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Preliminary
• Potential Games [Monderer and Shapley] have been 

shown to be isomorphic to “congestion games”
ù Computer scientists model internet congestion and network 

analysis using rational potential game theory (c.f., Wolpert, 
and others).

• Analysis of certain “boundedly rational” potential 
games leads to statistical mechanics (SM)*
ù SM has been deemed a viable model to address some 

important questions in economics (c.f., Brock, Durlauf, 
etc.) such as emergence, scaling, etc. 

* In fact Anderson, Goeree, and Holt (2004) showed the Quantal Response Equilibrium results from a 
partially averaged form of dynamics studied here. They didn’t realize that was a “mean-field” version 
of the unaveraged dynamics which leads to the Gibbs measure of equilibrium statistical mechanics.



Game Theory
• Consider a finite number of “agents”, i.e., a fictitious 

decision maker (“agent”) in our model
ù For example, someone who can buy or sell a good

• We can (but don’t need to) imagine that each agent is 
located on a two-dimensional grid of integer-
coordinate points
ù The set of all points on our grid is denoted 𝐺
ù A specific “agent” is denoted by their point of location “𝑖”, 

for some 𝑖 ∈ 𝐺 (e.g., 𝑖 = (1,2) )
ù Not necessarily “spatial”; local connectedness in “space” 

may or may not exist
► e.g., it could represent agents who bid on the same contract, etc. 

• • • •
• • • •
• • • •
• • • •
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• At any moment in time, agent 𝑖 can select an 
action or strategy 𝑥𝑖 ∈ 𝐴
ù 𝐴 is the set of decisions an agent can make

► e.g., agents could buy or sell an item and we could take

𝐴 = {−1,1} ;  −1 = buy,  1 = sell

► e.g., the number of goods produced by a group of companies:

𝐴 = interval of real numbers = [low, high]

ù 𝑥𝑖 is agent 𝑖’s decision variable; e.g., 𝑥𝑖 = −1 (buy)

• A configuration �⃗� = (𝑥1, 𝑥2, … , 𝑥() is any 
possible state of the system
ù e.g., �⃗� = (−1,−1,… ,−1) everyone is buying,
ù e.g., (1, −1,−1,1, … ) some buying, some selling, etc.



• The set of all possible configurations is  Ω
(= ∏𝑖 𝐴 ), which is called (pure) state 
space.

• Each agent has a payoff function  𝜋" 𝑥1, … , 𝑥#

ù it gives the payoff (real number) agent 𝑖 gets for 
a given state of the system

ù e.g.,      𝜋4(1,1, … , 1) gives agent 4’s payoff 
if everyone is selling



• Each agent has an action function  𝑎" 𝑥1, … , 𝑥#
ù it allows agents to control their behavior

► can enact rewards and punishments towards other agents

ù e.g.,      𝑎7(−1,−1,… ,−1) gives agent 7’s action 
if everyone is buying

• We only consider “potential games”, which 
means we have a function 𝑉(𝑥1, … , 𝑥#) such 
that every agent’s action 𝑎𝑖 function satisfies

POTENTIAL	GAME	CONDITION

𝜕𝑎!
𝜕𝑥!

=
𝜕𝑉
𝜕𝑥!



Dynamics for the Game
• At any point in time, agents will change their 

decisions to try to maximize their action
• A simple (myopic) model would be 

ù agent 𝑖 changes their decision variable 𝑥𝑖 by a small 
amount  𝑑𝑥𝑖 over a small amount of time 𝑑𝑡 in 
proportion to the derivative of their action function

ù if the derivative is positive (negative), then the action 
will increase if agent 𝑖 increases (decreases) their 
decision variable 𝑥𝑖

AGENTS	FOLLOW	MAX	ACTION	DIRECTION

𝑑𝑥! =
𝜕𝑎!
𝜕𝑥!

𝑑𝑡



• Since we have a potential, we can
replace  !*+!

*,! with    !*-
*,!

