
On Faults and Faulty Programs

Ali Jaoua, Marcelo Frias, Ali Mili

RAMICS 2014
Marienstatt im Westerwald, Apr/May 2014

Outline

• What’s Wrong with Faults

• Correctness and Relative Correctness

• Faults and Monotonic Fault Removal

• Definite Faults

• Beyond Nice Definitions: Applications

• Conclusion

4/29/2014 2

What’s Wrong with Faults

2004: Avizienis, Laprie, Randell, Landwehr
• Terminology for dependability

– Fault (attribute of a product that precludes its correct
behavior).

– Error (state of the program produced by sensitization
of the fault).

– Failure (violation of the system specification pursuant
the sensitization of a fault).

• Failure
– Well defined property, with respect to a well defined

specification

4/29/2014 3

What’s Wrong with Faults

Many issues with defining faults:

• Characterization of a fault dependent on
implicit design:
– Has no official existence.

– Is not documented/ validated/ vetted.

– Gap between designer’s intent, tester’s
understanding of the intent.

– Contingent upon implicit assumptions about other
parts of the product.

4/29/2014 4

What’s Wrong with Faults

The same failure may be blamed on many fault configurations:
• Neither the location,
• Nor the number,
• Nor the nature of the fault is determined

– Wrong operator,
– Wrong operand,
– Wrong condition,
– Missing path.

• What does it mean to remove the fault?
– It certainly does not mean that now the program is correct, since it

may still have other faults.
– We are lucky if we did not make it worst.

4/29/2014 5

What’s Wrong with Faults

Specification: 𝑹 = 𝒙, 𝒙′ 𝒙′ = 𝒙𝟐 𝒎𝒐𝒅 𝟓}.

{read(x); x=x*2; x=x%5; write(x);}

{read(x); x=x*2; x=x%5; write(x);}

{read(x); x=x*2; x=((x/2)**2)%5; write(x);}

{read(x); x=x*2; x=x*x; x=(x/4)%5; write(x);}

4/29/2014 6

{read(x); x=x*2; x=((x/2)**2); x=x%5; write(x);}

What’s Wrong with Faults

This casts a shadow on such concepts as
• Fault density,
• Fault proneness,
• Estimates of the number of faults.
If the same failure can be remedied by changing one
statement or two statements,
• Does that count as one fault or two faults,
If a missing path is remedied by adding a new path of
20 lines,
• how many faults is that?

4/29/2014 7

Outline

• What’s Wrong with Faults

• Correctness and Relative Correctness

• Faults and Monotonic Fault Removal

• Definite Faults

• Beyond Nice Definitions: Applications

• Conclusion

4/29/2014 8

Correctness and Relative Correctness

Program functions

4/29/2014 9

Correctness and Relative Correctness

Program functions

Granularity determines precision of fault
diagnosis.

4/29/2014 10

Correctness and Relative Correctness

Refinement, Correctness

Program g is correct with respect to R iff G
refines R.

Program g is correct with respect to R iff
𝒅𝒐𝒎 𝑹 ∩ 𝑮 = 𝒅𝒐𝒎 𝑹 .

4/29/2014 11

Correctness and Relative Correctness

4/29/2014 12

Correctness and Relative Correctness

Relative Correctness

4/29/2014 13

Correctness and Relative Correctness

Relative Correctness does not mean preserving correct
behavior:

4/29/2014 14

Correctness and Relative Correctness

Relative Correctness and Reliability

4/29/2014 15

Correctness and Relative Correctness

A program may be more reliable w/o being
more-correct. 𝑑𝑜𝑚(𝑅 ∩ 𝐺)

𝑑𝑜𝑚(𝑅 ∩ 𝐺′)

4/29/2014 16

Correctness and Relative Correctness

Quantifying Relative Correctness

• ∀𝑮′: 𝑹 ∩ 𝑮 𝑳 𝑹 ∩ 𝑮′ 𝑳.

–

• ∀𝑹: 𝑹 ∩ 𝑮 𝑳 𝑹 ∩ 𝑮′ 𝑳.

–

4/29/2014 17

Correctness and Relative Correctness

Quantifying Relative Correctness

• ∀𝑮′: 𝑹 ∩ 𝑮 𝑳 𝑹 ∩ 𝑮′ 𝑳.

– 𝑮 is correct with respect to 𝑹.

• ∀𝑹: 𝑹 ∩ 𝑮 𝑳 𝑹 ∩ 𝑮′ 𝑳.

– 𝑮 refines 𝑮’.

4/29/2014 18

Outline

• What’s Wrong with Faults

• Correctness and Relative Correctness

• Faults and Monotonic Fault Removal

• Definite Faults

• Beyond Nice Definitions: Applications

• Conclusion

4/29/2014 19

Faults and Monotonic Fault Removal

Contingent fault: contingent upon the hypothesis
that we are focusing the blame on Gi.

We may have to broaden it to include any number of
fault loci.

4/29/2014 20

Faults and Monotonic Fault Removal

To be a fault: Unary property.

To be a monotonic fault removal: binary property
(faulty statement and its replacement).

4/29/2014 21

Faults and Monotonic Fault Removal

In the same way that program construction
proceeds, ideally, by stepwise refinement,

𝑹 ≤ 𝑹𝟏 ≤ 𝑹𝟐 ≤ 𝑹𝟑 ≤ 𝑹𝟒 ≤ …𝒈.

