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Def.  S is a join semilattice if

� S is a partially ordered set

� S has a join ∨X for each finite subset X of S.

Def.  S is a complete join semilattice if

� S is a partially ordered set

� S has a join ∨X for each subset X of S. 

Def.  A subset X of a join semilattice S is an ideal if

� X is closed under finite joins

� X is downward-closed
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CSLat

forget

Goal

construction 
of ideals

The category of 
complete join semilattices

and homomorphisms.

The category of 
join semilattices

and homomorphisms.

Prop.  The forgetful functor from CSLat to SLat has 
a left adjoint, which sends  S  to the set of all ideals 
of S.
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� G : P'-Alg→P-Alg has a left adjoint if

� P,P' are monads on C

� i : P→P' is a monad map

� C has an absolute coequalizer of
for each P-algebra (b:Pc→c)

� G(a : P'c→c)=(a・ic : Pc→c)

Theorem 1

P'(b)

µ'・P'ic

P'Pc P'c
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Def.  (S,∨,・,e) is an idempotent semiring if

� (S,∨) is a join semilattice

� (S,・,e) is a monoid
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of S.
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