• Collecting all the differential equations together gives
𝑑𝑥1, 𝑑𝑥2, … = *-

*,"
, *-
*,#

, … 𝑑𝑡
or more compactly,

RATIONAL DYNAMICS
𝑑�⃗� = 𝛁𝑉 𝑑𝑡

where the gradient 𝛁𝑉 = ( ⁄𝜕𝑉 𝜕𝑥1 , ⁄𝜕𝑉 𝜕𝑥2 , … ) is a 
vector pointing in the direction of the greatest rate of 
increase of the potential

• Everyone is then moving (myopically) in the direction 
of greatest increase of their action functions



Bounded Rationality
• Agents don’t always have exact information, due to random error

ù economists recently found justification from a behavioral explanation of the 
intrinsic randomness needed to justify the long-used mixed-strategy Nash 
equilibrium (Kuhn’s Theorem)

ù boundedly-rational errors are failures to choose the most optimal payoff and 
are intrinsic to the agents

ù examples are experimentation, mistakes in judgment, lack of complete 
information, maintaining the reputation of a product, etc.

• We use a Wiener process 𝑤𝑖(𝑡) to model error
ù for each 𝑡, 𝑤𝑖(𝑡) is a random variable
ù 𝑤𝑖(0) = 0
ù increments are independent

► e.g., 0 ≤ 𝑟 < 𝑠 < 𝑡, then 𝑤𝑖(𝑡) − 𝑤𝑖(𝑠) and 𝑤𝑖(𝑠) − 𝑤𝑖(𝑟) are 
independent

ù 𝑤𝑖(𝑠) − 𝑤𝑖(𝑟) is normally distributed with mean 0 and variance  𝑠 − 𝑟

ù the function  𝑤𝑖(𝑡) is (almost everywhere) a continuous function of  𝑡



• An example of a specific Wiener process is 
shown below

ù we can see that at most times in this example, a 
random positive value would be added to the 
rational part of the agent’s decision

ù for times around 4.5, negative values would be 
added to the rational part



The Boundedly Rational Quenched 
Model for Economic Behavior

• Now we combine the rational and non-rational parts of our agents’ 
decision-making (drift-diffusion) model with decision variables 𝑥!

• Here, 𝑑𝑤 = (𝑑𝑤", 𝑑𝑤#, … , 𝑑𝑤$) is a Gaussian White Noise process
• each 𝑑𝑤𝑖(𝑡) is an increment over infinitesimal time 𝑑𝑡 (Itô sense) ,i.e.,

𝑑𝑤! 𝑡 = 𝑤! 𝑡 + 𝑑𝑡 − 𝑤!(𝑡)

ù 𝜐 is a fluctuation variable that allows us to adjust how much influence the 
random part has

• The process 𝑑𝑧 only changes on the boundary for reflection and 𝐫 is the 
reflection matrix for normal reflection on the boundary
ù “reflecting boundary conditions” are used so that the agents’ decisions stay 

within the high and low bounds of the decision variables (e.g., can’t produce 
less than 0 goods)

STOCHASTIC	DYNAMICAL	MODEL

𝑑�⃗� = 𝛁𝑉 𝑑𝑡 + 𝜐 𝑑𝑤 𝑡 + 𝐫 �⃗� 𝑑𝑧(𝑡)



Joint Distribution of Decisions
• Since the agents’ decisions have a random 

component, their decision at any point in time 
will be determined by a “joint density”

ù this is a probability density function  𝑓(�⃗�, 𝑡)
on decision space Ω at time 𝑡

ù 𝑓(�⃗�, 𝑡) gives the probability that agents make 
decisions represented by �⃗� at time 𝑡

ù 𝑓 changes over time, but will reach a fixed function in 
the long run called the equilibrium measure



Equilibrium Measure
• The stationary joint distribution function satisfies the Itô / Fokker-

Planck equation

𝜕𝑓 �⃗�, 𝑡
𝜕𝑡

= 0 = −𝛁 ⋅ 𝛁𝑉 �⃗� 𝑡 𝑓 �⃗�, 𝑡 +
𝜈G

2
𝛁G𝑓 �⃗�, 𝑡

• The solution to the equation is the Gibbs state

𝑓 �⃗�, 𝑡 = 𝑓HI �⃗� =
exp

2
𝜈% 𝑉(𝑥)

