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Leibniz: “geometria situs”

the French: “géométrie de position”
Johann Benedict Listing 1847: “Topologie”

Karl von Staudt 1848: “Geometrie der Lage”
others afterwards: “analysis situs”

Definable via

neighborhoods, open sets, open kernel, closed sets, etc.

Early in the twentieth century, topology has split into

, mainly invented by Georg Cantor and later
developed further by Felix Hausdorff, and what we today call

, elaborated as Alexander Grothendieck’s
cathedral.
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Axioms

A heterogeneous relation algebra

W,
;

» is a category wrt. composition and identities T,

» has as morphism sets complete atomic boolean lattices
with U, N, —, 1L, T, C,

» obeys rules for transposition T in connection with the latter
two that may be stated in either one of the following two
ways:

Dedekind rule:
RSNQC(RNQE:S): (SNR"Q)
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A heterogeneous relation algebra

W,
;

» is a category wrt. composition and identities T,

» has as morphism sets complete atomic boolean lattices
with U, N, —, 1L, T, C,
» obeys rules for transposition T in connection with the latter

two that may be stated in either one of the following two
ways:

Dedekind rule:
RSNQC(RNQE:S): (SNR"Q)

Schroder equivalences:
ABCC <+ ACCB <+—
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Residuals and the symmetric quotient

» R\S := R":S left residuum

The left residuum R\S sets into relation a column of R
precisely to those columns of S containing it.

> syq(A, B) := ATB N A"'B symmetric quotient

The symmetric quotient sets into relation equal columns.
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fraction backslash are contained in columns of the relation S above



[lustrating the symmetric quotient
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Set Comprehension

Finding equal columns ¢, k of relations R, S

Vn: (n,i)€e R < (n,k)es
Vn (n,i) e R — (n,k) e S A
(n,i) € R «— (n,k) €S
Vn: (n,i)e R — (n,k)esS and
Vn: (n,i) € R «— (n,k)es
dn: (n,i) €R A (n,k)¢S and
dn (n,i)¢ R A (n,k)e S

(i, k) e R"SNR:S



Construction of domains

Given a relation algebra, we may extend it in several ways:

» direct product
» direct sum

» direct power
» quotient

» extrusion

>

target permutation



Construction of domains

Given any direct products by projections

mT: X XY —X, p:XxY—Y,
7. UxV —U p:UxV—V,

we define the Kronecker product, the fork-, and the
join-operator:

i) (AQB) ==mAx" NpBp"
i) (CQD) :=Cn"NDip"
i) (EQF) :=mENpF
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Direct power — up to isomorphism

syq (¢,R)
R
Y
Any relation e satisfying
> syq(e,e) C 1, (i.e., in fact syq(e,e) = 1)
» syq (e, R) is surjective for every relation R starting in X.
is called a
direct power interpreted with €-relation
DirPow x P(X)

Member x e: X — P(X)
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Membership relations
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Topology — lifted

i) p € U for every neighborhood U € U(p)

UCe

i) fU €eU(p) and V D U, then V € U(p)
U cu

iii) If Uy, Uy € U(p), then Uy NUz € U(p) and X € U(p)
ULQU) M C U UT=T

iv) For every U € U(p) there exists a V' € U(p) such that
UeclU(y) forally e V

UCUe™U




The same with € conceiving U as a relation:
e: X —2X and U:X —2%

“For every U € U(p) there exists a V € U(p)
such that U € U(y) for all y € V7



The same with € conceiving U as a relation:
e: X —2X and U:X —2%

“For every U € U(p) there exists a V € U(p)
such that U € U(y) for all y € V7

Vp,U:UelU(p) — (IV:VeUp)A(Vy:yeV —U clUly)))



The same with € conceiving U as a relation:
e: X —2X and U:X —2%

“For every U € U(p) there exists a V € U(p)
such that U € U(y) for all y € V7

Vp,U:UelU(p) — (IV:VeUp)A(Vy:yeV —U clUly)))

vp,U :Upy — (ElV s Upy A (Vy DEyy — UyU))



