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i Ideal in Join Semilattice

Def. S is a join semilattice if
= S is a partially ordered set
= S has a join VX for each finite subset X of S.

Def. S is a complete join semilattice if
= S is a partially ordered set
= S has a join VX for each subset X of S.

Def. A subset X of a join semilattice S is an ideal if
=« X is closed under finite joins

= X is downward-closed
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i Goal

Prop. The forgetful functor from CSLat to SLat has
a left adjoint, which sends S to the set of all ideals
of S.

N
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A sufficient condition of adjunction
[Toposes, Triples and Theories]
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i + Beck's Theorem
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i + Beck's Theorem
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When G is the functor which
pre-composes a monad map
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i Theorem 1
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iTheorem 1

= G : P'-Alg—P-Alg has a left adjoint if
= P,P' are monads on C
= i : P—P'is a monad map P'(b)
= C has an absolute coequalizer of P'Pc ——= P'c
for each P-algebra (b:Pc—c) p'=Plic

=« G(a : P'’c—c)=(a+i. : Pc—c)
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i Lemma
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Definitions

Def. (S,V,-,e) is an idempotent semiring if
= (5,V) is a join semilattice
= (S,-,e) is a monoid
= a-(VX)=V{a-x | xeX} and (VX)-a=V{x-a | xeX}
for each a €S and each finite subset X of S
Def. (S,V,+,e) is a quantale
(i.e., complete idempotent semiring) if
= (5,V) is a complete join semilattice
= (5,-,e) is a monoid

= a-(VX)=V{a-x | xeX} and (VX)-a=V{x-a | xeX}
for each a €S and each subset X of S 37




i Goal

Prop. The forgetful functor from Qt to ISRng has
a left adjoint, which sends S to the set of all ideals
of S.

N
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construction 1 forget
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i Theorem 2
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Theorem 2

= G: P'T-Alg—PT-Alg has a left adjoint if
= P,P' are monads on C
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i Main Theorem and Corollary
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Non-ideal Example
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