∫J exp
2
𝜈% 𝑉(�⃗�) 𝑑�⃗�

ù The time variable 𝒕 is for the time scale of economic interactions

* W Kang, K Ramanan: “On the Submartingale Problem for Reflected Diffusions in Domains with Piecewise Smooth Boundaries” 2014



• In statistical mechanics, the Gibbs measure has 
the same form, with

8
9"
𝑉(�⃗�) replaced by    − :

;<
𝐸(�⃗�)

ù where 𝑘 is Boltzmann’s constant
ù 𝑇 is temperature:  𝑇 = ⁄𝜐8 (2𝑘) Fluctuation-Dissipation Thm

ù 𝐸 �⃗� = −𝑉(�⃗�) is the energy of configuration �⃗�

• The analogy of a boundedly-rational potential 
game to statistical mechanics (physics) is
ù the influence of non-rationality  𝜐8 is proportional to 

“temperature” (fluctuation-dissipation theorem)
ù the potential 𝑉 is the negative “energy” of the system



HumanomicsModeling
• Agents: two or more; 𝑖 = 2 to 𝑁
• Gratitude Configuration 𝛾

ù 𝛾67 gratitude/resentment 𝑖 has for 𝑗
ù visualize as bond between sites 𝑖 and 𝑗 on graph
ù e.g., 𝛾67 = 1 = 𝛾76 mutual gratitude of 𝑖 and 𝑗,  

𝛾67 = −1 = 𝛾76 is mutual resentment
• Two timescales are used

ù economic equilibrium (i.e., stationary state)
ù feelings of gratitude/resentment



• Strategy Variables
ù agent 𝑖’s strategy is 𝑥= ∈ [ 𝑥 , 𝑥 ]
ù a configuration of decisions is

�⃗� = 𝑥:, 𝑥8, … , 𝑥>
• Payoff Functions

ù 𝜋=(�⃗�) is agent 𝑖’s payoff function
► captures transfers from 𝑖 to 𝑗 and returns from 𝑗 to 𝑖 in 

accordance with 𝑖’s benefit from 𝑗’s action and 𝑖’s reward to 𝑗

• Action Functions
ù 𝑎=(�⃗�) is agent 𝑖’s action function

► allows agents to reward/punish other agents when prompted 
by gratitude/resentment

► can reflect self-interested behavior



• Quadratic Payoffs
ù We consider 

𝜋6 �⃗� = 5
897:;

<

𝐽78
(6)𝑥7𝑥8 +5

7:;

<

ℎ7
(6)𝑥7 + 𝐶6

► adding or subtracting quadratic payoffs results in a quadratic 
function (closure)

ù Quantity/Price-type payoffs

𝜋8 �⃗� = 𝑥8 5
=>8

𝐽=8
(8)𝑥= + 5

=?8

𝐽8=
(8)𝑥= + ℎ8

(8)

► these types appear in Cournot and speculator/hedging models



• Implement Action*

𝑎" �⃗� = 0
%&'

#

𝛾"% 𝜋%(�⃗�)

ù Fundamental Premise: Axiom 3 Humanomics
► gratitude/resentment prompts reward/punishment

ù Model is consistent with this
► 𝑎! = 𝜋! reflects that 𝑖 is only self-interested and maximizes their 

payoffs 
► if 𝛾!% = ±1 indicates gratitude/resentment of 𝑖 to 𝑗, then the action 

function for 𝑖
𝑎! = 𝜋! ± 𝜋%

results in higher/lower expected payoff for agent 𝑗
► we assume mutual gratitude/resentment: 𝛾!% = 𝛾%! thus if above 𝑎!,

𝑎% = 𝜋% ± 𝜋!
o this is a condition for the existence of a potential

* This form is for “aligning” (ferromagnetic) interactions.  It was shown that for “opposing” (antiferromagnetic) interactions, the 
addition/subtraction of payoffs can be punishing/rewarding.  Therefore the form of the action depends on the interactions of the game.