The same with € conceiving U as a relation:
e: X —2X and U:X —2%

“For every U € U(p) there exists a V € U(p)
such that U € U(y) for all y € V7

Vp,U:UelU(p) — (IV:VeUp)A(Vy:yeV —U clUly)))
vp,U :Upy — (ElV:Z/Ipv/\(Vy:gyVHUyU))

Vp,U : Upy — (ElV:Z/lpv/\EIyzsyV/\@)



The same with € conceiving U as a relation:
e: X —2X and U:X —2%

“For every U € U(p) there exists a V € U(p)
such that U € U(y) for all y € V7

Vp,U:UelU(p) — (IV:VeUp)A(Vy:yeV —U clUly)))
vp,U :Upy — (ElV:LIpv/\(Vy:syVHUyU))

Vp,U : Upy — (ElV:Z/lpv/\EIyzsyV/\@)

vp, U : Uy — (HV cUpy A €T;27VU)



The same with € conceiving U as a relation:
e: X —2X and U:X —2%

“For every U € U(p) there exists a V € U(p)
such that U € U(y) for all y € V7

Vp,U:UelU(p) — (IV:VeUp)A(Vy:yeV —U clUly)))
vp,U :Upy — (ElV:LIpv/\(Vy:syVHUyU))

Vp,U : Upy — (ElV:Z/lpv/\EIyzsyV/\@)

Vp, U : UpU — (HV : Upv A ETJHVU)

vp, U : Upy — (U;ET;H)pU



The same with € conceiving U as a relation:
e: X —2X and U:X —2%

“For every U € U(p) there exists a V € U(p)
such that U € U(y) for all y € V7

Vp,U:UelU(p) — (IV:VeUp)A(Vy:yeV —U clUly)))
vp,U :Upy — (ElV:LIpv/\(Vy:syVHUyU))

Vp,U : Upy — (ElV:Z/lpv/\EIyzsyV/\@)

Vp, U : UpU — (HV : Upv A ETJHVU)

vp, U : Upy — (U;ET;H)pU

UCUe™U



A neighborhood topology and the basis of its open sets

A relation U : X — 2% will be called a neighborhood
topology if the following properties are satisfied:
) UT=T and UCe,
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A neighborhood topology and the basis of its open sets

A relation U : X — 2% will be called a neighborhood
topology if the following properties are satisfied:

) UT=T and UCe,

i) U CU,
i) UQU) M C U,
iv) U CUeTU.
—
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Topology given by transition to the open kernel

We call a relation K : 2¥ — 2% a mapping-to-open-kernel
topology, if
i) K is a kernel forming, i.e.,
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Topology given by transition to the open kernel

We call a relation K : 2%¥ — 2% a mapping-to-open-kernel
topology, if
i) K is a kernel forming, i.e.,
KT, QK C K:Q, KK C K,
contracting isotonic idempotent
ii) KT is total,
i) (KQL)M C M:LQT, infact (KQK)M = M:K.

kernel forming commutes with intersection
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Kernel-forming that is not a topology, since not intersection-closed
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Cryptomorphy of diverse topology concepts
U — K:=syql,e): 2% — 2%
K — U:=&K:X — 2%,

Op +— U:=e0pQ

KU — Op:=1In eTU = K"K

This means the obligation to prove, e.g.

UT=T, Kca,
UCe, QK C K:Q,
uQCcu, = KK CKC,
ULQLQU) M C U, eKtT=T,

UCUETU. (KR K)M = M:K.



Separation axioms

Let a topology on X be given via neighborhoods, open sets,
kernel mapping as required.

It is Tp-space (sometimes a Kolmogorov space) if for any two
points in X an open set exists that contains one of them but
not the other.

It is Ti-space when
Ve,y:o#+y—3JU,VeO:zecUNy¢UNyeV ANz V.

It is Th-space, i.e., a topology satisfying the Hausdorff property,
when

Ve,y:x#y— 30, VeOQ:zacUANyeVAI=UNV.



Separation axioms

Let a topology given in relational form, i.e., by U, O, K, 0 as
required. It is called a

i) To-space if syqUT,U") =1
ii) Ti-space if IC U .

iii) Ty-space or a Hausdorff space if 1T C UeTeld".



