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Chapter 1

Why functors instead of signatures?
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Algebras for a functor

One can replace signatures by functors, for example a constant

1→ X

and a binary operation

X ×X → X

can be assembled into

1 +X ×X → X

or,

FX → X

An algebra morphism is simply a function f : X → X ′ such that

FX

Ff
��

//X

f
��

FX ′ //X ′
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Are functors more general than signatures?

Example: The powerset functor P takes f : X → X ′ to

Pf : PX → PX ′ X ⊇ a 7→ f [a]

Pω takes finite subsets only

What are powerset algebras?

List(X) −→ PωX −→ X

More generally, for every functor T : Set→ Set there is a signature Σ such
that a T -algebra TX → X is an FΣ algebra FΣ → TX → X, where FΣ is
the functor corresponding to the signature Σ.
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Coalgebras for a functor

A coalgebra is an arrow

X → TX

mapping a state to its set of successors. Morphisms are given as

X //

f

��

TX

Tf

��

X ′ // TX ′

and induce a notion of bisimilarity or behavioural equivalence

x ' x′ ⇔ ∃f, f ′ . f(x) = f(x′)

The definition of coalgebra is parametric in the category and the functor
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Example: Tranisition systems

X
ξ

//

f

��

PX

Pf
��

X ′
ξ′

//PX ′

∀y ∈ ξ(x) . ∃y′ ∈ ξ′(x′) . f(y) = y′

∀y′ ∈ ξ′(x′) . ∃y ∈ ξ(x) . f(y) = y′
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Initial algebras and final coalgebras

TX initial algebra final coalgebra

P (well-founded) sets non-well-founded sets

1 +X N N ∪ {∞}
A×X ∅ streams (=infinite lists)

1 +A×X lists over A finite and infinite lists over A

1 +X ×X finite binary trees non-well founded binary trees

. . .

For every functor T : Set→ Set the final coalgebra exists and consists of states
up to behavioural equivalence
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Chapter 2

Relation lifting

Aim: Extend (or lift) a functor T : Set→ Set to a functor T̄ : Rel→ Rel

(Notation “bar T ” in honour of the construction’s inventer Michael Barr)
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The category Rel

Given relations

A R //B and B S //C

there is the composition

A S·R //C

which is defined by having the graph

G(S ·R) = {(a, c) | ∃b ∈ B . (a, b) ∈ R ∧ (b, c) ∈ S}.

Relations form a Pos-category: They are partially ordered by inclusion ⊆
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Fact 1: Recognise Set inside Rel

f : A→ B gives rise to two relations

A
f∗
//B

has the graph {(a, f(a) | a ∈ A}.

B
f∗
//A

has the graph {(f(a), a) | a ∈ A}.

A relation R is of the form f∗ for some map f iff R is left-adjoint:

Id ⊆ S ·R R · S ⊆ Id

Moreover, S = f∗.
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Fact 2: Recover relations from maps

Every relation R : A //B can be ‘tabulated as a span’ of maps

GR
dR

}}

cR

!!

A B

and one recovers the relation from the maps:

R = cR∗ · dR∗

(−)∗ : Set→ Rel

together with Facts 1 and 2 provides a very tight relationship between maps
and relations
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Lifting a relation A→ B to a relation TA→ TB

Tabulate R as

GR
dR

}}

cR

!!

A B
and apply T

T (GR)
T (dR)

zz

T (cR)

%%

TA TB

and then reconstruct a relation using (−)∗ and (−)∗ in order to obtain

T̄R = T (cR)∗ · T (dR)∗
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Example

T (GR)
T (dR)

zz

T (cR)

%%

TA TB

T̄R = T (cR)∗ · T (dR)∗

leads to the explicit formula

GT̄R = {(t, s) ∈ TA× TB | ∃w ∈ TGR . Tπ1(w) = t, Tπ2(w) = s},

which can be used to calculate concrete examples:

aP̄b ⇔ ∃w ∈ P(GR) . π1[w] = a & π2[w] = b,

aP̄b ⇔ (∀x ∈ a . ∃y ∈ b . xRy) &

(∀y ∈ b . ∃x ∈ a . xRy)
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Relation lifting does not need to preserve graphs

Important: The last example does not satisfy

G(T̄R) ∼= T (GR)

Solution: Factor spans through an epi e and a mono-span:

TGR
e ����

T (dR)

}}

T (cR)

!!

GT̄R

dT̄Rvv cT̄R ((

TX TY
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Fact 3: Lifting is independent of choice of span

A relation can be represented by different spans.

W
e
����f

��

g

��

R

p
ww

q
''

X Y

q∗ · p∗ = g∗ · f∗ iff e epi iff e∗ · e∗ = Id .

(Tg)∗ · (Tf)∗ = (Tq ◦ Te)∗ · (Tp ◦ Te)∗

= (Tq)∗ · (Te)∗ · (Te)∗ · (Tp)∗

= (Tq)∗ · (Tp)∗
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Fact 4: Preservation of exact squares/weak pullbacks

W
p

~~

q

!!

