalisation in Isabelle/HOL3

◦ verification of program equivalences

◦ program construction and refinement

◦ verification with Hoare logic

Isabelle offers unique balance of expressivity/automation

1
D. Kozen. Kleene algebra with tests. ACM TOCL, 1997.

2
J. von Wright. Towards a refinement algebra, SCP, 2004.

3
http://afp.sourceforge.net/entries/KAT_and_DRA.shtml

http://afp.sourceforge.net/entries/KAT_and_DRA.shtml

Motivation

Benefits of algebra

◦ program analysis by simple equational reasoning

◦ fits well with automated theorem proving

◦ separation of concerns (control flow vs data flow)

◦ data flow can be analysed by other means

How can algebras be integrated into program analysis tools?

Contributions

◦ formalisation of demonic refinement algebra in Isabelle/HOL

◦ 3 different axiomatisations for Kleene algebra with tests

◦ large libraries for KAT and DRA

◦ proof of classical program transformation examples

◦ Back’s atomicity refinement theorem
◦ Kozen’s loop transformation theorem

◦ computational models for KAT/DRA

◦ binary relations
◦ conjunctive/disjunctive predicate transformers

◦ principled approach to verification/refinement tools

◦ tools are themselves correct by construction

Kleene Algebras

Definition
KA is a structure (K ,+, ·,∗ , 0, 1) where

◦ (K ,+, ·, 0, 1) is a idempotent semiring, or dioid,

◦ with order defined by x ≤ y ←→ x + y = y

◦ the following fixpoint axioms hold for ∗

1 + x∗x ≤ x∗ z + yx ≤ y → zx∗ ≤ y

1 + xx∗ ≤ x∗ z + xy ≤ y → x∗z ≤ y

Kleene Algebras with Tests

Definition
KAT is a structure (K ,B,+, ·,∗ , , 0, 1) where

◦ (K ,+, ·,∗ , 0, 1) is a KA

◦ (B,+, ·, , 0, 1) is a BA with B ⊆ K

Algebraic programs semantics

if p then x else y fi = px + py

while p do x od = (px)∗p

Theorem
binary relations form KATs

Demonic Refinement Algebras

Definition
DRA is a structure (K ,+, ·,∗ ,∞ , 0, 1) where

◦ (K ,+, ·,∗ , 0, 1) is almost a KA

◦ x0 = 0 fails

◦ the following axioms hold for ∞

1 + xx∞ ≤ x∞ y ≤ xy + z → y ≤ x∞z

x∞ = x∗ + x∞0

Demonic Refinement Algebras

Possibly infinite loop

while p do x od = (px)∞p

Theorem
conjunctive/disjunctive predicate transformers form DRAs

Notation
refinement community uses u, ;, ω, >, ⊥, and v

Kozen’s Loop Transformation Theorem

Theorem
every sequential while program, appropriately augmented with
subprograms of the form z(pq + pq), can be viewed as a while
program with at most one loop under certain preservation
assumptions 12.

1
D. Kozen. Kleene algebra with tests. ACM TOCL, 1997.

2
K. Solin. Normal forms in total correctness for while programs and action systems. JLAP, 2011.

Kozen’s Loop Transformation Theorem

what do ∗ and ∞ have in common?

Definition
a pre-Conway algebra is a dioid (without x0 = 0) where

(x + y)† = (x†y)†x†

(xy)† = 1 + x(yx)†y

zx ≤ yz → zx† ≤ y †z

Remark
adding 1† = 1 yields KA

Theorem
Kozen’s transformation theorem holds in pre-Conway algebras
(hence in KAT and DRA)

Verification Tool

KAT

Algebraic
Semantics

Propositional
Hoare Logic

Control
Flow

REL

Relational
Model

RELSTORE

Program
Semantics

Hoare
Logic

Data
Flow

principled approach based on algebra

Propositional Hoare Logic

Validity of Hoare triple

` {p} x {q} ⇔ pxq = 0

Theorem
inference rules of propositional Hoare logic are theorems of KAT

` {p} skip {p}
p ≤ p′ ∧ q′ ≤ q ∧ ` {p′} x {q′} ⇒ ` {p} x {q}

` {p} x {r} ∧ ` {r} y {q} ⇒ ` {p} x ; y {q}
` {pb} x {q} ∧ ` {pb} y {q} ⇒ ` {p} if b then x else y fi {q}

