A Sufficient Condition for Liftable Adjunctions between Eilenberg-Moore Categories

Koki Nishizawa (Kanagawa Univ.) with Hitoshi Furusawa (Kagoshima Univ.)

RAMICS 2014/4/30

Construction of

countable ideals

Construction

*-continuous

of *-ideals

Background

Some left adjoints to forgetful functors are given by construction of ideals.

Why?

When?

Result:

Result:

Result: from Monoid to T-algebra

Contents

- Construction of left adjoint from join semilattice to complete join semilattice
- 2. Construction of left adjoint from join semilattice over T-algebra to complete join semilattice over T-algebra
- 3. Conclusion

Contents

- Construction of left adjoint from join semilattice to complete join semilattice
- 2. Construction of left adjoint from join semilattice over T-algebra to complete join semilattice over T-algebra
- 3. Conclusion

Ideal in Join Semilattice

Def. S is a join semilattice if

- S is a partially ordered set
- S has a join VX for each <u>finite subset</u> X of S.

Def. S is a complete join semilattice if

- S is a partially ordered set
- S has a join VX for each <u>subset</u> X of S.

Def. A subset X of a join semilattice S is an ideal if

- X is closed under finite joins
- X is downward-closed

Prop. The forgetful functor from CSLat to SLat has a left adjoint, which sends S to the set of all ideals of S.

G:D'→D has a left adjoint if

D' has coequalizers of certain diagrams

Beck's Theorem:

G:D'→D has a left adjoint if

D' has coequalizers of certain diagrams

 $\frac{1}{1}$ $\frac{1}$

Beck's Theorem:

absolute coequalizer
= coequalizer preserved by all functors

G:D'→D has a left adjoint if

D' has coequalizers of certain diagrams

Beck's Theorem:

When G is the functor which pre-composes a monad map

When G is the functor which pre-composes a monad map

Theorem 1

G:D'→D has a left adjoint if

monadic

monadic

 $G(a : P'c \rightarrow c)$ = $a \cdot i_c : Pc \rightarrow c$

by monad map $i : P \rightarrow P'$

P-Alg

C has an absolute coequalizer of

P'Pc
$$\stackrel{P'(b)}{\longrightarrow}$$
 P'c $\mu' \cdot P'i_c$

for each P-algebra

Theorem 1

- G: P'-Alg→P-Alg has a left adjoint if
 - P,P' are monads on C
 - i : P→P' is a monad map
 - C has an absolute coequalizer of for each P-algebra (b:Pc→c)
 - G(a : P'c \rightarrow c)=(a•i_c : Pc \rightarrow c)

P'Pc
$$\stackrel{P'(b)}{\Longrightarrow}$$
 P'c $\mu' \cdot P'i_c$

Corollary 1

-

Corollary 1

Lemma

For each join semilattice S, ideal completion of S gives an absolute coequalizer of $\wp(\lor)$ and \cup in Set.

$$\mathscr{S}(V) \Longrightarrow \mathscr{S}(S) \xrightarrow{\text{Ideal}(S)} \text{Ideal}$$

$$Completion$$

Lemma

For each join semilattice S, ideal completion of S gives an absolute coequalizer of $\wp(\lor)$ and \cup in Set.

$$\mathscr{S}(V) \Longrightarrow \mathscr{S}(S) \xrightarrow{\text{Ideal}(S)} \text{Ideal}$$

$$Completion$$

Proof of the Lemma

$$\mathscr{D}(\mathscr{D}_{fin}(S)) \xrightarrow{\mathscr{D}(V)} \mathscr{D}(S) \xrightarrow{\text{Ideal Completion}} \text{Ideal(S)}$$

Contents

- Construction of left adjoint from join semilattice to complete join semilattice
- 2. Construction of left adjoint from join semilattice over T-algebra to complete join semilattice over T-algebra
- 3. Conclusion

Definitions

Def. (S, V, \cdot, e) is an idempotent semiring if

- (S, V) is a join semilattice
- (S,•,e) is a monoid
- $a \cdot (\forall X) = \forall \{a \cdot x \mid x \in X\}$ and $(\forall X) \cdot a = \forall \{x \cdot a \mid x \in X\}$ for each $a \in S$ and each finite subset X of S

Def. (S, \lor, \cdot, e) is a quantale (i.e., complete idempotent semiring) if

- (S, V) is a <u>complete join semilattice</u>
- (S, •,e) is a monoid
- $a \cdot (\forall X) = \forall \{a \cdot x \mid x \in X\}$ and $(\forall X) \cdot a = \forall \{x \cdot a \mid x \in X\}$ for each $a \in S$ and each subset X of S

Prop. The forgetful functor from Qt to ISRng has a left adjoint, which sends S to the set of all ideals of S.

G: P'T-Alg→PT-Alg has a left adjoint if

Assumption of Theorem 1 P,P' are monads on C

• i : P \rightarrow P' is a monad map

• C has an absolute coequalizer of P'Pc $\mu' \cdot P'i_c$ for each PT-algebra (b:Pc \rightarrow c, t:Tc \rightarrow c)

G: P'T-Alg→PT-Alg has a left adjoint if

P,P' are monads on C

Assumption i: P→P' is a monad map

P'(b) of C has an absolute coequalizer of P'Pc P'c μ'• P'i_c

for each PT-algebra (b:Pc→c, t:Tc→c)

- T is a monad on C
- θ : TP \rightarrow PT is a distributive law
- θ' : TP' \rightarrow P'T is a distributive law
- (id, i) : $\theta \rightarrow \theta$ ' is a map between distributive laws
- G(a : P'c \rightarrow c, t : Tc \rightarrow c)=(a•i_c : Pc \rightarrow c, t : Tc \rightarrow c)

Contents

- Construction of left adjoint from join semilattice to complete join semilattice
- 2. Construction of left adjoint from join semilattice over T-algebra to complete join semilattice over T-algebra
- 3. Conclusion

Main Theorem and Corollary

To give a sufficient condition for monad P,P',T such that

Main Theorem and Corollary

To give a sufficient condition for monad P,P',T such that

Non-ideal Example

Future Work

Thank you