A

f   

B

g
}}

C

(1)

is exact iff q∗ · p∗ = g∗ · f∗

q∗ · p∗ ⊆ g∗ · f∗ iff (1) commutes.
q∗ · p∗ = g∗ · f∗ iff (1) is a weak pullback.
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Relation lifting T̄ preserves composition

G(RS)

dRS

��

cRS

��

P
dP

xx

cP

&&

e
OOOO

GS
dS

||

cS

''

GR
dR

ww

cR

##

Thm (Barr, Trnkova, Carboni-Kelly-Wood, Hermida)
The relation lifting T̄ satisfies

T̄ (R · S) ⊆ (T̄R) · (T̄ S)

and

T̄ (R · S) = (T̄R) · (T̄ S)

if and only if T preserves weak pullbacks.
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The facts summarized

The functor (−)∗ : Set→ Rel has the following three properties:

1. (−)∗ preserves maps, that is, every f∗ has a right-adjoint (denoted f∗).

2. For every weak pullback (=exact square)

W
p

~~

q

!!

A

f   

B

g
}}

C

(2)

it holds q∗ · p∗ = g∗ · f∗

3. It holds e∗ · e∗ = Id for every epi e.
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Universal property of Rel

The functor (−)∗ is universal:

Rel H //K

Set

(−)∗

OO

F

>>

If K is any Pos-category, to give a locally monotone functor H : Rel→ K is the
same as to give a functor F : Set→ K with the following three properties:

1. Every Ff has a right adjoint, denoted by (Ff)r.

2. For every weak pullback (2) the equality Fq · (Fp)r = (Fg)r · Ff holds.

3. For every epi e it holds Fe · (Fe)r = Id .

Intuitively, Rel is obtained from Set by freely adding adjoints of maps.
Works not only for Set but for all regular categories.

19



Chapter 3

Monotone relations
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Monotone relations

Relations R : X → Y are monotone functions

X
op × Y → 2

where X,Y are posets (or preorders) and 2 is the two-chain.

Examples: Any relation 
 that is weakening-closed :

x′ ≤ x x 
 y y ≤ y′

x′ 
 y′

the order of a lattice, the turnstile in a sequent calculus, ...
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Rel(Pos): Composition and Identity

A R //B and B S //C

gives

A S·R //C

defined by

S ·R(a, c) =
∨
b

R(a, b) ∧ S(b, c)

where
∨

and ∧ are taken in the lattice 2.

The identity on a poset (preorder) A is given by the order relation and written
variously as

Id(a, a′) = A(a, a′) = a ≤A a′
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(−)∗ : Pos→ Rel(Pos)

(−)∗ : Pos→ Rel(Pos)
co

A 7→ B

f : A→ B 7→ λa, b . B(fa, b) : A→ B

f ≤ g 7→ g∗ ≤ f∗

where the co indicates that the order between relations gets reversed and

(−)∗ : Pos→ Rel(Pos)
op

A 7→ B

f : A→ B 7→ λa, b . B(b, fa) : B → A

f ≤ g 7→ f∗ ≤ g∗

where the op indicates that the order of the relations gets reversed.
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Maps are adjoints

We want to show that

A(a, a′) ≤
∨
b

R(a, b) ∧ S(b, a′)

and ∨
a

S(b, a) ∧R(a, b′) ≤ B(b, b′)

only if

R(a, b) = B(fa, b)

for some f : A→ B.

First consider the special case where A is the one element set. Then R is an
upset, S is a downset, and the two inequalities ensure that there is f ∈ B such
that S = ↓f and R = ↑f , or, in our notation, S(b, a) = B(b, f) and
R(a, b) = B(f, b). In the general case, the same reasoning gives an fa for
each a ∈ A with S(b, a) = B(b, fa) and R(a, b) = B(fa, b).
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Theorem

The relation lifting T̄ satisfies

T̄ (R · S) ⊆ (T̄R) · (T̄ S)

if T preserves epis and is functorial

T̄ (R · S) = (T̄R) · (T̄ S)

if and only if T preserves exact squares.

The proof follows the same lines as for the discrete case (although some of the
details are more intricate). The universal property is also stated and proved
similarly.
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Chapter 4

Many-valued (fuzzy) relations
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Generalise from 2 to a lattice V of truth values

Interesting example (Lawvere)

(lattice of truth values) = (lattice of distances)op

V = (([0,∞],≥R),+,0)

0 is top,∞ is bottom, join is inf , meet is sup, implication is truncated minus −

Instead of Pos or Preord one obtains generalised metric spaces (gms)

A gms is a metric space, but distances need not be symmetric.

