COMPUTER
SCIENCE

On Faults and Faulty Programs

Ali Jaoua, Marcelo Frias, Ali Mili

RAMICS 2014
Marienstatt im Westerwald, Apr/May 2014

)

Outline

What’'s Wrong with Faults

Correctness and Relative Correctness
Faults and Monotonic Fault Removal
Definite Faults

Beyond Nice Definitions: Applications
Conclusion

COMPUTER
SCIENCE

5 COMPUTER
New Jersey ’s Science & Technology University SCIENCE

What's Wrong with Faults

2004: Avizienis, Laprie, Randell, Landwehr

* Terminology for dependability

— Fault (attribute of a product that precludes its correct
behavior).

— Error (state of the program produced by sensitization
of the fault).

— Failure (violation of the system specification pursuant
the sensitization of a fault).

 Failure

— Well defined property, with respect to a well defined
specification

5 COMPUTER
eeeeeeeee ’s Science & Technology University SCIENCE

What's Wrong with Faults

Many issues with defining faults:

* Characterization of a fault dependent on
implicit design:
— Has no official existence.
— Is not documented/ validated/ vetted.

— Gap between designer’s intent, tester’s
understanding of the intent.

— Contingent upon implicit assumptions about other
parts of the product.

s COMPUTER
New Jersey’s Science & Technology University SC I E N C E

What's Wrong with Faults

The same failure may be blamed on many fault configurations:
* Neither the location,

* Northe number,

* Nor the nature of the fault is determined
— Wrong operator,
— Wrong operand,
— Wrong condition,
— Missing path.
« What does it mean to remove the fault?

— It certainly does not mean that now the program is correct, since it
may still have other faults.

— We are lucky if we did not make it worst.

COMPUTER
ology University f\:":*: SCIENCE

What's Wrong with Faults

Specification: R = {(x, x)|x' = x* mod 5}.
fread(x); x=x*2; x=x%p5; write(x);}
fread(x); ; X=x%p5; write(x);}

fread(x); x=x*2; s write(x);}

fread(x); x=x*2; x=x%p5; write(x);}

fread(x); x=x*2;

4129/2014 6

0 COMPUTER
New Jersey ’s Science & Technology University SCIENCE

What's Wrong with Faults

This casts a shadow on such concepts as
* Fault density,

* Fault proneness,

» Estimates of the number of faults.

If the same failure can be remedied by changing one
statement or two statements,

* Does that count as one fault or two faults,

If a missing path is remedied by adding a new path of
20 lines,

* how many faults is that?

)

Outline

What’'s Wrong with Faults

Correctness and Relative Correctness
Faults and Monotonic Fault Removal
Definite Faults

Beyond Nice Definitions: Applications
Conclusion

COMPUTER
SCIENCE

COMPUTER
niversity SCIENCE

Correctness and Relative Correctness

Program functions

#include <iostream> line
void count (char q[l) {int 1et dlg, other, i, 1; char c;
i=0; let=0; dig=0; other=0; l=strlen(q); // body init

while (i<1) { // cond t
= qlil; // body b0
if (’A’<=c && 'Z’>c) let+=2; // cond cl, body bl
alse
if (’a’<=c && ’z’>=c) let+=1; // cond c2, body b2
alse
if (°0'<=c && ’9’>=c) dig+=1; // cond c3, body b3
alse
other+=1; // body b4
i++;} // body inc

4129/2014

printf ("¥d ¥d ¥%d\n", let, dig, other);} // body p

COMPUTER
SCIENCE

Correctness and Relative Correctness

Program functions .
COUNT = INIT o (T nB) nT)oP.

B=B0oNESToINC,

NEST =(C1nB1LUCIN((C2nB2)UC2n ((C3n B3)UC3n B4)).

Granularity determines precision of fault
diagnosis.

4/29/2014 10

COMPUTER
SCIENCE

Correctness and Relative Correctness

Refinement, Correctness

Definition 2.1. Refinement, due to [BEM92|. Let R and R’ be two rela-
tions on set S. We say that R refines relation R’ (and we write: R J R') if and
only iff RLNR'LN({RUR")Y=R'.

Program g is correct with respect to R iff G
refines R.

Program g is correct with respect to R iff
dom(RN G) = dom(R).

4/29/2014 11

COMPUTER
niversity ' SCIENCE

.-—‘_'-'_‘
—
i
=
_
e — 2 - 2 2 -2
- e . o o
S — —— o
—— _‘_‘_ — ™ "
e ——— - e
e ™ -

R — — —"
— — o
‘_i_,_d—ﬁ'ﬂ_ ~— __'_ﬂ_.-ﬂ_ﬂ_ _ L R
— e
5 = =5 5 5 |5 5
—

R P dom(R N P)

Figure 1: Interpretation of dom(R N P)

4/29/2014 12

Correctness and Relative Correctness

Relative Correctness

Definition 2.4. Relative Correctness. Given a relation R on space S and

two programs g and g’ on space S, we say that g is more-correct than g' with
respect to K if and only if

(GNR)L 2 (G'NnR)L.
Also, we say that g is strictly-more-correct than g’ with respect to R if and only
if

(GNR)L > (G'NR)L.