Program testing ought to proceed, ideally, by
stepwise monotonic fault removal.

𝒈 𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 … 𝒈.

4/29/2014 22

Faults and Monotonic Fault Removal

Illustration:

4/29/2014 23

Faults and Monotonic Fault Removal

Illustration:

4/29/2014 24

Faults and Monotonic Fault Removal

Does every fault removal have to be monotonic
(produce a more-correct program?)

• Yes.

What about the transformation of g into g10?

• We broaden the definition of fault to include
more than one location (other reasons to do
so, anyway) and we view the transition
(g,g10,g11) as a single fault removal.

4/29/2014 25

Outline

• What’s Wrong with Faults

• Correctness and Relative Correctness

• Faults and Monotonic Fault Removal

• Definite Faults

• Beyond Nice Definitions: Applications

• Conclusion

4/29/2014 26

Definite Faults

Not all faults are contingent.

• Some faults are so damaging that no
amount of mitigation can salvage them.

• Examples:

– Loss of injectivity in preprocessing.

– Loss of surjectivity in postprocessing.

4/29/2014 27

Definite Faults

Loss of Injectivity.

4/29/2014 28

Definite Faults

Loss of Injectivity.

Specification:

• Sorting an array:

– Preprocessing: destroy one cell.

– Nothing that post-processing can do recover
from the loss.

4/29/2014 29

Definite Faults

Loss of Surjectivity

4/29/2014 30

Definite Faults

Loss of Surjectivity

• Specification:

• Post processing:

• No preprocessor can make up for this fault.

4/29/2014 31

Outline

• What’s Wrong with Faults

• Correctness and Relative Correctness

• Faults and Monotonic Fault Removal

• Definite Faults

• Beyond Nice Definitions: Applications

• Conclusion

4/29/2014 32

Beyond Nice Definitions: Applications

We have lived happily for several decades
without a definition of faults.

• We can live happily everafter…

• Why do we need a definition?

Applications:

• Streamline fault repair

4/29/2014 33

Beyond Nice Definitions: Applications

Mutation Testing for Fault Repair

• Faults are within the range of mutation operators.

• Fault bound to one location.

• Realistic faults can be removed efficiently.

• The structure of the program is not in question.

• If a program passes the test, it is correct (fault
removal confirmed).

• If a program fails the test, it is incorrect (fault
removal should be rolled back).

4/29/2014 34

Beyond Nice Definitions: Applications

All hypotheses highly questionable:
• Faults are within the range of mutation operators.

– Good luck.

• Fault bound to one location. The structure of the program is not in
question.
– Limited scope.

• Realistic faults can be removed efficiently.
– Painful dilemmas: realistic faults vs efficient fault removal.

• If a program passes the test, it is correct (fault removal confirmed).
– May work on T but fail outside.

• If a program fails the test, it is incorrect (fault removal should be rolled
back).
– Does not have to be correct; only more-correct than original; not the last

fault.

4/29/2014 35

Beyond Nice Definitions: Applications

Specification 𝑹, faulty program 𝒈, candidate
mutant 𝒈’.

• Is 𝒈’ a legitimate improvement over 𝒈?

– Compare 𝒅𝒐𝒎(𝑹 ∩ 𝑮) and 𝒅𝒐𝒎 𝑹 ∩ 𝑮′ .

• If modification buried inside a loop, it is
difficult to compute 𝑮 and 𝑮’.

4/29/2014 36

Beyond Nice Definitions: Applications

Possible approach:

• Using invariant relations.

• Invariant relation of while t {b}:

– Reflexive transitive superset of (𝑻 ∩ 𝑩)

• Can be used to prove
– Correctness,

– Incorrectness

of while loop with respect to specification V.

4/29/2014 37

Beyond Nice Definitions: Applications

// input: specification V
// output: correctness diagnosis; incompatible InvRel.
cumulR=L; diagnosis=undecided;
While (diagnosis=undecided && moreInvRel)
 {R = nextInvRel();
 CumulR = CumulR  R.
 if subsume(CumulR, V) {diagnosis = correct;}
 else
 if incompatible(R, V) {diagnosis = incorrect; return R;}
 }
// if (diagnosis=undecided) we ran out of invariant relations.

4/29/2014 38

Beyond Nice Definitions: Applications

Three outcomes

• Diagnosis = correct:
– No fault to remove.

• Diagnosis = incorrect:
– Invariant Relation culprit. Used to calculate

monotonic correction (statements, variables,).

• Diagnosis = undecided:
– Grow the database of Recognizers.

4/29/2014 39

Outline

• What’s Wrong with Faults

• Correctness and Relative Correctness

• Faults and Monotonic Fault Removal

• Definite Faults

• Beyond Nice Definitions: Applications

• Conclusion

4/29/2014 40

Conclusion

Defined relative correctness, tripartite relation between a
specification and two programs:
• Quantified over specifications: refinement.

– Relative correctness: point-wise refinement.

• Quantified over programs: correctness.
Used relative correctness to define
• Contingent fault.
• Monotonic fault removal.
• Definite fault.
Explored some possible applications behind
• Nice looking definitions.
Infancy; envision to continue exploration.

4/29/2014 41

