=====Action lattices===== Abbreviation: **ActLat** ====Definition==== An \emph{action lattice} is a structure $\mathbf{A}=\langle A,\vee,\wedge,0,\cdot,1,^*,\backslash ,/\rangle$ of type $\langle 2,2,0,2,0,1,2,2\rangle$ such that $\langle A,\vee,0,\cdot,1,^*\rangle$ is a [[Kleene algebra]] $\langle A,\vee,\wedge\rangle$ is a [[lattice]] $\backslash$ is the left residual of $\cdot $: $y\leq x\backslash z\Longleftrightarrow xy\leq z$ $/$ is the right residual of $\cdot$: $x\leq z/y\Longleftrightarrow xy\leq z$ ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be action lattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(x\backslash y)=h(x)\backslash h(y)$, $h(x/y)=h(x)/h(y)$, $h(x^*)=h(x)^*$, $h(0)=0$, $h(1)=1$ ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] |undecidable | ^[[First-order theory]] |undecidable | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, $n=2$ | ^[[Congruence regular]] |no | ^[[Congruence e-regular]] |yes | ^[[Congruence uniform]] |no | ^[[Congruence extension property]] |no | ^[[Definable principal congruences]] |no | ^[[Equationally def. pr. cong.]] |no | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &3\\ f(4)= &20\\ f(5)= &149\\ f(6)= &1488\\ \end{array}$ ====Subclasses==== [[Commutative action lattices]] ====Superclasses==== [[Action algebras]] [[Residuated lattices]] ====References==== [(Kozen1994> D. Kozen, \emph{On action algebras}, In J. van Eijck and A. Visser, editors, \emph{Logic and Information Flow}, MIT Press, 1994, 78--88 see also http://www.cs.cornell.edu/kozen/papers/act.ps )]