Contents

. Motivation — my early topology
. Topology

Interlude on prerequisites

B~ W N =

. Cryptomorphy of topology concepts

at

. Continuity

6 Interlude on structure comparison

7. Interlude on the existential and inverse image
8

. Relating continuity with the inverse image



Continuity — standard vs. relational definition

Let any two neighborhood topologies U, U’ be given on sets
X, X', and a mapping f: X — X'

For p € X and every neighborhood
f continuous <= U’ € U'(f(p)), there exists a neighborhood
U € U(p) satistying f(U) C U,
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Structure-preserving mappings

Let be given two “structures” of whatever kind
abstracted to relations Ry : X1 — Y7 and Ry : X9 — Y5.
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R/ /Rz
Xl XZ
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whether these mappings transfer the first structure “sufficiently
nice” into the second one.

If any two elements x,y are in relation R;, then their images
®(z), U(y) shall be in relation Rs.

Vee X1:VyeY): (z,y) € R — (P(x),¥(y)) € Ry



Structure-preserving mappings

Let be given two “structures” of whatever kind
abstracted to relations R; : X1 — Y7 and Ry : X9 — Y5.

Y, v Y
2

y

X, N X,

Given mappings ® : X1 — X5 and ¥ : Y] — Y5, we may ask
whether these mappings transfer the first structure “sufficiently
nice” into the second one.

If any two elements x,y are in relation R;, then their images
®(z), U(y) shall be in relation Rs.

Vx € Xl Vy € }/1 : (xay) € Rl - (q)(‘/l")alll(y)) € R2
Ry:U C &Ry



Homomorphism

This concept works for groups, fields and other algebraic
structures, but also for relational structures as, e.g., graphs.

®, ¥ is a homomorphism from R to R/, if
®, U are mappings satisfying Ri® C ¥R’

®, U is an isomorphism between R and R’, if
®, U as well as &7, UT are homomorphisms.

Theorem

If ®, U are mappings, then
RY C &R <<= R - &R U7 e
PTRCRV' <+— O RVYVCR

If relations @, ¥ are not mappings, one cannot fully execute this
rolling; there remain different forms of (bi-)simulations.



Continuity compares structures in a different way!

9% 9%
o
u u
X X

Let any two neighborhood topologies U, U’ be given on sets
X, X', and a mapping f: X — X'

For p € X and every neighborhood
f continuous <= U’ € U'(f(p)), there exists a neighborhood
U € U(p) satistying f(U) C U".



Contents

. Motivation — my early topology
. Topology
Interlude on prerequisites

. Cryptomorphy of topology concepts

Interlude on structure comparison

1

2

3

4

5. Continuity
6

7 Interlude on the existential and inverse image
8

. Relating continuity with the inverse image



Existential image of relations




Existential image of relations

V=1, :=syq(Re,c’) existential image.
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Existential image of relations

V=1, :=syq(Re,c’) existential image.

¥ is (lattice- )continuous wrt. the powerset orderings ) = 7.2

ﬁﬂx = Ipx 19Q;R = 19Q;19R i.e. multiplicative

T T . . .
eVR = ﬁR;s’ g R" = Ut e’ i.e. mutual simulation

R may be re-obtained from ¢ as R = ediel

but there exist many relations W satisfying R = eWie



{prqe} s oo

CO00OHOO0O0000O0OHOHOHOHOHOHOHO O
Prdccococoroococcoco~ocoooccccocoooooooccco
P} cocccccocoococcoco~0000c0ccoc0Oo~0O O RO HO
Ploccococoocococccocoo~ococcococoooocccocoooooco
Pt} ccorcccococooroooccoccocooocooocccococooo
{Pllo~coocococococ~ocococooccococoocoocococcocoocooooco
Pelococococccooco~occcocoooocccooooococooo
{Ploccccococor~ocooocococccococoooooocccocococooo
P4} ccccccocoococooccococcoococococcocoococooccooo0
Pllococococoocooccccocoocococccococoooocccocoooooco
Peloccocococ~coccoocooccco~o-0o~oro0000COCOOO
Ploccorocoocccoococooccococoococococcocoococooco
{Ie}ococcococccoocoooccocoooocccoocoooccocooo
{ooccccocococoocoococcccococooooooccococococooo
{tJoco~coccoococococcocoococococcoococococococococoooo
{}nococoocccoococoocccocoococoocccoococooccocooo
o N N X N N A P P N P PR PPN TP
ATl T A AN T S NN ed od od o < < < < <
E i S B A e P PN L.
= o an oo An A%
= = o=
Il
N w :
xAn/_A|xA
g
—
|| = r PHoo~o