4129/2014 13

NJLT.
New Jersey’s Science & Technology University

)

COMPUTER
SCIENCE

Correctness and Relative Correctness

Relative Correctness does not mean preserving correct

behavior:
1 ey
D — —— 2
3 — —= 3
Bl
4 == —— 4
e
5 — —==5
g T8
4/29/2014 R

o

— -
—~— :

14

COMPUTER
SCIENCE

Correctness and Relative Correctness

Relative Correctness and Reliability

I

dom(R N P)

dom(R n P"

dom(R)

4/29/2014 15

COMPUTER
logy University T » SCIENCE

Correctness and Relative Correctness

A program may be more reliable w/o being
more-correct. dom(R N)

dom(R N G")

4/29/2014 16

COMPUTER
SCIENCE

Correctness and Relative Correctness

Quantifying Relative Correctness
* VG': (RNG)Lo(RNG')L.

* VR: (RNG)Lo(RNG')L.

COMPUTER
SCIENCE

Correctness and Relative Correctness

Quantifying Relative Correctness
e VG': (RNG)Lo(RN G')L.

— G is correct with respect to R.
* VR: (RNG)Lo(RNG')L.

— G refines G'.

)

Outline

What’'s Wrong with Faults

Correctness and Relative Correctness
Faults and Monotonic Fault Removal
Definite Faults

Beyond Nice Definitions: Applications
Conclusion

COMPUTER
SCIENCE

N] I 0 COMPUTER
New Jersey’s Science & Technology University SC I EN CE

Faults and Monotonic Fault Removal

Definition 3.1. Contingent Faults. Let g be a program on space S, and let
(G, Ga, Gs, ...G,,) be a relational representation of program g at a given level of
granularity. We say that G; is a fault of program g with respect to specification R
if and only if there exists a relation G} on S such that (G, G5, G, ..., G}, ...Gy)
is strictly-more-correct with respect to R than 8(G,, G2, G5,G;, ..Gy).

Contingent fault: contingent upon the hypothesis
that we are focusing the blame on Gi.

We may have to broaden it to include any number of
fault loci.

4/29/2014 20

N] I 0 COMPUTER
New Jersey’s Science & Technology University S C I E N C E

Faults and Monotonic Fault Removal

Definition 3.2. Monotonic Fault Removal. Let g be a program on space S,
whose expression is 0(G1, G2, G3, ..., Gy, ...Gq) and let G be a contingent fault in
g. We say that the substitution of G; by G is a monotonic fault removal if and
only if program g’ defined by 0(G,1,Gs. G,G}, ...Gy) s strictly-more-correct
than g.

To be a fault: Unary property.

To be a monotonic fault removal: binary property
(faulty statement and its replacement).

4/29/2014 21

COMPUTER
SCIENCE

Faults and Monotonic Fault Removal

In the same way that program construction
proceeds, ideally, by stepwise refinement,

R<Ri<R,<R3<R;< ..g

Program testing ought to proceed, ideally, by
stepwise monotonic fault removal.

9<g1C g2 g3z g41<... 4.

COMPUTER
niversity SCIENCE

Faults and Monotonic Fault Removal

lllustration:

g1 The program obtained from g when we replace (let+=2) by (let+=1).

g0 The program obtained from g when we replace (?Z’>c) by (’Z?>=c).

g11 The program obtained from g when we replace (let+=2) by (let+=1)
(?Z?>c) by (?Z7>=c).

— (RyNG)L = {(s,5")|q € list{a, Uv Ua)}.
— (RonGm)L = {(s,8")|g € list{(aa\ {'Z'}) Ua, UrUa)}.

— (RoNGro)L = {(s,8")|q € list{o, Uv U a)}.
— (RoNG11)L = {(s,8")|q € list{ovg Uag Uv Ua)l.

4129/2014 23

COMPUTER
SCIENCE

Faults and Monotonic Fault Removal

lllustration:

4/29/2014

g1

]E]}E_!_}El}=c

ga1 let+=2-—]let+=1
let+=2—xlpt+=1 \
L) "Ll rc— M >=c gio

Fig. 2. Monotonic and Non Monotonic Fault Removals
24

COMPUTER
SCIENCE

Faults and Monotonic Fault Removal

Does every fault removal have to be monotonic
(produce a more-correct program?)

* Yes.
What about the transformation of g into g10?

 We broaden the definition of fault to include
more than one location (other reasons to do
so, anyway) and we view the transition
(g,910,g11) as a single fault removal.

)

Outline

What’'s Wrong with Faults

Correctness and Relative Correctness
Faults and Monotonic Fault Removal
Definite Faults

Beyond Nice Definitions: Applications
Conclusion

COMPUTER
SCIENCE

COMPUTER
SCIENCE

Definite Faults

Not all faults are contingent.

* Some faults are so damaging that no
amount of mitigation can salvage them.
* Examples:
— Loss of injectivity in preprocessing.
— Loss of surjectivity in postprocessing.

