=====BCK-join-semilattices===== Abbreviation: **BCKJSlat** ====Definition==== A \emph{BCK-join-semilattice} is a structure $\mathbf{A}=\langle A,\vee,\rightarrow,1\rangle$ of type $\langle 2,2,0\rangle$ such that (1): $(x\rightarrow y)\rightarrow ((y\rightarrow z)\rightarrow (x\rightarrow z)) = 1$ (2): $1\rightarrow x = x$ (3): $x\rightarrow 1 = 1$ (4): $x\rightarrow (x\vee y) = 1$ (5): $x\vee((x\rightarrow y)\rightarrow y) = ((x\rightarrow y)\rightarrow y)$ $\vee$ is idempotent: $x\vee x = x$ $\vee$ is commutative: $x\vee y = y\vee x$ $\vee$ is associative: $(x\vee y)\vee z = x\vee (y\vee z)$ Remark: $x\le y \iff x\rightarrow y=1$ is a partial order, with $1$ as greatest element, and $\vee$ is a join for this order. [(Idziak1984)] ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be BCK-join-semilattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\rightarrow y)=h(x)\rightarrow h(y)$ and $h(1)=1$ ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] | | ^[[Residual size]] | | ^[[Congruence distributive]] | | ^[[Congruence modular]] | | ^[[Congruence n-permutable]] | | ^[[Congruence regular]] | | ^[[Congruence uniform]] | | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ \end{array}$ ====Subclasses==== [[BCK-lattices]] ====Superclasses==== [[BCK-algebras]] ====References==== [(Idziak1984> Pawel M. Idziak, \emph{Lattice operation in BCK-algebras}, Math. Japon., \textbf{29}, 1984, 839--846 [[MRreview]] )]\end{document} %