` {pb} x {p} ⇒ ` {p} while b do x od {bp}

Store and Assignments

Store in Isabelle

◦ store S is implemented as record of program variables

◦ works for any type of data value

◦ each variable has a retrieve and an update function

◦ a state σ is an element of the store

Definition
Assignment statements are formalised as

(x := e) = {(σ, x update σ e) | σ ∈ S}

Hoare Logic

Theorem
Hoare’s assignment rule is derivable in relational KAT

P ⊆ Q[e/x] ⇒ ` {P} (x := e) {Q}

where Q[e/x] denotes substitution of x by e in Q

Verification Tool

Control Flow

◦ Isabelle libraries for KAT include Hoare rules

◦ hoare tactic generates verification conditions

◦ these blast away control structure

Data Flow

◦ modelled in relational KAT

◦ integrates Isabelle libraries for data domains

◦ analysed with ATP systems and SMT solvers

◦ all proofs are internally reconstructed by Isabelle

Verification of Insertion Sort

lemma insertion_sort:

‘i := 1;

while {| ‘i < |‘A| |}
do
‘j := ‘i;

while {| 0 < ‘j ∧ ‘A ! ‘j < ‘A ! (‘j-1) |}

do
‘k := ‘A ! ‘j;

‘A ! ‘j := ‘A ! (‘j-1);

‘A ! (‘j-1) := ‘k;

‘j := ‘j-1

od;
‘i := ‘i+1

od

Verification of Insertion Sort

lemma insertion_sort: "` {| |Ao| > 0 ∧ ‘A=Ao |}
‘i := 1;

while {| ‘i < |‘A| |}
do
‘j := ‘i;

while {| 0 < ‘j ∧ ‘A ! ‘j < ‘A ! (‘j-1) |}

do
‘k := ‘A ! ‘j;

‘A ! ‘j := ‘A ! (‘j-1);

‘A ! (‘j-1) := ‘k;

‘j := ‘j-1

od;
‘i := ‘i+1

od
{| sorted ‘A ∧ ‘A ∼π Ao |}"

Verification of Insertion Sort

lemma insertion_sort: "` {| |Ao| > 0 ∧ ‘A=Ao |}
‘i := 1;

while {| ‘i < |‘A| |} inv {| sorted (take ‘i ‘A) ∧ ‘A ∼π Ao |}
do
‘j := ‘i;

while {| 0 < ‘j ∧ ‘A ! ‘j < ‘A ! (‘j-1) |}
inv {| (sorted_but (take (‘i+1) ‘A) ‘j) ∧ (‘i < |‘A|)
∧ (‘j ≤ ‘i) ∧ (‘j6=‘i −→ ‘A ! ‘j ≤ ‘A ! (‘j+1))

∧ (‘A ∼π Ao) |}
do
‘k := ‘A ! ‘j;

‘A ! ‘j := ‘A ! (‘j-1);

‘A ! (‘j-1) := ‘k;

‘j := ‘j-1

od;
‘i := ‘i+1

od
{| sorted ‘A ∧ ‘A ∼π Ao |}"

Verification of Insertion Sort

apply (hoare, auto)

hoare tactic generates 8 subgoals

apply (metis One_nat_def take_sorted_butE_0)

apply (metis take_sorted_butE_n One_nat_def ...)

apply (metis One_nat_def Suc_eq_plus1 le_less_linear ...)

apply (unfold sorted_equals_nth_mono sorted_but_def)

apply (smt nth_list_update)

apply (metis One_nat_def perm.trans perm_swap_array)

apply (smt nth_list_update)

by (smt perm.trans perm_swap_array)

Morgan’s Refinement Calculus

Specification Statement

one single axiom added to KAT

` {p} x {q} ⇔ x ≤ [p, q]

Theorem
Morgan’s refinement laws become derivable

p ≤ q ⇒ [p, q] v skip

p′ ≤ p ∧ q ≤ q′ ⇒ [p, q] v [p′, q′]

[0, 1] v x

x v [1, 0]

[p, q] v [p, r]; [r , q]

[p, q] v if b then [pb, q] else [bp, q] fi

[p, bp] v while b do [bp, p] od

Morgan’s Refinement Calculus

Theorem
refinement laws for assignment are derivable in relational model

P ⊆ Q[e/x]⇒ [P,Q] v (x := e)

Q ′ ⊆ Q[e/x]⇒ [P,Q] v [P,Q ′]; (x := e)

P ′ ⊆ P[e/x]⇒ [P,Q] v (x := e); [P ′;Q]