Two-Person Aligning Game

• Payoffs
ù 𝜋; 𝑥;, 𝑥D = 𝑥; 𝐽𝑥D + ℎ;
ù 𝜋D 𝑥;, 𝑥D = 𝑥D( 𝐽𝑥; + ℎD)

► 𝐽 > 0 (aligning),   ℎK > 0, ℎG > 0

• Gratitude configuration is single variable
𝛾 = 𝛾'( = 𝛾(' ∈ {−1,1}

ù mutual gratitude (1) / resentment (-1)



• The same 𝐽 in 𝜋; and 𝜋D, along with mutual 
gratitude/resentment gives a potential

𝑉 �⃗�, 𝛾 = 1 + 𝛾 𝐽𝑥;𝑥D + ℎ;𝑥; + ℎD𝑥D
• Timescale of gratitude/resentment is much 

slower than economic equilibrium
ù “Quenched” model with Quenched PDF

Φ 𝛾 = ;
𝑝 𝛾 = 1 (gratitude)

1 − 𝑝 𝛾 = −1 (resentment)
► 𝑝 is “empirical frequency of mutual gratitude”
► i.e., 𝑝 (1 − 𝑝) is the empirical frequency of opportunity for 𝑖 to 

take action for the benefit (hurt) of other that invokes mutual 
gratitude (resentment)



Gibbs Equilibrium (𝑇 > 0)
• Partition Function for 𝑁 agents at inverse temperature 
𝛽 = 𝑇G;

𝑍<,H ≔ ∫ 𝑒I-𝑑�⃗�
ù gratitude configuration variable 𝛾 is quenched (frozen)

• Finite-Agent Free Potential
𝐹H 𝛽, 𝐽, ℎ;, ℎD ≔

1
𝛽𝑁 ln 𝑍<,H

ù used to find Gibbs equilibrium values when non-rational 
behavior influences decisions (i.e., 𝑇 > 0)

ù generating function for expected value of decision variables 
𝑦L and correlations among them 



Quenched Mean

• Recall that the mean of the observable 𝑔, with 
respect to the Gibbs equilibrium, is

𝑔 #,* = 𝑍#,*+' ⋅ ∫ 𝑔(�⃗�) 𝑒,-(0⃗;*)𝑑�⃗�
• The Quenched mean is then

E* 𝑔 #,*

ù the mean here is taken with respect to the pdf for 
the gratitude configuration random variable 



Expected Values of Payoffs
• Resentment (mean) payoffs (𝛾 = −1)

𝜋K MNOK

= �̅� coth(𝛽ℎK�̅�) −
1
𝛽ℎK

𝐽 �̅� coth(𝛽ℎG�̅�) −
1
𝛽ℎG

+ ℎK

𝜋G MNOK

= �̅� coth(𝛽ℎG�̅�) −
1
𝛽ℎG

𝐽 �̅� coth(𝛽ℎK�̅�) −
1
𝛽ℎK

+ ℎG



• 𝛾 > −1 payoffs computed from below.  Note: Ei x ≔ ∫OP
Q 𝑒Q/𝑥



• Expected Gratitude Payoffs

𝜋K MROK = 𝐽 𝑥K𝑥G MROK + ℎK 𝑥K MROK

𝜋G MROK = 𝐽 𝑥K𝑥G MROK + ℎG 𝑥G MROK

• Quenched payoffs:  consider effects of mutual gratitude (𝑤S) 
/resentment (𝑤T)

𝜋K ≔ EM 𝜋K M = 𝜋K MNU&Φ 𝑤T + 𝜋K MNU'Φ 𝑤S

𝜋G ≔ EM 𝜋G M = 𝜋G MNU&Φ 𝑤T + 𝜋G MNU'Φ 𝑤S

ù we take the probability for mutual gratitude to be Φ(𝑤&) = 𝑝,  0 ≤ 𝑝 ≤ 1
ù the probability for mutual resentment is then Φ(𝑤') = 1 − 𝑝



Numerical Results

• We look at the model above with parameter 
values
ù 𝐽 = 4,
ù ℎ; = 1,
ù ℎD = 6,
ù �̅� = 1,
ù 𝑤M = 1, 𝑤N = −1



• Two-person quenched game with quench probability of mutual gratitude 𝑝 = 0.5
and mutual resentment 1 − 𝑝 = 0.5.