2

Existential image



)’

Inverse image

{$7¢TT} cccocoocococococoo~o~

pr

<

\I/
Proo~o

Yoo o
q9d—-ocoococo

To-oo-
SN————

— AN M <O

Il
&

{¢1'¢t}ccocoococcocococococococoo0
rpe
ﬁ#m&OOOOOOOOOOOOlOlO
{¢7¢lcccococococcoccococoocoo
e
{¢9tllcccocccocco~ocroocoo
g
{6972} ccccccccoccococcocoo
¢
{Y'1Jocccococoocoocococoocococoo
{t9})cccocococococcococoocoo
{¢¢tllocccoccorocoococoocoo
{¢¢¢lcccco~cococcococcocoo
{¢€llcccococorocococococoocoo
{¢¢focccorocoocococcococoocoo
et
SNZOOOlOOOOOOOOOOOO
{¢tlorccocococococococococo
{¢lfocccocoocococoococcococococoo
{lococcoccocococococcococo
(Coint
{1'€tTcccoccoccoccocococococoo
{retlocccccococcococococcocoo
e
{If'flfocccocococoococococococococoo
f'¢fooccoococoocoococcococoocoo
{I'tlfcccococococcoccococoocoo
{ftlJocccocococooccocococococo
fllococococoocococoro~ocoocoo
AiOOOOOOOOOOOOOOOO
{£tllcccocococooccoccococoocoo
{¢tloccoccococococococococococo
{flfcccococococococcococococoo
{{loccoccoccocococococcocco
{tllcccocococooccoccococoocoo
{t}occococoocococcococcoo
{llocorococcococococococococo
{}mccocococcoccocoococo

AP P P A e P P P P A A e



Contents

. Motivation — my early topology
. Topology
Interlude on prerequisites

. Cryptomorphy of topology concepts

Interlude on structure comparison

1

2

3

4

5. Continuity
6

7 Interlude on the existential and inverse image
8

. Relating continuity with the inverse image



Continuity compares structures in a different way!

2™ 2
'19f1—
U u
X X’
7

Let any two neighborhood topologies U, U’ be given on sets
X, X', and a mapping f: X — X'

For p € X and every neighborhood
f continuous <= U’ € U'(f(p)), there exists a neighborhood
U € U(p) satistying f(U) C U".



Lifting the continuity condition
For all p e X, all Ve U'(f(p)), exists a U € U(p) with f(U) C V.
Vpe X YV el (f(p):3U cUp): fF(U)CV
Vpe X :Voe2X iUy, — (Fuilhu N[V e — L))
Vp Vo (fU)py — (Fu: Upu A [Vy : ey — (Fr€)yo])
Vp Vo (fU )y — (Bu: Upu Ay ey A (Fie)yo)
Vp Vo i (fiUd")py (Fu : Upy NET:fiE,)
Vp Vo (fiUd)pe (U;&‘T;ﬁ)
fU CUeT fie
fu' C L{;ﬁ}T The last step is proved as follows:

—
—

pv

UeT frel C UieT: fie!d) rdly because Ut is total
=U:e: fielisyq(fie, 5);19}T by definition of v

QM;ET;s;'l?}T cancellation
= U;ET;E;’ﬂ;T since U7 is a mapping

= Uy = U,



Continuity — standard vs. relational definition

9% 9%
o
u u
X X

Let any two neighborhood topologies U, U’ be given on sets
X, X', and a mapping f: X — X'

For p € X and every neighborhood
f continuous <= U’ € U'(f(p)), there exists a neighborhood
U € U(p) satistying f(U) C U".