Refinement of Insertion Sort

[[|Ao| > 0 ∧ ‘A=Ao, sorted ‘A ∧ ‘A ∼π Ao]]

v

‘i := 1;

while {|‘i < |‘A||} do
[[sorted (take ‘i ‘A) ∧ ‘i < |‘A| ∧ ‘A ∼π Ao,

sorted (take (‘i+1) ‘A) ∧ (‘i+1) ≤ |‘A| ∧ ‘A ∼π Ao]];
‘i := ‘i+1

od
by refinement

Refinement of Insertion Sort

v
‘i := 1;

while {|‘i < |‘A||} do
while {| ‘j 6=0 ∧ ‘A ! ‘j < ‘A ! (‘j-1) |} do

[[‘j ≤ ‘i ∧ sorted_but (take (‘i+1) ‘A) ‘j

∧ (‘j6=‘i −→ ‘A ! ‘j ≤ ‘A ! (‘j+1)) ∧ ‘A ∼π Ao

∧ (‘i+1) ≤ |‘A| ∧ ‘j6=0 ∧ ‘A ! ‘j < ‘A ! (‘j-1),

‘j-1 ≤ ‘i ∧ sorted_but (take (‘i+1) ‘A) (‘j-1)

∧ (‘j-1 6=‘i −→ ‘A ! (‘j-1) ≤ ‘A ! ‘j) ∧ ‘j 6=0

∧ (‘i+1) ≤ |‘A| ∧ ‘A ∼π Ao]];
‘j := ‘j-1

od;
‘i := ‘i+1

od

Refinement of Insertion Sort

[[‘j ≤ ‘i ∧ sorted_but (take (‘i+1) ‘A) ‘j

∧ (‘j6=‘i −→ ‘A ! ‘j ≤ ‘A ! (‘j+1)) ∧ ‘A ∼π Ao

∧ (‘i+1) ≤ |‘A| ∧ ‘j 6=0 ∧ ‘A ! ‘j < ‘A ! (‘j-1),

‘j-1 ≤ ‘i ∧ sorted_but (take (‘i+1) ‘A) (‘j-1)

∧ (‘j-1 6=‘i −→ ‘A ! (‘j-1) ≤ ‘A ! ‘j) ∧ ‘j 6=0

∧ (‘i+1) ≤ |‘A| ∧ ‘A ∼π Ao]]

v

‘k := ‘A ! ‘j;

‘A ! ‘j := ‘A ! (‘j-1);

‘A ! (‘j-1) := ‘k

Refinement of Insertion Sort

[[|Ao| > 0 ∧ ‘A=Ao, sorted ‘A ∧ ‘A ∼π Ao]]

v

‘i := 1;

while {|‘i < |‘A||} do
while {| ‘j 6=0 ∧ ‘A ! ‘j < ‘A ! (‘j-1) |} do

‘k := ‘A ! ‘j;

‘A ! ‘j := ‘A ! (‘j-1);

‘A ! (‘j-1) := ‘k;

‘j := ‘j-1

od;
‘i := ‘i+1

od

termination remains to be shown . . .

Conclusion

Work so far

◦ formalisation of KAT and DRA in Isabelle/HOL

◦ basis for program verification and correctness

◦ reference formalisation with large libraries (50 pages A4)

◦ integration into simple verification and refinement tools

◦ full Isabelle code is available online1

please ask me for a demo

1
Armstrong, Gomes, Struth. Kleene algebras with tests and demonic refinement algebras. AFP, 2014.

http://afp.sourceforge.net/entries/KAT_and_DRA.shtml

http://afp.sourceforge.net/entries/KAT_and_DRA.shtml

Conclusion

Related work in Isabelle/HOL

◦ verification with Hoare logic1

◦ flowchart equivalence proofs and Hoare logic in SKAT23

◦ rely/guarantee based concurrency verification4

Extensions

◦ wlp based reasoning with modal KA

◦ total correctness with DRA and predicate transformers

◦ concurrency verification with CKA

1
Nipkow. Winskel is (almost) right: towards a mechanized semantics textbook. FSTTCS, 1996.

2
Angus, Kozen. Kleene algebra with tests and program schematology. 2001.

3
Armstrong, Struth, Weber. Program analysis and verification based on KA in Isabelle/HOL, ITP, 2013.

4
Armstrong, Gomes, Struth. Algebraic principles for RG style concurrency verification tools. FM, 2014.

Verification in RA

◦ reference formalisation of RA in Isabelle integrates KA

◦ integrating KAT requires interpreting tests

◦ this suffices for verification/refinement with RA

◦ for heterogeneous relations better use Coq

KAT vs SKAT

◦ SKAT is KAT plus assignment axioms

◦ these have been formalised in Coq and Isabelle

◦ we can derive assignment axioms in relational KAT

◦ verification with SKAT in Isabelle seems more tedious

Algebras in the Archive

◦ already there:
variants of KA, KAT, DRA, RA, other regular algebras

◦ in the near future:
modal KA, CKA, quantales and fixpoint laws

please contribute . . .