• At 𝛽 = 0, behavior is purely random (Gibbs measure is uniform) hence all payoffs
are zero.

• As 𝛽 → ∞, the payoffs approach the Nash equilibrium, and the gratitude and
resentment payoffs are equal there (see example 7 in paper)
ù Corollary: Nash equilibrium has no predictive value in this case

• Mutual gratitude results in higher payoffs than mutual resentment
• Mean payoffs are increasing in 𝛽 as a result of correlation inequalities (Appendix A)
• Learning curve – concavity à decreasing marginal gains as knowledge increases



• Two-person quenched game with self-interested payoffs and various quenched
payoffs.

• For any fixed temperature, the quenched payoff will strictly increase (linearly) with
𝑝, the quenched probability weight on mutual gratitude.
ù Therefore the quenched payoff will be larger than the self-interested payoff when the

quenched probability weight is larger than a critical value
ù Critical quenched probability depends on agent and temperature

• Above this critical value
ù agent is motivated to change from acting self-interestedly and to engage the other agent

in actions that can result in gratitude/resentment



Average Behavior over Temperature

• Assume agents behave with different levels of 
rationality 
ù uniformly spread out over a range of temperatures

• Then consider the mean payoffs taken over a 
range of temperatures
ù <=𝜋=;@ ≔

:
<#
∫A
<# 𝜋=;@ 𝑑𝑇

► temperature-mean of quenched payoffs

ù @𝜋= ≔
:
<#
∫A
<# 𝜋= BCA 𝑑𝑇

► temperature-mean of self-interested payoffs



• uniform distribution of non-rationality over 0 ≤ 𝑇 ≤ 15, for illustration
• Quenched payoff greater than self-interest payoff 

ù Agent 1: when 𝑝 > 𝑝"∗ ≈ 0.597 (bottom graph)
ù Agent 2: when 𝑝 > 𝑝#∗ ≈ 0.553 (top graph)

• Above critical probabilities 𝑝!∗, agents motivated to engage in actions that result 
in gratitude/resentment in other agent

• That 𝑝!∗ > 0.5 shows agents are averse to resentment (Axiom 4 Humanomics)
ù Agent 2, who receives lower payoff, is more averse to resent than agent 1

• Effort costs to switch from SI to interactive behavior shift the intersection right



Conclusion
• We introduced simple, tractable models

ù implemented fundamental elements of Humanomics
► mutual gratitude/resentment with reward/punishment in form of 

higher/lower payoff
ù bounded rationality
ù timescales for economic equilibrium & feelings of 

gratitude/resentment
• Quenched model (faster economic equilibrium)

ù new insight into critical quenched probabilities
► agents are resentment-averse, consistent with Axiom 4
► Nash equilibrium does not have any predictive power for this model

ù infinite-agent homogeneous interaction model is spin glass
► discrete quenched probability distribution
► disorder comes from random (high-temperature) behavior, not 

frustration



Future Research
• Create model where timescales of economic equilibrium 

and feelings of gratitude/resentment are the same
ù economic variables and gratitude/resentment variables would 

interact
• Spin-Glass Infinite-agent homogeneous interaction 

quenched model
ù not a traditional spin glass – random, non-frustrated disorder
ù how would we interpret the (likely) phase transition?

• Anti-aligning models ( 𝐽 < 0 )
• Aligning model with 𝑁 = 3,4,5,6, … agents

ù do similar results hold as 𝑁 = 2 in this paper?
• Homogeneous gratitude configurations

ù gratitude/resentment need not be mutual; i.e., can be one-sided