f continuous = f;Z/{’xﬁfT cu
— fU C Z/{;19;T



Cryptomorphy of continuity concepts

Given sets X, X’ with topologies, we consider a mapping
f: X — X’ together with its inverse image Oy 2X' 2%,
Then we say that the pair (f,J,r) is

i) K-continuous = Ky Cels flenky
) Op-continuous <  Opydpr CUm:Opy
iii) Oy-continuous < }T;O{, C Oy
) €o-continuous =

fieo, 0yt Ceo,



Cryptomorphy of continuity concepts

Given sets X, X’ with topologies, we consider a mapping
f: X — X' together with its inverse image Oy 2X' 2%,
Then we say that the pair (f,J,r) is

i) K-continuous =
) Op-continuous <
ili) Oy-continuous <=

eo-continuous <=

’C;"ﬂfT - €2T:fT;a;’C11—
ODQi/ﬁfT - ﬁfoODl
}T"O{/ - OV

fieo, 0yt Ceo,

Again, there is an obligation to prove

f is K-continuous <= f is Op-continuous <=

f is Oy-continuous <= [ is gp-continuous



Thank you!



Language and system



Systems to support work with relations

» RELVIEW: RBDD-Implementierung; auch fiir grofle
Relationen

» TITUREL eine relationale Sprache, transformierbar,
interpretierbar

» RALF: weiland ein guter Formel-Manipulator und
Beweis-Assistent

» RATH: Exploring (finite) relation algebras with tools
written in Haskell



Aims in designing TiTUREL

» Formulate all problems so far tackled with relational
methods

» Transform relational terms and formulae in order to
optimize them

» Interpret the relational constructs as boolean matrices, in
RELVIEW, in the TITUREL substrate, or in RaTH

» Prove relational formulae with system support in the style
of RALF or Rasiowa-Sikorski

» Translate relational formulae into TEX-representation, or to
first-order predicate logic, e.g.



Recalling syntax vs. semantics for PL/I:

K const. . . an element K for K
interpretation [ .
tokens ¢ fct. . . a function table ¢ for ¢
In supporting set
p pred. s subset py for p
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Recalling syntax vs. semantics for PL/I:

K const. . . an element K for K
interpretation [ .
tokens ¢ fct. . . a function table ¢ for ¢
In supporting set
p pred. s subset py for p

Out of this and the variables V one forms terms and formulae
T=VI]K]|eT) F=pT) | ~F|VV:F

With a variable valuation v : x — v(x) terms are evaluated

vt (2) := () vt (k) i= k1 v*(p(t) := r(v*(t))

and formulae interpreted

Erep(t) <= v*(t) Cpr Fro ~F = [, F

EroVor:F <= Forall sholds =y, , F



Relational language

Language Substrate

Sformulae

sets of rela,

vect, elem
W
bs + bs + matrix/set function/
o p Do+ bs 4 mar
predicatel/pairlist etc.
vect
<~ gowd_Z QuotMod ) bs and predicate/marking/

listing/powerset element etc.

@ @mm
bs with

ground )
named/numbered element
—
carO
! finite baseset with
ground )
named/numbered elements



The system TITUREL runs under one of the following
acronym interpretations

e This is the ultimate relation system

e Towards improved techniques using relations
e Teaching informaticians to use relations

e Try it, to use relations

e Toolkit intended to use relations

e Testing innovative tools using relations

e Think innovative - try using relations



TiTuREL ontvangt de Heilige
Graal en de Heilige Speer uit
handen van een Engelenschaar
die neder daalt uit de hemel.
Hij bouwt een Tempel voor deze
heilige relikwien, de Graalburcht
Montsalvat. Ridders die tot de
Graal worden geroepen vormen
de ridderschap van de Heilige
Graal, hun Koning is Titurel. Op
hoge leeftijd draagt hij zijn ambt
over op zijn zoon Amfortas.



Model questions



Model problem

Matrix-
algebras of
relations

Theory of

relation
algebra




Model problem

-

Theory of

relation
algebra

Matrix
algebras of
relations

® McKenzie algebra




Predicate logic vs. relational logic

RRA (representable relation algebras, i.e. the Boolean matrix
algebras) are not finitely axiomatizable. (Don Monk)

RA can express any (and up to logical equivalence, exactly the)
first-order logic formulas containing no more than three
variables.

RRA is axiomatizable by a universal Horn theory.



