=====Algebraic Lattices===== Abbreviation: **ALat** ====Definition==== An \emph{algebraic lattice} is a [[complete lattice]] $\mathbf{A}=\langle A,\bigvee,\bigwedge\rangle$ such that every element is a join of compact elements. An element $c\in A$ is \emph{compact} if for every subset $S\subseteq A$ such that $c\le\bigvee S$, there exists a finite subset $S_0$ of $S$ such that $c\le\bigvee S_0$. ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be algebraic lattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a complete homomorphism: $h(\bigvee S)=\bigvee h[S] \mbox{ and } h(\bigwedge S)=\bigwedge h[S]$ ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |second-order | ^[[Amalgamation property]] |yes | ^[[Strong amalgamation property]] |yes | ^[[Epimorphisms are surjective]] |yes | ====Subclasses==== [[Algebraic distributive lattices]] ====Superclasses==== [[Complete lattices]] [[Algebraic semilattices]] ====References==== [(Ln19xx> )]