A gms comes equipped with order:

x ≤ y ⇔ X(x, y) = 0

Example: Finite and infinite words with metric and prefix order in one structure
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Main idea

Tabulate relations R : A→ B as cospans

A

""

B

||

C(R)

where the ‘collage’ C(R) is defined as A+B with homs

C(R)(a, a′) = A(a, a′)

C(R)(b, b′) = B(b, b′)

C(R)(a, b) = R(a, b)

C(R)(b, a) = ⊥
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Chapter 5

Application: Bisimulation
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Bisimulation

Aczel-Mendler

X

ξ

��

Roo //

ρ

��

X ′

ξ′

��

TX TRoo // TX ′

Relation lifting

X

ξ

��

X ′Roo

ξ′

��

⊆

TX TX ′T̄Roo

Post-fixed point R ⊆ (ξ × ξ′)−1T̄ (R)
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Bisimulation

Coinduction theorem:
If x, x′ are related by some bisimulation, then x = x′ in the semantics.
The converse holds if T preserves weak pullbacks.

Example: T = P

R ⊆ (ξ × ξ′)−1 · T̄ (R)

xRx′ ⇒ ξ(x) T̄R ξ(x′)

xRx′ ⇒ ∀y ∈ ξ(x) . ∃y′ ∈ ξ(x′) . yRy′ & ∀y′ ∈ ξ(x′) . ∃y ∈ ξ(x) . yRy′
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Chapter 6

Application: Simulation
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Bisimulation and Coinduction

[ ”Change the category, not the definition” ]

Let T be a functor Pos→ Pos or Preord→ Preord.

Coinduction theorem:
If xRx′ for some bisimulation, then x ≤ x′ in the semantics.
The converse holds if T preserves embeddings.
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Example: Extensions of Set-functors

Theorem: There is a one-to-one correspondence between ‘nerve-preserving’
locally monotone functors S : Pos→ Pos and functors T : Set→ Pos

Pos S // Pos

Set

D

OO

T

<<

Example: If T = P, then S is the convex powerset functor.
The order on S(X,≤) is given by

a ≤SX b ⇔
∀x ∈ a . ∃y ∈ b . x ≤ y
∀y ∈ b . ∃x ∈ a . x ≤ y

aka: Egli-Milner order, Plotkin powerdomain

Remark: A set-functor and its Pos-extension have the same final coalgebra.
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Example: Simulations

Example: For a preorder X, let TX be the set of subsets ordered by

a ≤H b ⇔ ∀x ∈ a . ∃y ∈ b . x ≤ y

On posets this functor takes downsets ordered by inclusion
(aka Hoare powerdomain).

Remark: TX has the same underlying set as PX. It follows that the final
T -coalgebra has the same carrier and structure as the final P-coalgebra, but
equipped with a preorder.
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Metric coinduction

[ “Change the lattice of truth values, not the category” ]

Let T be a functor V-cat→ V-cat and
denote by d the distance in the final coalgebra

Coinduction theorem (Rutten, Worrell):

d(x, x′) = inf{R(x, x′) | R bisimulation}

Note the approximating character of bisimulation.

A number of sophisticated examples from domain theory can be found in
Worrells phd thesis.
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Chapter 7

Application: Coalgebraic logic
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Moss’s cover modality ∇

V = 2 (or any commutative quantale)

T : V-cat→ V-cat

x ∈ X and (X, ξ) ∈ Coalg(T ), that is, X
ξ−→ TX

γ ∈ L and L a set (or V-cat) of ‘formulas’

Def (Moss): For α ∈ TL we define the relation 
 : X → L

x 
 ∇α ⇔ ξ(x) T̄ (
) α

Thm (Moss): For T : Set→ Set: The logic characterises behavioural
equivalence if T preserves weak pullbacks.
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Example

Take TX = DownX = DX = [X
op
,V] (Hoare powerdomain)

X

d   

L

c
��




(Tc)∗ · (Td)∗ (ξ(x), α) = [

op
,V](D(d)(ξ(x)),D(c)(α))

= [

op
,V](ξ(x)), [d

op
,V] · D(c)(α))

=
∧

y∈ξ(x)
(ξ(x)(y) .

∨
φ∈L α(φ) ⊗ 
(y, φ))

= supy∈ξ(x) ( infφ∈L ( α(φ) + y 
 φ )− ξ(x)(y) )

If α = {φ} and φ is crisp and X is discrete:

(Tc)∗ · (Td)∗ (ξ(x), α) = ∀y ∈ ξ(x) . y 
 φ that is ∇ = 2

Note that the functor-specific part (in brown) is purely algebraic.
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Conclusion

Changing the category V of truth values: There is category theory parametric
in V (enriched categories), with substantial simplifications if V is a poset.

It should be interesting to develop the metric aspects further.

Applications to quantitative aspects of verification?

What is the relation algebra of monotone relations?

What is the universal algebra of mixed variance?

Connections with parametricity a la Reynolds?
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Appendix

Proposition: If in the situation

A R //

∼=

B

A
F

OO

R
// B
G

OO

R is a right-adjoint, then R lifts to a right-adjoint

R̃ : Coalg(F )→ Coalg(G)

Proof: Let L be the left-adjoint of R. One defines

R̃(A→ FA) = RA→ RFA ∼= GRA

Moreover, GR→ RF has a ‘mate’ LG→ FL which allows us to define

L̃(B → GB) = LB → LGB → FLB
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