Model problem

P a I

I

c =b=IUaUc
b =10 ac=ca=T

a

a

c

ab=ba=aUb
_ C a
bC : \ 02:

cb=bc=cUb
?;ab
b

i

K

o

AL

Ralph McKenzie’s homogeneous non-representable RA

The element a cannot be conceived as a Boolean matrix.
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Model problem
(RP ® SQ) C (R®S):(PRQ)

Matrix-
algebras of
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Theory of
relation

algebra



Model problem
(RP ® SQ) C (R®S):(PRQ)

Matrix-
algebras of
relations

Theory of
relation
algebra

* /

T (RP® SQ)2(RRS) (PRQ)



Model problem
TR P N p:SiQip"T C
(m:Rr'T 0 p:Sip )i (! Pen”™ 0 Qi p"T)

Matrix-
algebras of
relations

Theory of
relation

algebra

T mRPT" N p:SQip" D
(W;R;T(/T N p;S;p/T);(Tr/;P;Tr”T N p/;pr”T)



Model problem

4 morphisms in any other case



Model problem

It is, however, possible to prove that

QEIx) Ip®R) = (QROR) = (4@ R) (QXLy)

This does express correctly that @@ and R may with one
execution thread be executed in either order; i.e., with
meandering “coroutines”.

But no two execution threads are provided to execute in parallel.
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Model problem




Model problem




History of relations



History of relations
Relations were being developed at a time when

» formal semantics was not yet known
language and interpretation
typing and unification
» the idea that several models of a theory may exist, was
close to being completely unknown
(non-Euclidian geometry: Bolyai, Lobatschevskij ~ 1840)
» one was still bound to handle the following in the
respective natural language, namely in English, German,
Latin, Greek, Japanese, Russian, Arabic ...!

quantification v,d
conversion RT
composition A:B

but also ,,brother®, ,.father“, ,uncle*
and only gradually developed a more standardized language
» the concept of a matrix had not yet been coined
(Cayley, Sylvester 1850’s)



History of relations

George Boole’s investigations on the laws of thought of 1854:

In every discourse, whether of the mind conversing with its own
thoughts, or of the individual in his intercourse with others,
there is an assumed or expressed limit within which the subjects
of its operation are confined. The most unfettered discourse is
that in which the words we use are understood in the widest
possible application, and for them the limits of discourse are
co-extensive with those of the universe itself. But more usually
we confine ourselves to a less spacious field. ... Furthermore,
this universe of discourse is in the strictest sense the ultimate
subject of the discourse. The office of any name or descriptive
term employed under the limitations supposed is not to raise in
the mind the conception of all the beings or objects to which
that name or description is applicable, but only of those which
exist within the supposed universe of discourse.



History of relations

matrices

typing '

quantification

«0O)>» «F>r «=>»

<

it
-

DA
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Closure and contact

Definition
Let some ordered set (V, <) be given. A mapping p: V — V is
called a closure operation, if it is
i) expanding z < p(z),
ii) isotonic r<y — plx)<py),
iii) idempotent p(p(x)) < p(z).
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iii) idempotent p(p(x)) < p(z).

As usual: quantifiers omitted. We now reinstall them

Vo,y: x <y — p(z) < p(y)



Closure and contact

Definition
Let some ordered set (V, <) be given. A mapping p: V — V is
called a closure operation, if it is

i) expanding x < p(x),
ii) isotonic r<y — plx)<py),
iii) idempotent p(p(x)) < p(z).

As usual: quantifiers omitted. We now reinstall them

Ve,y: <y — p(x) < p(y)

which makes 18 symbols in standard mathematics notation.
This will now shrink down to just 7.