COMPUTER
niversity ' SCIENCE

Definite Faults
Loss of Injectivity.

Lemma 4.2. Right Divisibility. The relational equation in X : QX O R, ad-
mits a solution in X if and only if R and QQ satisfy the following condition:

RLCQLAQRNRL)L =L .

Proposition 4.3. Definite Fault, for loss of injectivity. We consider a
relation R on space S and a program g on S of the form g = {q: g2}. If R
and G do not satisfy the right divisibility condition (with G as Q), then g, is
definitely faulty with respect to R.

4/29/2014 28

COMPUTER
SCIENCE

Definite Faults

Loss of Injectivity.
Specification:
* Sorting an array:

— Preprocessing: destroy one cell.

— Nothing that post-processing can do recover
from the loss.

Definite Faults

Loss of Surjectivity

Lemma 4.4. Left Divisibility. The relational equation in X: XQ O R, XL -
QL. admits a solution in X if and only if R and (Q satisfy the following condifion.:

RL C (RONLQ)L .

Proposition 4.5. Definite Fault, for loss of surjectivity. We consider a
relation R on space S and a program g on S of the form g = {g1; g2;}. If R
and G2 do not satisfy the right divisibility condition (with G2 as Q). then g2 is
definitely foulty with respect to K.

4/29/2014 8

COMPUTER
SCIENCE

Definite Faults

Loss of Surjectivity

» Specification:
R ={(s.8")|s = s* mod 6} .

* Post processing:

jz2 = {8 = 8 mod 3}
* No preprocessor can make up for this fault.

4/29/2014 31

)

Outline

What’'s Wrong with Faults

Correctness and Relative Correctness
Faults and Monotonic Fault Removal
Definite Faults

Beyond Nice Definitions: Applications
Conclusion

COMPUTER
SCIENCE

Beyond Nice Definitions: Applications

We have lived happily for several decades
without a definition of faults.

* We can live happily everafter...
* Why do we need a definition?
Applications:

* Streamline fault repair

COMPUTER
SCIENCE

Beyond Nice Definitions: Applications

Mutation Testing for Fault Repair

* Faults are within the range of mutation operators.
* Fault bound to one location.

 Realistic faults can be removed efficiently.

* The structure of the program is not in question.

* If a program passes the test, it is correct (fault
removal confirmed).

* If a program fails the test, it is incorrect (fault
removal should be rolled back).

J1T.

N COMPUTER
New Jersey’s Science & Technology University SC I E N CE

Beyond Nice Definitions: Applications

All hypotheses highly questionable:

Faults are within the range of mutation operators.
— Good luck.

Fault bound to one location. The structure of the program is not in
question.

— Limited scope.

Realistic faults can be removed efficiently.
— Painful dilemmas: realistic faults vs efficient fault removal.

If a program passes the test, it is correct (fault removal confirmed).
— May work on T but fail outside.

If a program fails the test, it is incorrect (fault removal should be rolled
back).

— Does not have to be correct; only more-correct than original; not the last
fault.

4/29/2014 35

COMPUTER
SCIENCE

Beyond Nice Definitions: Applications

Specification R, faulty program g, candidate
mutant g'.

* Is g’ alegitimate improvement over g?
— Comparedom(R N G) and dom(R N G').

* If modification buried inside a loop, it is
difficult to compute G and G'.

COMPUTER
SCIENCE

Beyond Nice Definitions: Applications

Possible approach:
* Using invariant relations.
* Invariant relation of while t {b}:
— Reflexive transitive superset of (T N B)

* Can be used to prove
— Correctness,

— Incorrectness
of while loop with respect to specification V.

COMPUTER
&] SCIENCE

Beyond Nice Definitions: Applications

/| input: specificationV
/| output: correctness diagnosis; incompatible InvRel.
cumulR=L; diagnosis=undecided;
While (diagnosis=undecided && moreinvRel)
{R = nextinvRel();
CumulR =CumulR N R.
if subsume(CumulR, V) {diagnosis = correct;}
else
if incompatible(R, V) {diagnosis = incorrect; return R;}
}

/[if (diagnosis=undecided) we ran out of invariant relations.

4/29/2014

COMPUTER
SCIENCE

Beyond Nice Definitions: Applications

Three outcomes

* Diagnosis = correct:
— No fault to remove.

* Diagnosis = incorrect:

— Invariant Relation culprit. Used to calculate
monotonic correction (statements, variables,).

* Diagnosis = undecided:
— Grow the database of Recognizers.

)

Outline

What’'s Wrong with Faults

Correctness and Relative Correctness
Faults and Monotonic Fault Removal
Definite Faults

Beyond Nice Definitions: Applications
Conclusion

COMPUTER
SCIENCE

COMPUTER
SCIENCE

Conclusion

Defined relative correctness, tripartite relation between a
specification and two programs:

* Quantified over specifications: refinement.
— Relative correctness: point-wise refinement.

* Quantified over programs: correctness.

Used relative correctness to define

* Contingent fault.

* Monotonic fault removal.

* Definite fault.

Explored some possible applications behind

* Nice looking definitions.

Infancy; envision to continue exploration.