Theorem
Assume an ordering E : X — X and a mapping p: X — X.
Then p is a closure operator if and only if
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Then p is a closure operator if and only if

pSE  EpCpE  ppCp

We convince ourselves, that the intentions of the preceding

definition are met when lifting in this way, starting from
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Theorem
Assume an ordering E : X — X and a mapping p: X — X.
Then p is a closure operator if and only if

pSE  EpCpE  ppCp

We convince ourselves, that the intentions of the preceding
definition are met when lifting in this way, starting from

p(p(z)) < p(x):
VI, Y, 21 poy APy — [0 pgw A Eoyl
VT, y, 2t poy N pyz — (P E)zz

(32,2 : (Y : poy Apyz) A[PEsz)
=3z, 2 : (pp)az N[pEaz)

Vo, 2 (pip)ez — [P E ]2z

pip S pET

reeey

Together with the others, we get <= ppCp



Closure and contact

Definition

We consider a set related to its powerset, with a membership
relation ¢ : X — P(X) and a powerset ordering
Q:P(X)— P(X). A relation C : X — P(X) is called an
Aumann contact relation, provided

i) it contains the membership relation, i.e., ¢ C C,

ii) an element x in contact with a set Y all of whose elements
are in contact with a set Z, will be in contact with Z, the

so-called infectivity of contact, i.e., C:e™:C C C, or
equivalently, CT:C C e":C.

One will easily show that C forms an upper cone, i.e., C:2 C C-:
cv.C - e’ Celg= Q



Closure and contact

Theorem

Given a closure operator p : P(X) — P(X) on some powerset
defined via a membership relation ¢ : X — P(X), the construct
C :=¢eip" turns out to be an Aumann contact relation.

Beweis.
i)eCep' <— gip Ce<— el Ce.

ii) Cie™:C = eplicTiep’ =epleiEp’  since p is a mapping
=& ,OT;Q; pT

Ceptip"  with the second closure property

C eQp’  with the third closure property

=ep' =C sinceed=¢



Closure and contact

Theorem
Given any Aumann contact relation C : X — P(X), forming
the construct p := syq(C, e) results in a closure operator.

Proof: i) p=15syq(C,e) CCTECee=0Q

ii) We recall e:syq(e,Y) =Y and &syq(s,Y) =Y for
p:Qip" = syq(C,e)eEsyq(e,C) = CT.C Ceg = Q.
Since p is a mapping, we may proceed with
ppTCQ QCpQp”  QpCpQ

iii) We prove p:p C p, i.e., syq(C,e):syq(C,e) C syq(C,e) or
(éT;E U CT:g)isyq(e,C) C CleuCTE

Now, the two terms on the left are treated separately.



Example

Let an arbitrary relation R : X — Y be given.

Then C := RR '€ is always an Aumann contact relation. To
show this, we have to prove

eCRR e=C , which is trivial using Schréder equivalences.

T

T.CCeC <= RR'c RR e - eTRR e
T

< R/RT;E

— R

C

=

g

T;
(R

N 1N
av]

‘R
R T;s)T

The construct C := RR ¢ may be read as follows: It declares
those combinations x € X and S C X to be in contact C, for
which every relationship (z,y) ¢ R implies that there exists also
an 2’ € S in relation (2/,y) ¢ R.



Exzerpt of bibliography of trade union publication

BercuamMeR, R., Rusinowska, A., AND DE Swart, H. (2005) Applying Rela-

tional Algebra and RELVIEW to Coalition Formation. Public Choice Society.

http: //www.pubchoicesoc.org/papers2005/BerghammerRusinowskadeSwart . pdf

Brink, C., Kaur, W., anp Scumipt, G. (Eps.) (1997) Relational Methods in

Computer Science. Berlin, Springer.

DEeEMEN, A. van (1997) Coalition Formation and Social Choice. Kluwer.

RusinowsKa, A., DE SWART, H., anND van DER RuT, JW. (2005) A new model of

coalition formation. Social Choice and Welfare, 24, 120-154.

ScHMIDT, G., AND STROHLEIN, T. (1993) Relations and Graphs, Discrete Mathemat-
ics for Computer Scientists. Berlin, Springer.

Swart, H. pE, OrLowska, E., ScamipT, G., aNp Rousens, M. (Eps.) (2003)
Theory and Applications of Relational Structures as Knowledge Instruments. Berlin,
Springer.



	Motivation –— my early topology
	Topology
	Interlude on prerequisites
	Cryptomorphy of topology concepts
	Continuity
	Interlude on structure comparison
	Interlude on the existential and inverse image
	Relating continuity with the inverse image
	Language and system
	Model questions
	History of relations
	Closure and contact

